
Cele mai relevante publicații pentru realizările profesionale 

1. Bogdan-Constantin Neagu, Ovidiu Ivanov, Gheorghe Grigoras, Mihai Gavrilas, A New
Vision on the Prosumers Energy Surplus Trading Considering Smart Peer-to-Peer Contracts.
Mathematics, 2020, 8, 235. Accession Number: WOS:000519234000090 (Q1) IF 2.258.

2. Bogdan-Constantin Neagu, Ovidiu Ivanov, Gheorghe Grigoras, Mihai Gavrilas, Marcel
Istrate, New Market Model with Social and Commercial Tiers for Improved Prosumer Trading
in Microgrids. Sustainability 2020, 12, 7265, WOS:000584284700001. (Q2) IF 3.251.

3. Ovidiu Ivanov; Bogdan-Constantin Neagu; Gheorghe Grigoras; Scarlatache, Florina;
Gavrilas, Mihai, A Metaheuristic Algorithm for Flexible Energy Storage Management in
Residential Electricity Distribution Grids. Mathematics 2021, 9, 2375.
WOS:000628360103201, (Q1) IF 2.258.

4. Jasim, Ali M., Basil H. Jasim, Bogdan-Constantin Neagu, and Bilal Naji Alhasnawi.
"Efficient optimization algorithm-based demand-side management program for smart grid
residential load." Axioms 12, no. 1 (2022): 33 WOS:000916714000001 (Q2) IF 2.000.

5. Gheorghe Grigoras, Bogdan-Constantin Neagu, An Advanced Decision Support Platform in
Energy Management to Increase Energy Efficiency for Small and Medium Enterprises,
Applied Sciences, 2020, 10, 3505. Accession Number: WOS:000541440000166, (Q2) IF
2.679

6. Bogdan-Constantin Neagu, Gheorghe Grigoras, and Florina Scarlatache. "Engineering
Applications of Blockchain Based Crowdsourcing Concept in Active Distribution Grids." In
Smart Grid 3.0: Computational and Communication Technologies, pp. 57-76. Cham: Springer
International Publishing, 2023, 2021,ISBN: 978-3-030-62190-2.

7. Ovidiu Ivanov, Bogdan-Constantin Neagu, Gheorghe Grigoras, Mihai Gavrilas, Optimal

Capacitor Bank Allocation in Electricity Distribution Networks Using Metaheuristic

Algorithms. Energies 2019, 12, 4239, Accession Number: WOS:000504898500017

8. Gheorghe Grigoras,  Bogdan-Constantin Neagu, Mihai Gavrilas, Ion Triștiu, Constantin
Bulac, Optimal Phase Load Balancing in Low Voltage Distribution Networks using a Smart
Meter Data-based Algorithm, Mathematics, 2020, 8, 549. Accession Number: WOS:
000531824100089 (Q1) IF 2.258.

9. Banu, Ioan Viorel, Fadila Barkat, Marcel Istrate, Josep M. Guerrero, George Culea, Petru
Livinti, Justina G. Motas, Bogdan Neagu, and Dragos Andrioaia. "Passive anti-Islanding
protection for Three-Phase Grid-Connected photovoltaic power systems." International
Journal of Electrical Power & Energy Systems 148 (2023): 108946. WOS:001009658800001
(Q1) IF 2.258.

10. Grigoraș, Gheorghe, Maria Simona Raboaca, Catalin Dumitrescu, Daniela Lucia Manea,
Traian Candin Mihaltan, Violeta-Carolina Niculescu, and Bogdan Constantin Neagu.
"Contributions to power grid system analysis based on clustering techniques." Sensors 23, no.
4 (2023): 1895, WOS:000942301200001 (Q2) IF 3.900.

Candidat conf. dr. ing. Bogdan-Constantin Neagu 
Data 25 septembrie 2023 



mathematics

Article

A New Vision on the Prosumers Energy Surplus
Trading Considering Smart Peer-to-Peer Contracts

Bogdan-Constantin Neagu * , Ovidiu Ivanov, Gheorghe Grigoras * and Mihai Gavrilas

Department of Power Engineering; Gheorghe Asachi Technical University of Iasi, Ias, i 705000, Romania;
ovidiuivanov@tuiasi.ro (O.I.); mgavril@tuiasi.ro (M.G.)
* Correspondence: bogdan.neagu@tuiasi.ro (B.-C.N.); ggrigor@tuiasi.ro (G.G.)

Received: 31 December 2019; Accepted: 9 February 2020; Published: 12 February 2020
����������
�������

Abstract: A growing number of households benefit from government subsidies to install renewable
generation facilities such as PV panels, used to gain independence from the grid and provide cheap
energy. In the Romanian electricity market, these prosumers can sell their generation surplus only at
regulated prices, back to the grid. A way to increase the number of prosumers is to allow them to make
higher profit by selling this surplus back into the local network. This would also be an advantage for
the consumers, who could pay less for electricity exempt from network tariffs and benefit from lower
prices resulting from the competition between prosumers. One way of enabling this type of trade is
to use peer-to-peer contracts traded in local markets, run at microgrid (µG) level. This paper presents
a new trading platform based on smart peer-to-peer (P2P) contracts for prosumers energy surplus
trading in a real local microgrid. Several trading scenarios are proposed, which give the possibility to
perform trading based on participants’ locations, instantaneous active power demand, maximum
daily energy demand, and the principle of first come first served implemented in an anonymous
blockchain trading ledger. The developed scheme is tested on a low-voltage (LV) microgrid model to
check its feasibility of deployment in a real network. A comparative analysis between the proposed
scenarios, regarding traded quatities and financial benefits is performed.

Keywords: microgrids; prosumers; local trading; peer-to-peer contracts; blockchain technology

1. Introduction

In distribution systems, intelligent networks (known as ‘smart grids’) are implemented for
encouraging energy savings and the integration of distributed generation sources, to help distribution
utilities choose the optimal investment plans, achieve optimal operation of their systems, and to
increase system efficiency. Other issues that need to be taken into consideration are the proliferation of
prosumers and the creation of new consumer services. These research directions are in agreement with
the European Union (EU) priorities, stated in the European Commission (EC) Communication published
in 28 November 2018: renewable technologies, which must be the core of the new energy systems,
smart grids, better energy efficiency, and low-carbon technologies. The fight against climate change is
one of the five main topics of the EU extensive strategy for smart, sustainable and inclusive growth.

A microgrid can be defined as a LV network with loads, distributed energy resources (DER),
and energy storage systems (ESS) connected to it, which can be operated in standalone or grid connected
mode. The capacity of the DER considered in µG is in relatively small scale, but without universal
agreement. It is mentioned as smaller than 100 kW by Huang et al. [1]. One of the main concepts in the
active distribution network (ADN) is demand side management (DSM). Demand response (DR) as one
of subcategories of DSM is defined by the EC as “voluntary changes by end-consumers of their usual
electricity use patterns—in response to market signals”. It is a shift of electricity usage in response to
price signals or certain requests [2].
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The existing energy management systems (EMS) available to operators will soon seem archaic
with the increasing integration of small-scale renewable energy sources (SSRES), distributed generation
(DG), ESS, electric vehicles, and DR programs. With the increased penetration of DER into the electricity
distribution network (EDN), the power flow no longer remains unidirectional and power system
control becomes increasingly complex. With their distributed control, µGs provide a novel alternative
and can help transform the existing burdened power system into a smart grid. As a first step towards
these goals, in the EU, the implementation of smart metering systems is finished in some countries and
is in various levels of development in others [3]. The spread of smart metering allows the creation of
the µG energy markets (micro-markets: µM), which enable small-scale participants such as consumers
(residential buildings) and prosumers (defined as consumers with excess of produced power) to locally
exchange the energy surplus [4].

In addition to the metering functions, smart meters provide a wide range of applications:
two-way communication between the smart meters mounted at consumer/prosumers sites and
concentrators (management platforms or traders), secure data transmission between the participants,
remotely controlled connections on the µGs and specify the limitation of consumers/prosumers, and
differentiated time-of-use tariffs [5]. The blockchain concept, as a rising technology, proposes new
challenges for the µG based on the decentralized or community energy market, which ensures clear
and favorable applications that allow consumers to be prosumers in a secured way [6]. The application
of blockchain for µM has recently earned the consideration of the researchers worldwide.

Through bilateral prosumer-consumer contracts, consumers can obtain electricity at significantly
lower price offers than from traditional suppliers. If a blockchain trading system is used, transactions
are distributed and encrypted for data validation and local storage at the µG level. Each member
of the network automatically verifies, confirms, and saves the authenticity of the transaction data.
Furthermore, third-party trading agents are not needed, because the trading process is performed by
participants, who become witnesses and guarantees for every transaction.

The massive implementation of active µGs will be a critical challenge for electrical grids that will
require new management and control strategies. Aggregators and µGs, in a certain manner, may look
similar because they were both introduced as aggregation element, which allows a coherent operation
of a number of DERs, ESSs and flexible loads. In reality, there is a substantial difference between
these two actors. In fact, µG perform the optimal management and control of resources based on
geographical contiguity. On the contrary, this characteristic is not required in aggregators and the
affiliated resources can be delocalized through the territory.

In Romania, by the provisions of Order 228 of 28 December 2018 proposed by ANRE
(Regulation National Agency in Energy Domain) regarding prosumers, consumers who wish to trade
the energy produced from renewable sources such as photovoltaic (PV), biomass, wind, cogeneration,
etc. on the free market, and taking into account the current economic and technical context from the
energy industry regarding the increase of investments in the small sources of distributed generation,
it is expected that the need to develop new technological platforms for monitoring, management,
and advanced analysis of the energy market will extend to the level of µG and of individual consumers,
with the modernization of technical infrastructures and their transformation into smart µG.

According to the aforementioned regulations, the electricity suppliers bound by contracts with
prosumers are required to buy the electricity at the weighted average day-ahead market price from
the previous year. Thus, the prosumer can sell on the market its electricity generation surplus, while
the advantage for the supplier is the exemption from the payment of the distribution network tariff.
This trading system is the most basic, limiting the options of both parties, prosumers who want to sell
and consumers who want to buy electricity at lower prices.

By not allowing prosumers to set custom selling prices, it does not account for differences in
generation costs and installed capacity. The incentive of increasing local generation is not present.
Consumers cannot buy electricity directly from the prosumers, and thus do not the freedom to choose
specific prosumers for trading.
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The aim of this paper is to provide an innovative electricity trading system implementing a new
vision for local electricity trading between prosumers and consumers in µGs. In electricity markets,
trading is based usually on the minimum selling price principle. However, the electricity quantities
traded in µGs are much smaller, with narrower differences between selling prices. Thus, other criteria
can become equally relevant, such as traded quantity or distance between seller and buyer. On the
other hand, blockchain trading is based on the principle of first came, first served (FCFS), regardless of
quantity and price. Based on these considerations, the prosumer electricity surplus trading (PEST)
algorithm proposed in this paper offers several transaction priority scenarios, prosumer-driven
and consumer-driven. In the prosumer-driven scenarios, the local generators with surplus to sell
choose their trading parties (consumers), based on four principles: minimum distance, maximum
instantaneous demand, maximum daily demand, and blockchain trading. In the consumer-driven
scenario, consumers use the blockchain trading system to place buying offers, which are fulfilled by
selling offers in the ascending order of prices. The term “smart” from the title coincide with the mode
of transaction priority scenarios, where the peers sign according to its own advantage.

The remainder of the paper is structured as follows. Section 2 presents a literature review on the
proposed problem highlighting the advantages of the proposed PEST methodology. Section 3 describes
the proposed PEST algorithm for prosumer-consumer trading in µG. In Section 4, a case study is
performed, with a comparison between the proposed trading strategies, outlining their particularities.
The paper ends with Section 5 and references.

2. Literature Review

The latest trends in academic or industrial research describe several PEST solutions via P2P
contracts with or without blockchain technologies. The P2P concept represents a process in which the
prosumers trade energy in exchange for a deposit with the consumer [7]. Prosumers use P2P contracts
for selling their generation surplus to local consumers, instead of selling it back to the grid.

In active distribution networks, the P2P trading process is structured as a four-layer architectural
business model, from which three dimensions are used for secured energy exchange: bidding between
prosumers and consumers for certain energy quantities through smart contracts, the selection of the
offers to be fulfilled, energy delivery, and finally payment settling. In the aforementioned trading
procedure, selling and buying offers are posted in a ledger secured by the blockchain technology.
Offers are verified by the system administrator and accepted by parties by signing the P2P contracts.
The energy demand can be met by any prosumer, and energy exchange in lieu of digital money takes
place [8].

If a µM is established in the µG, small-scale prosumers and consumers have a market platform
to trade energy generated locally within their community. In this way, energy losses are reduced,
because the consumption of energy is in close proximity to the source. This helps to promote the
sustainable and efficient utilization of local resources, because the market participants in a µM do not
compulsorily need to be physically connected. Multiple energy producers, prosumers, and consumers
can be added to form a local (or virtual) community and the control can be maintained through
local (virtual) µGs. Blockchain is a secure system for transactions, which also provides distributed
applications to convey an understanding of each block and data on the system [9]. Even though in
literature it exists an important number of research papers regarding the µM on the one hand and
blockchain technology on the other hand, their aggregation is still lacking [10].

Several P2P transaction mechanisms are known from the literature as follows: based on transaction
zoning in [11], based on total share of SSRES between neighbourhoods for energy bills saving in [7,12],
and also on the provision of ancillary services and voltage regulation service [13]. P2P energy trading
schemes are also proposed for local community or µG which already have implemented the blockchain
technologies [14]. In [15], to secure the transactions of the PEST by P2P contracts, a specific blockchain
technology is developed. Other authors propose double auction mechanism. The maximization of
social welfare in the PEST can use auction-based mechanism [16,17]. The author from [18] uses an
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optimum pricing scheme for local electricity trading in µGs considering four particular priorities.
In other words, the prosumers become the new actors in local electricity power market, considered
as µM [19,20]. A different formulation of the PEST optimization follows a hierarchical framework
considering the future energy price uncertainty in [21], information and communication technologies
(ICT) in [22], and multi-layer architecture model in [23,24]. Paper [25] proposes a comprehensive
analysis regarding the P2P communication architectures and highlights the performance of common
protocols evaluated in accordance with IEEE 1547.3-2007.

In study [26], a P2P index optimization process was proposed. Here, a compromise regarding
the balancing between the demand and generation in the LV network are identified. An incentive
mechanism for PEST is presented in [27]. In the aforementioned paper, the authors consider three prices
for prosumers profit maximization. Moreover, in [20,21,28], the authors proposed an evolutionary
game theory-based approach for a dynamic modelling of the consumers (as buyers), in order to select
the prosumers (as sellers). Thus, the evolutionary game theory was used for a dynamic modelling of
the buyers for selecting sellers. The particular approach from [29] consider a Model Productive Control
(MPC) method, for transactions only between two SSRES (prosumers), to avoid selling the surplus
electricity production to classical traders or suppliers. This work considers the direct transactions
without P2P contracts and blockchain technologies. Another category of the published papers regards
the transactions of the PEST in the context of transactive energy in µGs [30–32]. The authors in [33] the
transactions consider different preference of prices.

To highlight the newness and the originality of our proposed approach, in Table 1, a brief
description of the literature paper is presented, considering the five proposed trading objectives
(four prosumer-driven and one consumer-driven) and the P2P contracts. The four prosumer-driven
are S1: path of supply length, S2: instantaneous power demand, S3: daily energy consumption-based
clustering, and S4: blockchain technologies. In addition, the consumer-driven scenario is
S5—minimum price for consumers. It should be mentioned that many papers are the same with the
References [7,11–18,20–23,25–33] presented in Table 1.

Table 1. A comparative state of the art between our method and the literature.

References Path of
Supply (S1)

Instantaneous
Power

Demand
(S2)

Daily
Energy

Consumption
(S3)

Blockchain
Technologies

(S4)

Minimum
Price for

Consumers
(S5)

P2P
Contracts

[7,17] no no no no yes yes
[11,12,25] yes no no no no yes

[13] no no yes yes no yes
[14,15] no no yes yes yes yes
[16,23] yes no no yes no yes

[18] no no yes no no no
[20,26] no no yes no no yes

[21,22,30] no no no no yes no
[27] no no no yes yes no
[28] no no yes no yes yes
[29] no yes no no no yes
[31] no yes no yes no no

[32,33] no no no no yes yes
Proposed
approach yes yes yes yes yes yes

A previous work of the authors, in [34], proposes only at principle level a particular approach for
prosumers energy trading in µGs as an efficient P2P exchange based on the blockchain technology.
Specifically, the algorithm solves a mathematical model for the latest challenges regarding both the
ADN and the newest type of electricity market participants (prosumers) using virtual or crypto price as
the transaction currency. In other words, this work emphasizes the capabilities and plausible benefits
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of P2P contracts for energy trading in local µGs from both prosumers and consumers perspectives.
Taking into account that the Smart Meters are able to perform automatic energy transfer from the
prosumers to the µG, the energy exchanged between the µGs peers, the utilities will be reduced, trough
the minimization of active power losses. In the aforementioned context, the proposed algorithm
implemented in the MATLAB environment is developed as a final energy market transaction platform
for both the prosumers and traders.

3. A New Vision for Prosumer Energy Surplus Trading Algorithm

As described in the previous sections, an increasing number of consumers from LV EDN are using
SSRES such as PV panels and wind turbines to gain energy independence by reducing the electricity
need from the classic grid. This trend is driven by incentives provided by governments, such as
subsidies for installing equipment or legislative provisions that allow them to sell the generation
surplus back to the grid or to other consumers, thus becoming prosumers. The trading model that gives
prosumers the ability to sell the surplus generation to the grid uses often-regulated tariffs, which results
in low profits. The financial gain of the prosumers can increase if they get the possibility to sell energy
to the consumers from their vicinity, at negotiated prices, via new trading tools, such as P2P contracts.
Furthermore, to ensure equal access and transaction anonymity, the blockchain technology can be
implemented to secure prosumer-consumer transactions.

The paper presents an algorithm for electricity transactions between prosumers and consumers
belonging to the same local network or µG, using P2P contracts and, optionally, the blockchain technology.

In this section, prosumers and consumers’ selection process, P2P pricing methodology, and the
surplus trading mathematical model will be explained in detail.

The trading model implemented in the algorithm uses the following assumptions:

• Transactions are settled by the local non-profit µG manager or aggregator using the consumer or
prosumer merit order derived from the priority mechanism agreed for trading and data from the
metering system.

• The prosumer-consumer acquisition priority rules are the same for the entire µG.
• To be able to acquire electricity from a prosumer Pk, a consumer Cj must have previously signed

a P2P contract that includes the bilateral trading agreement, price, and other supplemental
information, such as trading priority.

• By default, any prosumer and prosumers in the µG have signed bilateral P2P trading contracts.
In other words, any prosumer who has a generation surplus can theoretically sell electricity to
any consumer in the microgrid. This setting is changeable to exclude any consumer from the
trading process.

• When a consumer is awarded a P2P contract, the power supplied by the prosumer will try to
match the entire load of the consumer, within the limit of the available surplus, as in Equation (1).
This setting is changeable to allow specified quantity requirements for each consumer.

Ptrade,k, j,h =

{
P j,h, if Psurplus,k,h ≥ P j,h
Psurplus,k,h, otherwise

(1)

where Ptrade,k,j,h is the power traded at hour h (h = 1, ..., nh), to consumer j (j = 1, ..., nc) by prosumer k
(k = 1, ..., np); Pj,h is the own consumption of prosumer k at hour h, and Psurplus,k,h is the power surplus
at hour h of the prosumer k.

• The selling price of a prosumer is considered fixed for all trading intervals of a day. This assumption
is made because only PV panels are used at this point as generation sources, and no storage
capabilities are present in the µG. Thus, the local generation does not cover evening peak load or
low consumption night hours, which would favor the application of differentiated tariffs.
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• The consumers in the network are generally one-phase, supplied through a four-wire three-phase
network. Prosumers are supplying their surplus generation in the µG using a three-phase balanced
connection point, as required by technical regulations for LV distribution systems [35].

• When transactions take place between certain prosumers and consumers, the prosumers will
deliver and the consumer will receive electricity from the same grid.

• If the surplus exceeds the local demand traded via P2P contracts, the µG market administrator
will sell the untraded electricity back to the grid, at regulated tariffs.

The main input data needed by the algorithm refers to the consumption and local generation available
in the µG. For this, two matrices are provided: matrix C = C (h, j) ∈ Rnh×ncfor consumptions and matrix
G = G (h, k) ∈ Rnh×np for generation. Generation will be available for prosumers for which, at the same
hour h and prosumer k, G (h, k) > C (h, k), and the surplus available for trading follows as:

S (h, k) = G (h, k) − C (h, k) (2)

computed into a matrix S = S (h, k) ∈ Rnh×np.
Also, for prosumers, the daily selling price is provided as a matrix PR = PR(h, k) ∈ Rnhxnp,

where any element PR(h, k) represents the selling price for a generic prosumer k at hour h.
This surplus will be sold to local consumers if P2P contracts exist, or to the grid. The local

transactions are governed by a priority of supply mechanism agreed at the µG level, which describes
the order in which any consumer Cj can acquire electricity from any prosumer Pk. In the algorithm,
the complete list of priorities is encoded in a matrix Mx =Mx(k, j) ∈

1 

 

ℤ 
np×nc. A generic element Mx(k, j)

denotes the merit order of consumer j in the priority list of prosumer k, for the trading scenario x.
The trading algorithm proposed in the paper offers improved flexibility by considering two

trading paradigms: consumer-driven, where the minimum price for consumers is sought, as in any
traditional electricity market, and prosumer-driven, where the aim is to incentivize prosumer offers.

In the prosumer-driven scenarios, trading is performed to prioritize the selling of the generation
surplus to consumers. The prosumer selling price is not considered, and the selling offers are fulfilled
using the FCFS principle [34]. When trading is consumer-driven, the fulfillment of the consumer needs
is sought first, and the prosumers with the lowest selling prices are prioritized for trading, as shown in
Figure 1.
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Five scenarios for assigning consumer priorities for P2P trading are available:

• Prosumer-driven

# Scenario 1: Path of supply length
# Scenario 2: Instantaneous power demand
# Scenario 3: Daily energy consumption-based clustering
# Scenario 4: Blockchain offers
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• Consumer-driven:

# Scenario 5: Minimum price for consumers

In each scenario, when the primary priorities are equal, a second dissociation criterion is applied.
A description of these scenarios follows.

3.1. Trading Priority Based on the Length of the Supply Path—Scenario 1 (Prosumer-Driven)

If this criterion is used, the prosumers will sell their electricity surplus to consumers using as
ranking criterion the minimal network length between the generation and consumption locations.
The consumer(s) with minimal network length from a given prosumer will be awarded first its available
surplus, followed by other consumers in the ascending order of the connection distance. If two
consumers are located at equal network lengths from a prosumer, the one with the higher power
request will be preferred:

Priority level 1 min(L j,k)Priority level 2 max(Ph, j) (3)

This prioritization approach is modelling the true load flows occurring in an EDN, where the
energy generated locally would predominantly supply the consumptions located at the closest locations,
following the shortest path. Thus, the consumers most likely to physically receive the surplus are
preferred for trading in this case.

3.2. Trading Priority Based on Consumer Hourly Demand—Scenario 2 (Prosumer-Driven)

In this scenario, the prosumers will sell their electricity surplus to consumers ranked in descending
order of their trading offer or instantaneous consumption measured in the trading hour. If two
consumers have equal power trading requirements at the same time, the one located closer to the seller
prosumer will be preferred:

Priority level 1 max(Ph, j)Priority level 2 min(L j,k) (4)

This prioritization is favoring for trading the consumers with the highest instantaneous demand,
reducing the number of contracts fulfilled simultaneously by one prosumer. The use of this prioritization
procedure minimizes the number of financial settlements required in each trading interval and in
a day. In most cases, if a consumer is accepted for trading, its financial saving resulting from the
lower electricity prices offered by prosumers, compared with standard regulated prices, is maximized.
Larger profits can act as an incentive for consumers with high demand to be involved in the retail
electricity market operated at microgrid level.

3.3. Trading Priority Based on Consumer Daily Demand—Scenario 3

In this scenario, the trading priority considers the total electricity demand of the consumers over
24 h. The consumers prioritized for receiving the prosumers’ surplus will be those with the highest
daily demand. For this purpose, the Ward hierarchical clustering method was applied.

The Ward method is an agglomerative hierarchical method that first assigns each observation to
its own cluster and then groups adjacent clusters so that minimum variance within a cluster is obtained.
The distance between two clusters a and b is computed with:

dab =
‖ca − cb‖

2

1
na

+ 1
nb

(5)

where: dab refers to the distance between cluster a and cluster b, cX is the mean of cluster X, ‖ ‖ is the
Euclidean length, and nx is number of elements grouped in cluster X.



Mathematics 2020, 8, 235 8 of 27

The minimum variance criterion used by the Ward method is grouping the consumers in clusters
of similar demand level and pattern over 24 h. In the algorithm, a maximum of five priority levels
were considered for grouping, and within the same priority level, the criterion of the maximum
instantaneous hourly demand was applied:

Priority level 1 max(W j)Priority level 2 max(Ph, j) (6)

3.4. Trading Priority Based on the Blockchain Technology—Scenario 4

The blockchain technology allows secure anonymous transactions that are fulfilled on the FCFS
principle. This means that prosumers or the market administrator cannot choose the trading partners,
and buying offers are fulfilled regardless of quantity and price, based only on the time of placement in
the trading system.

The algorithm simulates this scenario by assigning randomly generated priorities for each
consumer and prosumer, at each trading interval. In addition, as a rule, no two consumers can
have equal trading priorities, as the time index of each offer is unique in the blockchain system.
Thus, no second ranking criterion is required in this case.

3.5. Trading Priority Based on the Minimum Price for Consumers—Scenario 5

A standard market procedure is to accept trading offers based on the minimum selling price.
This approach is modeled in the last scenario implemented in the algorithm, where consumers will
acquire the electricity from prosumers in the ascending order of the selling process. The consumer
offers will be fulfilled in the sequence taken from the blockchain system ledger, on the FCFS principle.
If two prosumers have the same price offer, the highest traded quantity will be preferred.

Priority level 1 min(PRk,h)Priority level 2 max(Pk, j) (7)

Scenarios 1 and 2 require the knowledge of the length of the supply paths from each prosumer to
each consumer. Based on these distances, the priority matrix M1 =M1 (k, j) ∈

1 

 

ℤ 
np×nc is determined,

where a generic element M1 (k, j) denotes the trading priority of consumer j for prosumer k. Priorities
are positive integer numbers. Lower distances between prosumer k and consumer j result in higher
trading priority between the two peers. The highest priority level is 1.

Similarly, Scenario 3 requires the priority matrix M2 =M2 (k, j) ∈

1 

 

ℤ 
np×nc where each element M2

(k, j) denotes the trading priority of consumer j for prosumer k determined by the Ward clustering of
consumers according to the daily energy demand. Higher demand is equivalent with higher priority.

Scenarios 4 and 5 use the priority matrix M3 = M3 (k, j, h) ∈

1 

 

ℤ 
np×ncxnh, where each element M3

(k,‘j, h) is the priority of consumer j for prosumer k at hour h, determined by the time index at which
consumer j inputs its purchasing offer for hour h. An earlier time index is equivalent with higher
priority. In all priority matrices, the highest priority level is 1. A higher value denotes a lower priority.

For the prosumer-driven scenarios, the surplus is computed using Equation (2) for each prosumer.
Then, for each hour and prosumer, if the surplus exists, it is distributed to the consumers using one of
the priorities from Scn1 ÷ Scn4. For the consumer-driven scenario (Scn5), at each hour h where surplus
exists, it is distributed amongst the consumers using the priority determined by the blockchain system,
prioritizing the prosumers with the lowest prices.

The results are stored in an acquisition matrix A = A (h, j, k) ∈

1 

 

ℤ 
nh × nc x np, where each element A

(h, j, k) represents the electricity sold at hour h to consumer j by prosumer k. Similarly, the financial
settlement matrix F = F (h, j, k) ∈

1 

 

ℤ 
nh × nc x np is computed, where each element F (h, j, k) represents the

payment made by consumer j to prosumer k at hour h. The mathematical model used in determining
the hourly surplus sold by prosumers to local consumers via a P2P contract is presented in Algorithm
1. Algorithm 1 uses Subroutine 1, Subroutine 2 and Subroutine 3.
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Algorithm 1: The proposed trading algorithm

Step 1. Specify trading scenario: 1—network length; 2—instantaneous demand; 3—daily demand;
4—blockchain trading; 5—prosumer minimum price with blockchain.
Step 2. Load input data: the consumer load profile matrix C, the prosumer generation matrix G, the supply
path lengths of the network, the prosumer price matrix PR.
Step 3. According to the selected scenario, compute priority matrices M1, M2, M3.
Step 4. Initialize the acquisition matrix A and financial settlement matrix F.
Step 5. Initialize the unsold surplus us = 0.
Step 6. Trading:
for prosumer-driven scenarios
for each hour h, h = 1..24
for each prosumer k, k = 1, . . . , np
compute surplus S (h, k);
if S (h, k) > 0
srp = S (h, k);
find ix, the row index corresponding to prosumer k in matrix M1
case Scenario 1—network length
build a temporary consumer priority matrix MTC with two rows:
row 1: line ix from matrix M1;
row 2: line h from matrix C;
(MTC, A, F, srp) = Subroutine 1 (MTC, A, F, srp, h, ix, nc).
case Scenario 2—instantaneous demand
build a temporary consumer priority matrix MTC with two rows:
row 1: line h from matrix C;
row 2: line ix from matrix M1;
(MTC, A, F, srp) = Subroutine 2 (MTC, A, F, srp, h, ix, nc)
case Scenario 3—daily demand
build a temporary consumer priority matrix MTC with two rows:
row 1: line ix from matrix M2;
row 2: line h from matrix C;
(MTC, A, F, srp) = Subroutine 1 (MTC, A, F, srp, h, ix, nc)
case Scenario 4—blockchain trading
build a temporary consumer priority matrix MTC with two rows:
row 1: line ix from matrix M3;
row 2: line h from matrix C;
(MTC, A, F, srp) = Subroutine 1 (MTC, A, F, srp, h, ix, nc)
Update line h from C using the modified matrix MTC
Update the unsold surplus: us = us + srp;
for consumer-driven scenarios—prosumer minimum price with blockchain
for each hour h, h = 1, . . . , 24
compute the total surplus for hour h, srph;
if srph > 0
build a temporary consumer priority matrix MTC with two rows:
row 1: line h from matrix M3;
row 2: line h from matrix C;
build a temporary prosumer priority matrix MTP with two rows:
row 1: line h from matrix PR;
row 2: line h from matrix S;
(MTC, MTP, A, F, srp) = Subroutine 3 (MTC, MTP, A, F, h)
Step 7. Compute the hourly and total electricity sold by prosumers to each consumer and the electricity traded
hourly and daily by all prosumers, using matrices A and F.
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Subroutine 1

Step 1. Read input data: the priority matrix MTC, acquisition matrix A, the financial settlement matrix F, the
surplus to be distributed between consumers srp, the current prosumer index ix, the current hour h.
Step 2. Transpose matrix MTC into matrix MC.
Step 3. Sort matrix MC ascending by column 1, and for equal values in column 1, sort descending the
corresponding values in column 2.
Step 4. Distribute the surplus srp:
set initial consumer index: k = 0;
while srp > 0 or (k < nc)
k = k + 1;
if the consumer has a P2P contract
subtract the available surplus from its trading offer MC (k, 2) = MC (k, 2) − srp;
if the surplus exceeds the consumer contract quantity: MC (k, 2) < 0
update remaining surplus: srp = −MC (k, 2);
the contract from consumer k is fulfilled: MC (k, 2) = 0;
else
the contract from consumer k is partially fulfilled and the surplus is depleted: srp = 0;
update matrix MTC for by subtracting from the served consumer demand the fulfilled contract;
update acquisition matrix A for hour h according to the served consumer k, serving prosumer ix and traded
quantity

Subroutine 2

Step 1. Read input data: the priority matrix MTC, the acquisition matrix A, the financial settlement matrix F,
the surplus to be distributed between consumers srp, the current prosumer index ix, the number of consumers
nc, the current hour h.
Step 2. Transpose matrix MTC into matrix MC.
Step 3. Sort matrix MC descending by column 1, and for equal values in column 1, sort ascending the
corresponding values in column 2.
Step 4. Distribute the surplus srp:
set initial consumer index: k = 0;
while srp > 0 or (k < nc)
k = k + 1;
if the consumer has a P2P contract
subtract the available surplus from its trading offer MC (k, 1) = MC (k, 1) − srp;
if the surplus exceeds the consumer contract quantity: MC (k, 1) < 0
update remaining surplus: srp = −MC (k, 1);
the contract from consumer k is fulfilled: MC (k, 1) = 0;
else
the contract from consumer k is partially fulfilled and the surplus is depleted: srp = 0;
update matrix MTC for by subtracting from the served consumer demand the fulfilled contract;
update acquisition matrix A and financial settlement matrix F for hour h according to the served consumer k,
serving prosumer ix and traded quantity.
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Subroutine 3

Step 1. Read input data: the priority matrix for consumers MTC, the priority matrix for prosumers MTP, the
acquisition matrix A, the financial settlement matrix F, hour h.
Step 2. Transpose matrix MTC into matrix MC, and matrix MTP into matrix MP
Step 3. Sort matrix MC in ascending order of consumer priority (column 1). Keep original consumer order in
vector idxk.
Step 4. Sort matrix MT ascending by column 1, and for equal values in column 1, sort descending the
corresponding values in column 2. Keep original prosumer order in vector idxp.
Step 5. Compute the total surplus and consumption (st, ct).
Step 6. Distribute the surplus srp:
set initial consumer index: kc = 0 and prosumer index kp = 0;
while (st > 0) & (ct > 0)
increase consumer index: kc = kc + 1;
read consumption to be traded c_crt = MC (kc, 2);
if c_crt > 0, if consumption exists
while (c_crt > 0) & (st > 0)
increase consumer index: kp = kp + 1;
read prosumer surplus p_crt = MP (kp, 2);
if p_crt > 0
subtract the surplus from the consumption
c_crt = c_crt − p_crt;
if the surplus exceeds the consumer contract quantity: c_crt < 0
update remaining surplus: t_crt = c_crt; p_crt = − c_crt;
the contract from consumer k is fulfilled c_crt = 0;
else
the contract from consumer k is partially fulfilled and the surplus is depleted: p_crt = 0;
compute traded consumption
ctz = abs (t_crt − abs (c_crt);
update transposed consumption and generation priority matrices
MC (kc, 2) = c_crt;
MP (kp, 2) = p_crt;
update consumption and generation priority matrices
MTC (2, idxc (kc)) = MC (kc, 2); MTP (2, idxp (kp)) = MP (kp, 2);
identify price pr = MP (kp, 1);
update st and ct;
update acquisition matrix A and financial settlement matrix F.

4. Results

The proposed algorithm was tested on a real 0.4 kV EDN from the northeastern Romania.
The network, whose one-line diagram is given in Figure 2, supplies 27 one-phase residential consumers
using four-wire three-phase overhead lines, mounted on concrete poles. The distance between poles is
of 40 m in average.

This network is modeling a µG in which the prosumers located at buses 6, 7, 15, 21, and 27 want
to sell their electricity surplus to other consumers. The case study considers that all the consumers
in the µG are integrated in the local µM and can receive electricity from the prosumers through P2P
contracts. The consumption and generation of the consumers and prosumers are modelled as 24-h
profiles taken from the Smart Metering system installed in the µG. The consumption and generation
profiles are provided in Table A1 and A2 from Appendix A. Table 2 presents the electricity surplus
available for trading in the considered interval, for all the prosumers. This surplus will be distributed
between the consumers or/and prosumers using one of the priority scenarios built in the proposed
algorithm, as presented in the previous section.
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Table 2. Local generation and consumption, in kWh, and prosumer selling prices, in MU/kWh.

Hour
Bus with Prosumers Total Surplus Total

Consumption6 7 15 21 27

h06 0 0 1.95 1.59 0 3.54 19.91
h07 0 0.26 1.59 1.81 0 3.65 20.96
h08 0 0.70 1.59 1.73 0.67 4.68 26.86
h09 0.74 1.06 2.23 1.75 1.44 7.21 21.78
h10 1.12 1.09 1.30 2.29 1.61 7.41 21.74
h11 1.89 1.40 2.78 2.04 1.66 9.75 26.50
h12 2.33 1.23 1.88 1.82 1.60 8.85 26.45
h13 2.29 1.41 2.83 0.69 1.51 8.73 27.51
h14 1.35 1.39 2.95 1.18 1.37 8.23 25.25
h15 1.18 1.05 1.55 2.03 1.11 6.91 24.46
h16 0 0.41 1.32 0.82 0.56 3.12 26.19
h17 0 0 1.06 0 0 1.06 32.15
h18 0 0 1.16 1.17 0 2.33 30.75
total 10.90 9.99 24.17 18.90 11.51 75.48 330.52

Selling price 0.43 0.40 0.48 0.55 0.43 - -

The electricity price is considered constant for each prosumer over the trading interval, and is
also given in Table 2. The regulated price at which consumers can buy electricity from the classic
market operator has an average level of 0.72 MU/kWh, including taxes. On the other hand, the
regulated price at which prosumers can sell electricity back to the grid is set at 0.235 MU/kWh for
2018 [36,37]. Thus, the selling prices for the local prosumers were set in the [0.40, 0.55] MU/kWh
interval. As it can be seen from Table 2 and Figure 3, the local generation amounts to 22.8% from the
consumption, in the 06:00–18.00 interval, and the hourly surplus does not exceed the demand in any
trading interval. This means that all the local generation will be sold in the local µM, through P2P
contracts. The generation surplus from Table 2 will be distributed to the consumers with different
priorities, according to each scenario. Table 3 presents the priorities computed according to the distance
between prosumers and consumers (Scenario 1) and daily energy demand (Scenario 3). For Scenario
1, the priorities are straightforward, the consumers close to the prosumer having maximum trading
priority. For instance, if prosumer 21 is used as reference, consumers 22 and 20 will have maximum
trading priority, while consumer 14 or prosumer 15 (in case of deficit) will be the last in the priority list.
In all scenarios, consumers or prosumers marked with X in Table 3 are excluded from trading. Bus 1
has no load, and each prosumer cannot sell to itself, because it is considered that it is selling on the
market its surplus.
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Table 3. Consumer trading priorities for Scenarios 1 and 3.

Prosumer
Scenario 1 Scenario 3

Cons. 6 7 15 21 27 6 7 15 21 27

1 X X X X X X X X X X
2 4 5 13 8 2 4 4 4 4 4
3 3 4 12 9 3 3 3 3 3 3
4 2 3 11 10 4 5 5 5 5 5
5 1 2 10 11 5 2 2 2 2 2
6 X 1 9 12 6 X 1 1 1 1
7 1 X 8 13 7 1 X 1 1 1
8 2 1 7 14 8 3 3 3 3 3
9 3 2 6 15 9 3 3 3 3 3
10 4 3 5 16 10 1 1 1 1 1
11 5 4 4 17 11 3 3 3 3 3
12 6 5 3 18 12 4 4 4 4 4
13 7 6 2 19 13 4 4 4 4 4
14 8 7 1 20 14 3 3 3 3 3
15 9 8 X 21 15 1 1 X 1 1
16 17 18 26 5 11 2 2 2 2 2
17 16 17 25 4 10 4 4 4 4 4
18 15 16 24 3 9 4 4 4 4 4
19 14 15 23 2 8 5 5 5 5 5
20 13 14 22 1 7 3 3 3 3 3
21 12 13 21 X 6 2 2 2 X 2
22 11 12 20 1 5 4 4 4 4 4
23 10 11 19 2 4 4 4 4 4 4
24 9 10 18 3 3 3 3 3 3 3
25 8 9 17 4 2 4 4 4 4 4
26 7 8 16 5 1 3 3 3 3 3
27 6 7 15 6 X 4 4 4 4 X
28 5 6 14 7 1 5 5 5 5 5

The priorities for Scenario 2 are computed in the same manner, but using the hourly demand
values indicated in Table A1 from Appendix A as ranking criterion, instead of distance.

For Scenario 3 (daily consumption), the Ward clustering method was run for the consumptions from
Appendix A. The dendogram and the clusters obtained after grouping are presented in Figures 4 and 5,
which show multiple consumers belonging to the same priority group (with consumers/prosumers
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6, 7, 10 and 15 priority group 1). In this case, instantaneous consumption is used for sorting entities
belonging to the same group.
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The first three scenarios use the same priority for all trading intervals. On the other hand, Scenarios
4 and 5, modelling the blockchain trading priority, require different priorities for each consumer and
each hour. Thus, the priority matrix will consider a 28-line, 24-column array for each column in Table 3.

Scenarios 1–4, prosumer-oriented, do not take into account prosumer prices. The prosumer priority
order is preset, to take into account the incentivization of specific prosumers, based on criteria particular
to each µG, such as date of connection, generation technology, common agreement or maximization of
the social welfare. For convenience, the results presented in the following subparagraphs use the bus
index as prioritization index, but the algorithm can consider any user-preferred priority.

Scenario 5, consumer-oriented, uses FCFS principle for consumers as a primary trading
prioritization tool, and the consumer has the benefit of selecting available prosumer offers with
the lowest price.
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The main reasons for creating µMs are to promote generation from small-scale renewable sources,
and to lower consumer electricity prices. Next, a comparative study regarding the advantages of each
prosumer-oriented scenario is presented. The main focus is on the financial savings of the consumers
and market flexibility, in terms of the number of served contracts.

In these scenarios, because the prosumer price is not relevant, all the consumers are integrated into
the localµM and the hourly total consumption always exceeds the available surplus from the prosumers,
thus all prosumers will sell their surplus to consumers via P2P contracts. However, the prioritization
of the consumers for trading will change in each scenario, together with the financial settlements
between parties.

Regardless of the first four prosumers-oriented scenarios (Scn1 − Scn4) and the unique
consumer-oriented scenario (Scn5), the prosumers will sell the same quantities, as is indicated
in Table 4.

Table 4. The results for the total quantities of surplus of the prosumers, in kWh.

Scenarios/Bus Scn1 Scn2 Scn3 Scn4 Scn5

Bus 6 10.899 10.899 10.899 10.899 10.899
Bus 7 9.998 9.998 9.998 9.998 9.998

Bus 15 24.170 24.170 24.170 24.170 24.170
Bus 21 18.903 18.903 18.903 18.903 18.903
Bus 27 11.511 11.511 11.511 11.511 11.511

On the other hand, the quantities purchased by consumers are different in accordance with
each proposed scenario. These values can be viewed in Table 5. For the first scenario (Scn1),
the quantities traded by prosumers to consumers are shown in Figure 6. It can be seen that the
consumers geographically close from prosumers locations purchase the higher quantities. For example,
the prosumer P7 sells energy to consumer C8, prosumer P15 to consumer C14, and the prosumer P21
to consumer C20. Similar results are obtained for Scenario 2 (Scn2) where the prioritization is made
according to the instantaneous power required by consumers. In this scenario, the consumers with the
highest demand are preferred in the same manner, in each trading interval (C10, C9, C8, C5), as seen in
Figure 6 and Table 5.

Table 5. The electricity quantities purchased by the consumers, in kWh.

Scn./Cons. C2 C3 C4 C5 C6 C7 C8 C9 C10

Scn1 0.136 0.000 0.000 8.532 0.000 0.000 12.287 0.077 0.000
Scn2 0.000 1.588 0.000 7.951 0.000 0.000 8.781 15.973 21.325
Scn3 0.000 0.000 0.000 13.134 1.310 0.116 1.141 6.088 35.305
Scn4 1.678 7.109 0.378 1.489 0.000 0.000 7.430 3.927 5.133
Scn5 1.678 7.109 0.378 1.489 0.000 0.000 7.430 3.927 5.133

Scn./Cons. C11 C12 C13 C14 C15 C16 C17 C18 C19

Scn1 1.615 2.036 2.546 17.973 0.000 0.000 0.000 0.000 0.963
Scn2 2.232 0.000 0.000 0.000 0.000 6.964 0.000 0.000 0.000
Scn3 0.000 0.000 0.000 0.000 0.000 14.654 0.000 0.000 0.000
Scn4 4.340 3.885 0.206 7.460 0.000 8.814 1.625 1.407 0.315
Scn5 4.340 3.885 0.206 7.460 0.000 8.814 1.625 1.407 0.315

Scn./Cons. C20 C21 C22 C23 C24 C25 C26 C27 C28

Scn1 9.949 0.000 3.597 3.654 0.740 6.919 4.191 0.000 0.265
Scn2 1.805 0.000 0.000 0.000 6.882 0.000 1.980 0.000 0.000
Scn3 0.000 0.000 0.000 0.000 3.733 0.000 0.000 0.000 0.000
Scn4 2.822 0.000 1.901 3.500 7.187 3.612 1.264 0.000 0.001
Scn5 2.822 0.000 1.901 3.500 7.187 3.612 1.264 0.000 0.001
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Figure 6. The electricity quantities purchased by the consumers in first and second scenario, in kWh.

For Scenario 3, where consumers are allocated in five priority clusters according to the daily
electricity demand (Figure 5), it is observed that cluster I already contains three prosumers (P6, P7
and P15) and one consumer (C10). Cluster II has a prosumer (P21) and two consumers (C5 and C16),
and cluster III comprises of eight peers, and the last two clusters group the rest of the peers.

From Figure 7, it can be observed that the peers from the first two clusters have priority for trading,
and the remaining surplus is sold only three consumers from cluster III, respectively C8, C9 and C24.
In this scenario, the prosumer from bus 6 receives electricity from the local market, in the hours with
deficit (see Table 2).
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In the last two scenarios, that use the blockchain technology based on the FCFS principle,
depending on the P2P contracts already signed, it is observed that the only ones who do not receive
the surplus of electricity are prosumers an the consumer from bus 28, which has an insignificant
consumption (see Table A1, Appendix A).

Figure 8 shows the similarities in traded quantities, resulting from applying the mathematical
model proposed for the last two scenarios. The differences between Scn4 and Scn5 are seen in the
purchase price of the surplus according to the type of P2P contract concluded between prosumers and
the rest of the participants in the network.

For all five scenarios, the daily electricity quantities from prosumers purchased by consumers
are presented in Tables 6–10. Moreover, the last four columns from the aforementioned tables contain
the total quantities purchased by each consumer, the price paid by consumer(s) to prosumers for this
quantity trough P2P contracts, the regulated price that should have been paid by consumers to the
classical supplier at 0.72 MU/kWh, and also by prosumers to the grid aggregator with a regulated price
of 0.223 MU/kWh. The last columns present the financial advantages for all the transaction participants.
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Table 6. The prosumers energy surplus trading (kWh) and prices (MU/kWh) in Scenario 1.

Bus
The Active Energy Surplus Total

kWh
P2P

Price
Total Cost/Revenue

P6 P7 P15 P21 P27 for Cj for Pk

2 0.000 0.000 0.000 0.000 0.136 0.136 0.058 0.098 0.030
5 8.532 0.000 0.000 0.000 0.000 8.532 3.669 6.143 1.903
8 2.366 9.921 0.000 0.000 0.000 12.287 4.986 8.847 2.740
9 0.000 0.077 0.000 0.000 0.000 0.077 0.031 0.055 0.017
11 0.000 0.000 1.615 0.000 0.000 1.615 0.775 1.163 0.360
12 0.000 0.000 2.036 0.000 0.000 2.036 0.977 1.466 0.454
13 0.000 0.000 2.546 0.000 0.000 2.546 1.222 1.833 0.568
14 0.000 0.000 17.973 0.000 0.000 17.973 8.627 12.941 4.008
19 0.000 0.000 0.000 0.963 0.000 0.963 0.529 0.693 0.215
20 0.000 0.000 0.000 9.949 0.000 9.949 5.472 7.164 2.219
22 0.000 0.000 0.000 3.597 0.000 3.597 1.979 2.590 0.802
23 0.000 0.000 0.000 3.654 0.000 3.654 2.010 2.631 0.815
24 0.000 0.000 0.000 0.740 0.000 0.740 0.407 0.533 0.165
25 0.000 0.000 0.000 0.000 6.919 6.919 2.975 4.982 1.543
26 0.000 0.000 0.000 0.000 4.191 4.191 1.802 3.018 0.935
28 0.000 0.000 0.000 0.000 0.265 0.265 0.114 0.191 0.059

Table 7. The prosumers energy surplus trading (kWh) and prices (MU/kWh) in Scenario 2.

Bus
The Active Energy Surplus, in kWh Total

kWh
P2P

Price
Total Cost/Revenue

P6 P7 P15 P21 P27 for Cj for Pk

3 0.000 0.000 0.000 1.588 0.000 1.588 0.873 1.143 0.354
5 2.295 2.105 1.957 0.000 1.595 7.951 3.454 5.725 1.773
8 0.000 0.000 5.088 3.693 0.000 8.781 4.473 6.322 1.958
9 0.000 1.356 7.315 3.859 3.443 15.973 7.657 11.501 3.562
10 7.488 4.256 4.406 1.867 3.308 21.325 9.486 15.354 4.755
11 0.000 0.000 1.062 1.170 0.000 2.232 1.153 1.607 0.498
16 0.000 2.281 1.302 1.726 1.655 6.964 3.198 5.014 1.553
20 0.000 0.000 0.000 1.805 0.000 1.805 0.993 1.300 0.403
24 1.116 0.000 1.880 2.376 1.510 6.882 3.339 4.955 1.535
26 0.000 0.000 1.161 0.819 0.000 1.980 1.008 1.425 0.441
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Table 8. The prosumers energy surplus trading (kWh) and prices (MU/kWh) in Scenario 3.

Bus
The Active Energy Surplus, in kWh Total

kWh
P2P

Price
Total Cost/Revenue

P6 P7 P15 P21 P27 for Cj for Pk

5 0.000 0.058 5.091 5.604 2.381 13.134 6.573 9.456 2.929
6 0.000 0.000 0.208 1.102 0.000 1.310 0.706 0.943 0.292
7 0.000 0.000 0.116 0.000 0.000 0.116 0.056 0.084 0.026
8 0.000 0.000 0.000 0.000 1.141 1.141 0.491 0.822 0.255
9 0.000 0.000 0.012 3.301 2.775 6.088 3.014 4.383 1.358
10 10.899 8.954 12.399 2.491 0.563 35.305 15.831 25.420 7.873
16 0.000 0.986 6.345 4.595 2.728 14.654 7.140 10.551 3.268
24 0.000 0.000 0.000 1.811 1.922 3.733 1.822 2.688 0.832

Table 9. The prosumers energy surplus trading (kWh) and prices (MU/kWh) in Scenario 4.

Bus
The Active Energy Surplus, in kWh Total

kWh
P2P

Price
Total Cost/Revenue

P6 P7 P15 P21 P27 for Cj for Pk

2 0.860 0.000 0.000 0.176 0.641 1.678 0.743 1.208 0.374
3 0.000 1.154 2.962 1.394 1.599 7.109 3.338 5.118 1.585
4 0.378 0.000 0.000 0.000 0.000 0.378 0.163 0.272 0.084
5 0.000 0.000 0.181 0.749 0.559 1.489 0.739 1.072 0.332
8 0.244 1.048 0.603 2.761 2.773 7.430 3.525 5.350 1.657
9 0.000 0.002 2.046 0.773 1.106 3.927 1.884 2.827 0.876
10 2.295 1.356 0.122 1.361 0.000 5.133 2.336 3.695 1.145
11 1.845 0.745 1.130 0.620 0.000 4.340 1.975 3.125 0.968
12 0.000 0.645 2.572 0.668 0.000 3.885 1.860 2.797 0.866
13 0.150 0.056 0.000 0.000 0.000 0.206 0.087 0.148 0.046
14 1.116 0.691 2.141 2.140 1.372 7.460 3.551 5.371 1.664
16 1.917 1.632 1.634 3.631 0.000 8.814 4.259 6.346 1.966
17 0.000 1.331 0.294 0.000 0.000 1.625 0.674 1.170 0.362
18 0.000 0.263 1.144 0.000 0.000 1.407 0.654 1.013 0.314
19 0.000 0.298 0.017 0.000 0.000 0.315 0.127 0.227 0.070
20 0.000 0.000 1.100 1.722 0.000 2.822 1.475 2.032 0.629
22 0.412 0.000 1.136 0.000 0.353 1.901 0.874 1.369 0.424
23 0.000 0.410 3.090 0.000 0.000 3.500 1.647 2.520 0.781
24 0.000 0.000 2.430 1.649 3.108 7.187 3.410 5.174 1.603
25 0.742 0.368 1.242 1.260 0.000 3.612 1.755 2.601 0.805
26 0.940 0.000 0.324 0.000 0.000 1.264 0.560 0.910 0.282

To highlight the prosumer/consumer advantages using the proposed PEST algorithm,
from Tables 6–10 can be seen the benefits registered by each participant in the trading process,
regardless of the chosen prioritization scenario.

For example, in Figure 9 the prosumers financial benefits were presented, with the price paid for
the consumers to each prosumer trough the smart considered P2P contracts compared to the regulated
price received if they injected the surplus directly into the µG.

The benefits of using the local market are also present for the consumers. In Figure 10,
the differences between the regulated price that would be paid by consumers and the P2P price
used in trading with the prosumers are presented, which is always lower. For the equal quantities
traded in Scenarios 4 and 5, the differences in financial settlements resulting from the blockchain merit
order, but with different prosumer-consumer trading prices are presented in Figure 11.
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Table 10. The prosumers energy surplus trading (kWh) and prices (MU/kWh) in Scenario 5.

Bus
The Active Energy Surplus, in kWh Total

kWh
P2P

Price
Total Cost/Revenue

P6 P7 P15 P21 P27 for Cj for Pk

2 0.000 0.860 0.000 0.817 0.000 1.678 0.794 1.208 0.374
3 0.889 0.000 2.610 2.430 1.179 7.109 3.479 5.118 1.585
4 0.000 0.378 0.000 0.000 0.000 0.378 0.151 0.272 0.084
5 0.000 0.000 0.930 0.559 0.000 1.489 0.754 1.072 0.332
8 1.184 0.108 0.546 4.988 0.603 7.430 3.818 5.350 1.657
9 0.002 0.000 0.538 1.879 1.508 3.927 1.941 2.827 0.876
10 2.663 1.413 1.056 0.000 0.000 5.133 2.217 3.695 1.145
11 1.690 1.397 0.000 0.620 0.633 4.340 1.899 3.125 0.968
12 0.000 0.000 3.153 0.087 0.645 3.885 1.839 2.797 0.866
13 0.056 0.150 0.000 0.000 0.000 0.206 0.084 0.148 0.046
14 0.047 1.093 2.906 1.331 2.083 7.460 3.480 5.371 1.664
16 2.031 1.517 3.289 1.308 0.668 8.814 4.066 6.346 1.966
17 0.886 0.000 0.000 0.000 0.739 1.625 0.699 1.170 0.362
18 0.000 0.263 0.214 0.000 0.930 1.407 0.608 1.013 0.314
19 0.298 0.000 0.000 0.000 0.017 0.315 0.135 0.227 0.070
20 0.000 0.000 1.410 1.412 0.000 2.822 1.453 2.032 0.629
22 0.000 0.412 1.136 0.353 0.000 1.901 0.904 1.369 0.424
23 0.000 0.410 1.477 0.000 1.613 3.500 1.567 2.520 0.781
24 1.152 0.000 3.031 3.003 0.000 7.187 3.602 5.174 1.603
25 0.000 1.056 1.547 0.117 0.892 3.612 1.613 2.601 0.805
26 0.000 0.940 0.324 0.000 0.000 1.264 0.532 0.910 0.282
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5. Discussion

As the results presented in the study case show, both the consumers and the prosumers can
obtain significant profits from the implementation of a local µM in which prosumers sell directly to
the prosumers. In this market, prosumer can sell electricity to prosumers at prices lower than the
regulated tariff established for residential consumers, but higher than the price at which they can sell
back to the grid their generation surplus. As in Figure 9, the daily profits for prosumers can vary from
1.8 to 6.2 MU (1 MU = 1 Romanian leu or 0.21 EUR), and for consumers from 1.8 to 6.2 MU.

For consumers, the daily financial gain can amount to up to 2.2 MU (consumer C16).
The consumer’s total demand for the considered day is of 23.84 kWh, amounting to an electricity bill
of 17.16 MU, which means that the daily saving of the consumer is of 12.8%, in the scenario with the
maximum number of consumers involved in trading. Our proposed mechanism was tested also for
the cases when the PV generation of the prosumers is small. In these cases, if it is a surplus, the most
convenient turned out to be Scenario 4 based on the blockchain technologies, which consider both
quantities and price (from P2P contracts).

For a technical consideration, it should be noted that the trading results presented in the paper
do not account for the energy losses in the LV distribution network, because they have the same
influence on all the scenarios considered in the algorithm. In the physical network, prosumers would
inject the surplus in the local network, and the consumers would draw power in the same manner.
The difference is only in the financial settlement performed in the µM. The losses need to be settled at
the market level, but this is a separate mechanism that needs future research. In Table 11, the number
of consumers which benefits form the trading process are presented. It can be seen that only three
consumers are commonly to the five considered scenarios. For the three consumers in Figures 12–14
the purchased energy and the costs of consumers, and the revenue of prosumers.

Table 11. The prosumers energy surplus trading (kWh) and prices (MU/kWh).

No. of. Scenarios No. of Consumers Diff. of Common Consumers

Scn1 16 13
Scn2 10 7
Scn3 8 5
Scn4 21 18
Scn5 23 20
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Considering the obtained results from Tables 5–10 and Figures 7 and 12, Figures 13 and 14,
it is emphasized that the third scenario is the least favorable for the participants. In this scenario,
the distribution network operators win due to an optimization of power flows between the prosumers
and the consumers with high power demand.

The time granularity and period of day was considered. Our study was conduct only hourly
trading for a day, but the mechanism can be easily used for other period. A complete transaction
depends upon the proposed scenarios, taking into account the surplus of the prosumers, consumers
power demand, as well as the distance between peers and P2P contracts.

The proposed algorithm is only the first step in developing a trading platform for consumers and
prosumers in microgrids, and is aimed to serve as a simulation tool for developing alternatives for
the current regulation framework regarding prosumer activity in the Romanian electricity market.
However, future research will extend its capabilities for other trading scenarios.
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Nomenclature

a, b, X Clusters
A The acquisition matrix
A(h,j,k) The electricity sold at hour h to consumer j by prosumer k
ANRE Regulation National Agency in Energy Domain
C Matrix of consumptions
Cj Consumer j
ct Total consumption
cX The mean of cluster X
dab the distance between cluster A and cluster B
DER Distributed Energy Resources
DG Distributed Generation
DR Demand Response
DSM Demand Side Management
EC European Commission
EDN Electricity Distribution Network
ESS Energy Storage System
EU European Union
F The financial settlement matrix
F(h,j,k) The payment made by consumer j to prosumer k at hour h
FCFS First Came—First Served
G Matrix of generations
ICT Information and Communication Technologies
ix index
h The current hour (h, . . . , 1, . . . , H)
j The index for consumers
k The index for prosumers
l The consumer (l, . . . , 1, . . . , nc)
p The number of priority matrix.
Lj,k The length between consumer j and prosumer k
LV Low Voltage
Mp Matrix of priorities, (p, . . . , 1, . . . , 3)
MC The Transposed Temporary Consumer Priority Matrix
MP The Transposed Temporary Prosumer Priority Matrix
MPC Model Productive Control
MTC Temporary Consumer Priority Matrix
MTP Temporary Prosumer Priority Matrix
MU Monetary unit
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MV Medium Voltage
nc total number of consumers (j, . . . , 1, . . . , nc)
nh total number of hour (h, . . . , 1, . . . , nh)
np total number of prosumers (k, . . . , 1, . . . , np)
nx number of elements grouped in cluster X
P2P Peer-to-Peer
PEST Prosumers Energy Surplus Trading
Ph,j Maximum active power at hour h, of consumers j
Pk Prosumer k
PR Vector of prices
Psurplus Power surplus of prosumers
Ptrade Power traded by prosumers
PV Photovoltaic
S Matrix of surplus
Scny Scenarios (y, . . . , 1, . . . , 5)
srp Surplus
srph Total surplus for hour h
SSRES Small-Scale Renewable Energy Sources
st Total surplus
us Unsold surplus
Wj The total active energy for consumer j, in kWh
µG Micro-grid
µM Micro-market
R Set of reals

1 

 

ℤ Set of integers

Appendix A

Table A1. Active load curve for the 28-bus network, in kW.

- C2 C3 C4 C5 C6 C7 C8 C9 C10

h1 0.616 2.010 0.273 0.000 1.370 2.418 1.152 1.936 0.310
h2 0.608 1.908 0.078 0.020 1.520 2.210 1.664 1.368 0.678
h3 0.557 2.004 0.048 0.260 1.910 2.149 2.056 1.376 0.300
h4 0.522 2.010 0.306 0.040 1.770 2.151 2.048 2.048 0.640
h5 0.522 1.902 0.063 0.050 1.990 2.192 1.816 1.528 0.360
h6 0.571 2.004 0.165 0.250 2.070 2.299 1.168 2.992 0.468
h7 0.529 1.836 0.213 0.125 2.280 2.364 0.720 3.352 0.748
h8 0.592 1.236 0.060 4.710 2.530 2.543 1.704 2.240 3.208
h9 0.562 1.302 0.312 1.290 1.850 2.382 1.976 2.112 2.815

h10 0.616 1.200 0.258 0.525 1.850 2.549 1.944 2.192 1.483
h11 0.860 1.188 0.243 2.985 1.460 2.426 1.904 2.232 4.538
h12 0.535 1.146 0.423 1.895 1.180 2.414 1.872 2.144 3.295
h13 0.641 1.140 0.198 4.595 1.650 2.450 2.456 2.048 3.650
h14 0.322 1.374 0.378 0.930 1.950 2.418 2.632 2.176 5.230
h15 0.181 1.944 0.321 0.260 1.810 2.444 1.896 2.256 4.293
h16 0.214 1.542 0.207 0.535 2.640 2.467 2.072 2.328 3.895
h17 0.781 2.148 0.495 2.125 2.810 2.553 2.080 2.288 3.028
h18 0.764 1.902 0.282 1.025 2.720 2.757 2.016 2.336 1.980
h19 0.426 1.968 0.336 0.140 3.580 3.042 2.720 2.464 1.768
h20 0.426 1.968 0.336 0.140 3.580 3.042 2.720 2.464 1.768
h21 0.496 1.956 0.207 0.210 5.310 3.515 2.672 3.136 3.033
h22 0.561 1.986 0.405 0.480 5.390 3.248 2.488 1.312 5.695
h23 0.554 1.872 0.246 0.195 4.750 3.075 2.432 1.336 4.033
h24 0.578 1.986 0.045 0.100 3.170 2.713 2.088 1.184 1.180
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Table A1. Cont.

- C2 C3 C4 C5 C6 C7 C8 C9 C10

- C11 C12 C13 C14 C15 C16 C17 C18 C19

h1 0.230 0.585 0.142 0.910 2.783 2.220 0.210 0.360 0.345
h2 0.220 0.765 0.078 0.920 2.411 1.320 0.000 0.525 0.286
h3 0.200 0.585 0.352 0.925 2.548 0.942 0.000 0.534 0.243
h4 0.200 0.675 0.440 1.225 2.313 0.972 0.045 0.636 0.213
h5 0.200 0.660 0.062 1.345 2.288 0.954 0.000 0.444 0.237
h6 1.240 0.570 1.416 1.290 2.426 1.044 0.115 0.462 0.242
h7 1.400 0.900 0.482 1.325 3.239 1.374 0.075 0.477 0.281
h8 1.440 0.630 0.182 1.520 3.798 3.984 0.475 0.450 0.287
h9 1.170 0.765 0.502 1.430 3.097 2.184 0.380 0.504 0.278

h10 1.130 0.645 1.046 1.120 4.371 1.986 0.495 0.579 0.268
h11 1.390 0.555 0.150 1.170 2.994 1.986 1.130 0.573 0.285
h12 1.740 0.630 1.032 1.265 3.763 2.844 0.630 0.498 0.315
h13 1.760 0.615 0.056 1.760 2.999 1.566 0.420 0.600 0.301
h14 1.200 0.570 0.056 2.000 2.759 0.930 0.980 0.540 0.329
h15 0.280 0.750 0.236 1.840 3.807 0.798 0.955 0.357 0.312
h16 0.460 0.555 1.024 1.815 3.317 1.152 0.965 0.423 0.350
h17 3.180 0.825 0.232 2.015 3.214 1.944 0.970 0.588 0.366
h18 2.570 0.780 0.890 2.365 2.940 2.046 0.960 0.570 0.468
h19 2.890 0.780 0.458 2.480 3.445 2.460 1.450 0.678 0.443
h20 2.890 0.780 0.458 2.480 3.445 2.460 1.450 0.678 0.443
h21 3.210 0.630 0.864 2.580 3.278 1.884 1.385 0.753 0.454
h22 3.260 0.570 1.326 2.365 2.475 1.374 1.660 0.621 0.482
h23 2.815 0.720 0.376 2.060 2.073 1.380 1.235 0.750 0.509
h24 1.780 0.570 0.200 1.495 2.769 1.158 0.880 0.390 0.328

- C20 C21 C22 C23 C24 C25 C26 C27 C28

h1 1.010 0.973 0.636 0.790 0.049 1.266 0.384 0.248 0.006
h2 1.100 1.013 0.484 0.780 0.056 1.194 0.384 0.296 0.000
h3 0.990 0.733 0.448 0.730 0.749 1.056 0.388 0.260 0.000
h4 1.090 0.453 0.460 0.920 1.148 1.032 0.392 0.292 0.000
h5 1.070 0.680 0.520 0.800 1.148 1.014 0.400 0.208 0.000
h6 1.450 0.773 0.512 1.340 1.148 1.020 0.396 0.356 0.048
h7 2.260 0.980 0.428 0.960 1.946 1.122 0.376 0.700 0.035
h8 0.610 1.560 0.368 0.270 1.393 1.116 0.352 0.336 0.038
h9 0.310 1.580 0.408 0.420 1.596 1.110 0.356 0.144 0.000

h10 0.400 1.347 0.408 1.000 2.975 1.110 0.360 0.128 0.001
h11 0.310 1.713 0.668 0.930 1.519 1.242 0.620 0.204 0.019
h12 0.500 1.913 0.412 1.050 2.492 1.260 0.344 0.320 0.127
h13 0.760 3.127 0.344 1.020 1.974 1.266 0.324 0.476 0.014
h14 0.630 2.560 0.428 0.970 1.974 1.260 0.332 0.384 0.005
h15 1.260 1.433 1.068 1.010 2.240 1.206 0.940 0.456 0.061
h16 1.170 2.013 0.424 1.110 2.296 1.134 2.500 0.352 0.022
h17 1.620 4.000 0.448 1.540 1.778 1.140 2.544 2.000 0.020
h18 1.620 1.067 0.468 1.630 1.939 1.260 2.820 0.876 0.057
h19 1.620 1.907 0.436 1.570 1.750 1.296 2.104 1.824 0.000
h20 1.620 1.907 0.436 1.570 1.750 1.296 2.104 1.824 0.000
h21 2.440 2.473 1.092 1.280 1.106 1.212 2.144 0.728 0.102
h22 2.570 2.253 1.484 1.110 1.092 1.194 2.084 0.688 0.103
h23 1.450 1.933 1.364 0.710 1.092 1.194 2.248 0.256 0.133
h24 1.010 1.260 0.880 0.840 0.763 1.176 2.008 0.324 0.036
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Table A2. Generation load curve of the five prosumers, in kW.

- C11 C12 C13 C14

h1 P6 P7 P15 P21 P27
h2 0.000 0.000 0.000 0.000 0.000
h3 0.000 0.000 0.000 0.000 0.000
h4 0.000 0.000 0.000 0.000 0.000
h5 0.000 0.000 0.000 0.000 0.000
h6 0.000 0.000 0.000 0.000 0.000
h7 2.070 2.299 4.375 2.361 0.356
h8 2.280 2.627 4.824 2.785 0.700
h9 2.530 3.247 5.385 3.286 1.004

h10 2.592 3.438 5.325 3.329 1.581
h11 2.966 3.642 5.673 3.639 1.735
h12 3.346 3.826 5.769 3.751 1.859
h13 3.509 3.639 5.643 3.735 1.915
h14 3.945 3.863 5.825 3.812 1.984
h15 3.297 3.803 5.704 3.742 1.756
h16 2.994 3.492 5.353 3.461 1.562
h17 2.640 2.877 4.642 2.832 0.915
h18 2.810 2.553 4.276 4.000 2.000
h19 2.720 2.757 4.101 2.237 0.876
h20 0.000 0.000 0.000 0.000 0.000
h21 0.000 0.000 0.000 0.000 0.000
h22 0.000 0.000 0.000 0.000 0.000
h23 0.000 0.000 0.000 0.000 0.000
h24 0.000 0.000 0.000 0.000 0.000
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Abstract: In the deregulated electricity markets, trading prices are determined by the offer-demand
mechanism, and retail consumers can negotiate tariffs with their supplier of choice. For classic
wholesale suppliers, the tariffs are determined by the prices of transactions performed on the
wholesale market. In parallel with becoming eligible for participating in the market, the consumers
use increasingly local generation sources based mostly on renewable electricity generation equipment
such as Photovoltaic (PV) panels, and become prosumers. They want to be able to sell back to the
market the generation surplus, in order to obtain the maximum benefits from their initial investment.
This paper proposes a two-tier local market model oriented for prosumers and consumers connected
in microgrids, based on the blockchain technologies and other technologies and concepts such as
smart grids, crowdsourcing and energy poverty. Its goals are to improve the possibilities of local
prosumers to sell electricity to local consumers and to increase their profitability, compared to the
trading model often used in developing markets, of selling the surplus back to the grid via aggregators.
The research aims to contribute to the sustainable development of the electricity sector using new and
renewable sources of energy, state-of the art technologies and smart contracts, leading to prosumer
proliferation and electricity cost reduction for consumers.

Keywords: local electricity market; smart grids; energy crowdsourcing; renewable energy sources;
prosumers; blockchain technology; energy poverty; smart contracts

1. Introduction

The European Commission’s strategic framework envisages an improved and modernized
European energy market, aimed at creating secure, sustainable, accessible and decentralized energy
networks in response to the global challenge of greenhouse gas emissions [1]. In the context of the
next generation of digital energy networks, and in the presence of multiple decentralized microgrids,
managing the energy generation from various and complementary sources will result in gaining
more flexibility in meeting demand and lowering costs for the community. The adoption of a
decentralized electricity distribution network, in which ordinary consumers can also be energy
producers, named ‘prosumers’, and can sell their surplus generation to the network, thus getting
involved in market transactions inside a community represents an alternative to current traditional
networks. It is expected that an increasing number of end-users will want to become active in the
electricity sector, which will lead to a large number of transactions. A possible tool for enabling the
creation of such microgrid-level markets is the blockchain technology which could provide secure and
reliable means of communication and data management between the end-users [2].

Blockchain technology was created as a solution to the problem of mistrust and data security.
The first steps in the development of the technology were taken in 1991, when Stuart Haber and
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W. Scott Stornetta first spoke about a cryptographically secure blockchain [3]. In 1993, together with
Dave Bayer, they integrated optimal Merkel type trees in the concept [4]. Following the financial crisis
of 2008, the concept of blockchain as a distributed database was developed, proposing a solution to
change the way monetary transactions are carried out through various financial institutions. With the
help of a peer-to-peer (P2P) communications network and a distributed data server, a blockchain
database can be autonomous [5].

In the recent years, billions of dollars have been invested in research on blockchain technology in an
attempt to make the most of its potential and understand how appropriate it is in the different economic
domains [6]. But not all domains are fully ready to assimilate the blockchain technology. In each
particular case, the current technological opportunities must be analyzed, as well as the challenges that
the end-users face and how a new decentralized architecture could create value for them. The electricity
industry is an extremely suitable candidate for blockchain technology-based innovation, with its
complex supply chain that requires transparency and improved data processing and its highly
transactional trading market that would gain advantage from faster settlement. The transparency and
immutability of the blockchain can empower end-users of this industry and consumers.

A blockchain system is primarily based on a decentralized ledger of transactions that take place
in a network. This network consists of nodes owned by independent entities that use a cryptographic
protocol to validate the transactions that are entered in the ledger and to ensure that the entered
data cannot be altered or changed. It is immutable, secure and completely transparent. Fully
decentralized and replicated to node level, blockchain networks are harder to penetrate and manipulate
by dangerous entities.

The blockchain system, coupled with other innovative technologies such as smart grids, big data
mining and remote sensing, has the potential to provide solutions to various challenges in the energy
sector and to contribute to the achievement of energy efficiency objectives, including to compensate
for the funding gap for various projects in the field [7]. The technologies regarding blockchain-based
platforms will lead to fundamental changes that will require the involvement of the distribution and
supply companies, manufacturers of equipment, regulators and, last but not least, end-users [8,9].

A review of renewable and sustainable energy published in [6] provides a thorough analysis of
more than 140 blockchain research projects and startups in the energy sector, from countries belonging
all around the world. The electricity sector has a high potential to implement the blockchain technology
as part of addressing several challenges [7,10,11]:

• Climate change. The need to integrate in existing electricity distribution systems renewable
energy sources (RES) has led to the development of technologies such as PV panels and wind
turbines, whose costs are constantly decreasing. The consumers who choose to install such
generation sources become prosumers, which presents a challenge for the current structure of
electricity networks. They can create technical difficulties for the Distribution Network Operators
(DNOs) in ensuring the energy balance. However, electricity generation at the household level
(classically with PV panels on the roof) is a great opportunity for the development of blockchain
technology-based architectures, because it capitalizes on the distributed nature of electricity
generation with unprecedented efficiency.

• The development of technologies that allow the transition to active distribution networks.
The technological solutions refer to the communications and networking components, inverters,
bidirectional smart metering systems, energy storage solutions. This evolution allows greater
control at network level. Electricity becomes a controllable, storable and easily quantifiable
product, suitable for trading through smart contracts.

• The creation of energy communities managed by local energy production cooperatives formed by
community members. The microgrids which integrate the blockchain technology can represent a
solution for connecting the poorest consumers to cleaner and cheaper energy, but also for energy
savings and more responsible and accessible consumption. In some EU member states, European
Federation of Renewable Energy Cooperatives (REScoop) have explicitly set social goals, such as
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reducing energy poverty. They meet those objectives by developing solidarity schemes aimed at
lowering the energy bills of vulnerable members, providing them with services and training in
reducing consumption. They also use the gains from RES energy generation to increase the living
standards of vulnerable and low-income households.

• Simplifying the architecture of the current trading models. The implementation of a
blockchain-based prosumer network leads to the elimination of a large number of intermediaries
in the electricity trading process.

Among the technical advantages of this technology can be underlined the following: better
management of power generation, fewer hours of supply interruption, secure energy transactions,
increased distributed generation. The main economic advantages refer to protecting the identities of
the traders, creating a distributed economy, reducing the tax burdens, data protection and control,
and compensation for producers [12,13].

Another concept that can be associated with local electricity trading in microgrids is the mitigation
of energy poverty. ‘Energy poverty’ can be defined as the lack of access to clean, renewable, affordable
energy, which leads to costly energy bills [14]. The concept lies at the intersection of energy sustainability
and social issues mitigation, being characterized by three realities: high energy prices, low or stagnating
incomes, and energy inefficient homes in urgent need of renovations.

The mitigation of energy poverty can be achieved using crowdsourcing, a concept first introduced
in 2005 by James Surowiecki [15], which can be defined as utilizing contributions from peers and the
collective wisdom of the crowd to alleviate a problem. It can also be an effective approach to enable
the crowd to provide a service in a community within a limited geographical area by using smart
metering [16].

In Romania, according to Order 228/28.12.2018 published by ANRE (Romanian Energy Regulatory
Authority), the prosumers can trade electricity generated from renewable sources such as photovoltaics
(PV), biomass, wind, cogeneration. The suppliers are bound to buy the surplus at the weighted average
day-ahead market price from the previous year [17], with the advantage of the exemption from the
payment of the distribution network tariff. This trading system is the most basic, limiting the options
of both parties [18]. More advanced trading models should be considered to increase the benefits of
the prosumers and consumers who trade electricity in a local market organized at the microgrid or
community level.

Usually, in classic wholesale electricity markets, electricity is traded using bilateral contracts
with negotiated prices, for long periods (years, months, weeks). This trading manner helps to reduce
the prices for the buyers, and provides stability and predictability for the producers. For shorter
trading intervals, such as in the day-ahead (SPOT) markets, the merit order price setting mechanism is
preferred, which ensures maximum benefits for producers when the demand is high and can lead to
higher prices for suppliers and end-users.

On the other hand, the electricity quantities traded in local grids by prosumers are much smaller,
and the trading intervals need to be smaller, because of renewable generation uncertainty. At the
same time, the generation from prosumers needs to be incentivized to promote the proliferation of
renewable electricity. Thus, a market model for microgrids should take into consideration creating
advantages simultaneously for prosumers and consumers.

In this regard, the paper presents a new trading approach for prosumers that uses the blockchain
technology for creating a local market at microgrid level, forecasts for consumer buy offers, obtained
using technologies such as remote sensing tools, and the energy crowdsourcing concept for energy
poverty mitigation. The proposed model takes as reference the trading model for excess prosumer
generation used in Romania and applicable to developing markets, which consists in selling back
the available electricity at fixed tariffs back to the grid. The authors propose a diversification of
the trading methods and settlement procedures by creating a local trading mechanism intended to
provide flexible market model that can be adapted to specific microgrid conditions and rules agreed
at the community level. The proposed market model has two trading levels. The primary level is



Sustainability 2020, 12, 7265 4 of 43

intended for main trading. The secondary, two-tier market is designed by the authors for increasing
the prosumer profitability and lowering consumer electricity cost while accommodating particular
scenarios that can arise in real conditions. The considered scenarios are: mitigating energy poverty for
vulnerable consumers, selling remaining prosumer surplus to consumers who do not participate in the
primary market but have bilateral contracts with certain prosumers, allowing occasional access to the
market in exchange for a tariff, and reducing the effect of erroneous consumer buy offers caused by
inaccurate forecasts or temporary unusual consumption patterns. The primary market model offers
two trading alternatives: ‘first-come-first-served’ (FCFS), and merit-order (MO). The secondary market
proposes two tiers with three trading methodologies, which can be optionally used, in number and
order, according to the specific needs of particular microgrids: energy poverty mitigation, tariff access
and invite access. The proposed alternatives are tested in a case study, on an existing low voltage (LV)
electricity distribution network from Romania which has microgrid characteristics, in order to assess
the effects of the chosen trading methods on the profits achieved by prosumers and consumers.

The proposed market model provides flexible tools for incentivizing the sustainable development
of local communities based on environment protection and economic and social inequality mitigation
through the use of modern technology tools, by encouraging local trading of electricity generated from
renewable, clean primary sources.

The results of the case study show that by using the local trading mechanisms designed for
the primary and secondary markets, the prosumers can sell more electricity, at lower prices for the
community and better individual profit. If the benefits are consistent, this can lead to the increase of
distributed generation sources in microgrids, thus a more sustainable development of the electricity
generation sector.

By lowering consumer prices, the sustainable economic and social development of communities
is also encouraged. Not least, these goals are envisioned to be achieved by obtaining in parallel
the modernization of the electricity distribution infrastructure, by using smart grid communication
and energy management tools and involving digital instruments (specialized trading software and
blockchain).

The remainder of the paper is structured as follows. Section 2 presents a literature review
regarding the research proposed in the paper. Section 3 describes the proposed market model for
microgrids. In Section 4 are presented the results of the case study, with a comparison between the
proposed trading strategies, outlining their particularities. The paper ends with the sections dedicated
for discussions and references, and annexes.

2. Literature Review

Recent studies have considered combining the operation of small-scale renewable energy sources
(SSRES) in distribution networks and deregulated electricity markets. The range of these studies
is covering unit commitment [19] and economic dispatch problems [20], in addition to scheduling
of SSRES [21], and the uncertainty of renewable generation [22]. The main trends and approaches
currently described in the literature are briefly summarized in the following paragraphs.

As it was presented in the introduction section, in Europe there are currently over 3400 green
energy cooperatives (REScoop). In accordance with [23–26], the REScoop notion is defined in EU
directives as “local energy communities”, according to data from the Federation of Green Energy
Cooperatives in Europe. More than one million European citizens are participating in REScoops
to invest together in the transition from fossil fuels to clean primary energy resources and energy
efficiency. In Romania, starting in 2020, the first established REScoop proposes that future members
who generate energy (prosumers) will be able to sell the surplus to other members, rather than to an
aggregator, following the concept of ‘prosumer-friendly’ [27].

In another perspective, paper [28] considers a P2P electricity trading method using a private
Ethereum blockchain ledger where all bids are encrypted for anonymity and peer matching is done by
a functional encryption-based contract.
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Regarding the energy crowdsourcing in prosumer-enabled electrical networks, a small number
of published papers is available in the literature [16,29]. The existing studies consider a two-stage
algorithm for minimizing the cost of generation and the energy losses by prior rescheduling of user
loads and SSRES.

In other work, a particular local energy market model was considered in [30], which integrates
different P2P energy trading platforms based on unidirectional market clearing price (MCP) for a
microgrid. Moreover, the settlement considers an MCP or P2P mechanism.

The future active distribution network (ADN) is a P2P community based on active energy agent
(AEA) users [31]. The maximization of social welfare in local prosumer generation trading with an
auction-based mechanism is used in [32]. The same first author considers that in a microgrid the energy
flows in a transactive way and the transactions are based on bilateral contracts between peers [33].
Another concept of prosumer surplus trading based on the transactive energy concept is proposed in
the literature [34–37]. Paper [34] uses a Stackelberg game-based method for solving the transactive
energy problem, in which the DNO and the SSRES aggregators are participating simultaneously
in the Local Electricity Market (LEM) and Wholesale Electricity Market (WEM). A comprehensive
cost–benefit model for prosumer load sharing was proposed in [35], using game theory and considering
non-cooperative game models of the microgrids for prosumers energy surplus. In the same context,
a particular social welfare-based concept on transactive energy or demand response (DR) is applied
in [36,37] using negotiated prices.

Another way to trade surplus are DR programs, whereby the LEM operators play a vital role
in managing the exchange of data, to ensure the notification flow between balancing authorities,
service companies and end-users. First, the microgrid operator assesses the electricity consumption
patterns based on the structure of variable electricity tariffs and prices to establish trading plans.
They also sign bilateral P2P contracts with end-users to take direct control of specific energy assets [38].
This information is aggregated to create commitment portfolios—load reduction schedules that are
provided to network operators in exchange for compensation commensurate with the size of the
capacity involved [39]. In the event of a system emergency or demand, the DSO shall request the
aggregator to reduce or increase a portion of the contracted portfolio. For this reason, the aggregator
receives additional compensation which can take the form of tariff reductions, incentive payments and
invoice credits.

Using online platforms [40–46], the consumers can become prosumers who create and distribute
their own information about the energy generation. Some authors proposed a demurrage mechanism
(DM) and Home Energy Management (HEM) for prosumers’ energy surplus in an LEM based on
blockchain [41]. A particular P2P business model for 48 residential prosumers with PV panels installed
in a Swedish village is proposed in [42]. This article identifies some new potential opportunities
for optimizing the LEM and its variables for the best gain, taking into account that a significant
influence is represented by the integration of energy demand, generation supply, and LEM rules.
The aforementioned study can be used to provide information for regulatory bodies to create a fair,
useful and cost-effective P2P electricity trading framework for prosumers. Another comprehensive
platform for prosumers’ digitalization was recommended in [43], and market simulations are developed
in [44,45] for consumers integration in microgrids. In the same manner, a virtual platform was proposed
in [46] for efficient management of multiple energy prosumers (MEP).

The presence of decentralized energy sources demands the analysis of the problem of continuity of
energy supply to operators whose activities significantly depend on electricity. There are EU countries
where power outages amount to about 20 min per year, but in other cases the average power outages
range from 450 to 500 min [47]. Prosumers’ microinstallations ensure the business continuity for
producers in such countries and negotiated surplus trading increases social welfare [48]. Because the
SSRES efficiency depends on atmospheric conditions and regional climate, even minor temporary
changes in weather conditions can cause significant variability in power generation at different time and
space scales. Methodologies based on the remote sensing of atmospheric conditions are the primary
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source of information for the development of numerical forecasting models that support the planning
and operation of power systems in the presence of intermittent energy sources [49]. For local trading
of such electricity surplus, the LEM operators consider the blockchain concept [11,12,16,28,29,40,41,48]
or direct bilateral contracts [50,51]. These market models aim to provide secure and affordable energy
supply for the end user, which is essential for the functioning of an economy in which energy poverty
is reduced and the needs of vulnerable social groups are taken into account [52–54]. Social welfare
is obtained by the authors in [53], where the smart P2P contracts are considered as a distributed
optimization problem, solved with a virtual aggregator based on the Alternating Direction Method of
Multipliers (ADMM). All the LEM actions can be completed by the peers who do not necessarily trust
each other through an agreement algorithm which defines the speed of the transactions. One of the
most used algorithms is the Proof-of-Work (PoW) [55]. Nonetheless, previous articles about energy
sustainability have paid limited attention to prosumer engagement, management and administration.
For example, according to [56,57] each of the providers can have a proper trading platform with specific
architecture for sustainable planning of the local microgrid or region.

From other perspectives, the prosumer surplus trading process based on the specific transactive
energy microgrids are examined by the researchers in [58–60]. The prosumers’ aggregation to one
group with the same interest based on virtual microgrids is analyzed by the authors in [61] for bill cost
reduction as a particular energy poverty mitigation or social welfare. The aforementioned problem can
be solved in smart buildings by using ADMM for energy sharing between the players, as is shown
in [62,63].

In [64] remarkable directions for cost-effective use of digital cryptocurrencies in smart grid
dynamic management are thoroughly explained to cover the challenging viewpoints of blockchain
technology. The LEM is favorable for prosumers because the participation of the before-mentioned
players is concrete in the purchase of energy surplus, but the revenues from the surplus traded are
proportional between sellers [65]. Common consumers do not produce electricity and are only active
in the purchasing process [66]. The load flexibility can change the trading offers. Other perspectives
consider peak loads in the prosumer’s vicinity with smart P2P subscribed capacity prices in [67], or the
crowdsourcing concept for surplus energy planning or sharing, as is used in [68], or considering the
indispensable local energy storage systems [69].

The main concepts taken from the literature and discussed above are compared with the market
model proposed in the paper, in Table 1. In addition, the last column considers the type of settlement
used in the market.

The objective of the local market is to enable an overlay social network of smart devices that
facilitates the communication and trading process between players from LEM, prosumers, consumers
and microgrid. They should share a common goal, such as optimal energy management, taking into
account that the solution with local energy storage systems (as is battery banks) is too expensive [70,71],
and without technical possibility for energy poverty mitigation.

Table 1. A comparison between the proposed model and the literature state-of-the-art survey.

Reference No. Blockchain P2P
Contracts

Energy
Crowdsourcing REScoop Energy

Poverty
Settlement
Procedure

[16,29] Yes Yes Yes No No Negotiated

[28] Yes Yes No Yes No Negotiated

[24,25,44,49,57] No No No Yes No Negotiated

[26,27] Yes No No Yes No Negotiated

[30–32,35,38,42,56,60,65] No Yes No No No Negotiated
or MCP
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Table 1. Cont.

Reference No. Blockchain P2P
Contracts

Energy
Crowdsourcing REScoop Energy

Poverty
Settlement
Procedure

[33,34,36,37,43,45] No No No No No Negotiated

[39,46,50,51,69,71] No Yes No Yes No Negotiated
or MCP

[40,41,54,58,59] Yes Yes No No No Negotiated

[53] Yes Yes No No Yes Negotiated

[48,55,64] Yes No No No No Negotiated

[61,66] No No No No Yes Negotiated
or MCP

[62,63] No Yes No No Yes Negotiated

[68] No Yes Yes No No Negotiated

Proposed model Yes Yes Yes Yes Yes Negotiated
and MCP

3. Materials and Methods

In LV electricity distribution networks or local microgrids, there is an increasingly larger number
of residential consumers who are opting to install local generation resources to gain independence
from the grid. The predominant choice is the use of PV panels systems that are easier to install at
household residences and provide energy by converting the solar irradiation into electricity. This trend
is incentivized by the subsidies offered by governments worldwide. As the number of individual
houses adopting this technology increases, new opportunities arise regarding the trading models
used for selling the excess generation. Residences become prosumers, entities capable of consuming,
producing and selling electricity. The prosumers will use their own generated electricity mainly to
cover their individual consumption and when the generation exceeds this amount, they will sell the
surplus to the grid. The simplest method of surplus trading is to sell the entire available quantity
back to the supplier, though an aggregator entity, at a regulated price. However, this is the least
profitable approach, as the regulated prices are usually low [72], and the benefits can be seen only
by the suppliers/network operators, and the prosumers. New trading methods for microgrids are
currently envisioned in the literature, aiming to create local electricity markets that would provide
benefits for all the players involved (aggregators, prosumers and consumers). A main requirement for
implementing such initiatives is the conversion of the classic electricity distribution infrastructures
into intelligent or smart grids, capable of real-time communication between the supply and consumer
buses, and centralized operation management and data processing at microgrid level.

In line with these trends, previous research efforts by the authors, published in [40], proposed
an algorithm for prosumer surplus transactions at the microgrid level, using P2P contracts and
blockchain technology. The market mechanism considers trading priorities set at central level and
based on consumer or prosumer prices, or custom priorities determined by the prosumer–consumer
geographical distances and the ‘first-come-first-served’ (FCFS) principle.

This paper extends the previous research considering an improved and extended market model,
with two trading phases (primary and secondary). The basic flowchart of the proposed market model
is depicted in Figure 1.

The primary market includes the blockchain approach from [40] and adds a supplementary
trading method based on the merit order used in wholesale markets. These methods can be used as
alternatives for trading.

A second market segment, with two tiers, is proposed to help the prosumers and consumers to
better manage the sell and buy offers that can be affected by errors. Crowdsourcing and energy poverty
mitigation are used for this purpose.



Sustainability 2020, 12, 7265 8 of 43
Sustainability 2020, 12, x FOR PEER REVIEW 8 of 43 

 
Figure 1. The basic diagram of the proposed market algorithm. 

The newly proposed algorithm provides market mechanisms designed to alleviate these 
problems. 

The following general assumptions are made: 

 The prosumer and consumer selling and buying offers are managed by the local non-profit 
aggregator using two possible market mechanisms integrated in a blockchain trading system: 

o A primary market built on the blockchain technology, ensuring anonymity and security for 
the placed orders. 

o A secondary market with a two-tier trading mechanism for minimizing the imbalance 
between the offers placed in the blockchain system and the actual traded quantities. 

 The primary market can use two alternative price-setting methods based on blockchain 
technology: the ‘first-come-first-served’ (FCFS) method or the merit-order method used in 
traditional day-ahead markets. 

 The secondary market provides two optional trading tiers: 

o The energy poverty mitigation tier, aimed at low-income consumers who otherwise could 
not afford to participate in the market. 

o The commercial tier, with two options, aimed for expanding the market through 
crowdsourcing, with two types of consumers: those participating occasionally, in exchange 
for a fee, and consumers who do not participate directly with offers but are represented 
(invited) in the market by other consumers. 

 For the invite option of the commercial tier, any consumer Ci can acquire electricity from the 
second market layer only if has signed previously a P2P contract with a specific prosumer Pj. 

 The selling price of a prosumer or consumer can vary hourly, but in the paper is set constant for 
all trading intervals. This approach is modelling the practice used for traditional differentiated 
tariffs where the peak and night prices are outside the hours when PV panels can generate 
electricity, and the case where no storage capabilities are installed in the network. Electricity is 

Figure 1. The basic diagram of the proposed market algorithm.

The sell offers are the result of the surplus that the prosumers can generate but cannot use locally.
The buy offers placed by the consumers in the local market are usually the result of forecasts made
with variable precision. In the case of trading electricity obtained from PV panels, the forecasts
must consider weather data obtained with technologies such as remote sensing and big data mining.
Thus, the offers placed by the consumers in the market can be affected by errors which will result in
mismatches between the needed and traded quantities.

In the Romanian market model, when the electricity acquired from the local market is less than the
demand, the consumers would buy the rest at higher prices from the national grid, and the generators
would be forced to sell any surplus to the aggregator, at a lower price.

On the other hand, if trading is performed in a local market, when the consumers forecasts
are higher than the actual demand, the buyers would be forced to sell the excess quantities to the
aggregator if sufficient and cheap storage facilities are not available.

The newly proposed algorithm provides market mechanisms designed to alleviate these problems.
The following general assumptions are made:

• The prosumer and consumer selling and buying offers are managed by the local non-profit
aggregator using two possible market mechanisms integrated in a blockchain trading system:

# A primary market built on the blockchain technology, ensuring anonymity and security
for the placed orders.

# A secondary market with a two-tier trading mechanism for minimizing the imbalance
between the offers placed in the blockchain system and the actual traded quantities.

• The primary market can use two alternative price-setting methods based on blockchain technology:
the ‘first-come-first-served’ (FCFS) method or the merit-order method used in traditional
day-ahead markets.

• The secondary market provides two optional trading tiers:



Sustainability 2020, 12, 7265 9 of 43

# The energy poverty mitigation tier, aimed at low-income consumers who otherwise could
not afford to participate in the market.

# The commercial tier, with two options, aimed for expanding the market through
crowdsourcing, with two types of consumers: those participating occasionally, in exchange
for a fee, and consumers who do not participate directly with offers but are represented
(invited) in the market by other consumers.

• For the invite option of the commercial tier, any consumer Ci can acquire electricity from the
second market layer only if has signed previously a P2P contract with a specific prosumer Pj.

• The selling price of a prosumer or consumer can vary hourly, but in the paper is set constant for all
trading intervals. This approach is modelling the practice used for traditional differentiated tariffs
where the peak and night prices are outside the hours when PV panels can generate electricity,
and the case where no storage capabilities are installed in the network. Electricity is sold on the
market for the surplus intervals, and settlement is performed at the end of each trading interval.

• If the local surplus exceeds the demand traded in the market, the surplus will be sold to the
aggregator/market administrator, at regulated tariffs.

• The secondary two-tier market components are optional, but the case study considers all the
available options, in order to better demonstrate the advantages of the proposed trading algorithm.

3.1. Input Data for the Local Market

The input data required for trading consist of the quantities and prices associated with the
consumption and local generation measured in the market. This information is provided in six matrices:
C = C (h, i) ∈ RnhxNCM, CO = CO (h, i) ∈ RnhxNCM and PCO = PCO (h, i) ∈ Rnh×NCM for consumption
quantity, offers and price offers, and G = G (h, j) ∈ Rnh×NPM, GO = GO (h, j) ∈ Rnh×NPM, PGO = PGO
(h, j) ∈ Rnh×NPM for generation quantity, offers and price offers, where NCM and NPM are the number
of consumers and prosumers participating at hour h in the market. It is considered that generally
NCM < NC and NPM < NP, NC and NP being the number of consumers and prosumers connected in
the microgrid.

Trading in the primary market can occur at any hour h when there are consumer buying offers
placed in the blockchain system (1), and there is generation surplus offered for selling (2).

NCM∑
i=1

CO(h, i) > 0 (1)

NPM∑
j=1

GO(h, j) > 0 (2)

Surplus occurs when the local generation of a prosumer exceeds its individual consumption (3)
and the surplus is traded in the market (4).

S(h, j) = G(h, j)-C(h, j), j = 1..NPM (3)

S(h, j)⇒ GO(h, j) (4)

The consumer quantity offers for the primary market use two types of representation:

• as actual consumption value measured in [W], when the price is set according to the blockchain
priority model, as in [40];

• as a multiple of 100 W for the price setting according to the day-ahead merit order model used in
wholesale markets.
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The prosumers can choose to sell their surplus directly to the aggregator for a fixed regulated
tariff, or in the primary local market. In the paper, it is considered that all the available surplus is
traded through sell offers placed in the market blockchain system.

The secondary market is activated at any hour h when at least one of the following conditions is
fulfilled:

• The sum of the buy offers is lower than the aggregated offers placed by the prosumers, i.e.,
the prosumers need to sell the remaining surplus:

NCM∑
i=1

CO(h, i) <
NPM∑
j=1

GO(h, j) (5)

• The buy offer of a consumer i is greater than the actual consumption because of the forecast error
or representation model used in the market (multiple of 100 kW).

CO(h, i) > TCO(h, i), i = 1..NCM (6)

where TCO(h,i) is the quantity of electricity actually traded by the consumer i at hour h, which can
be equal to or less than the offer placed on the market.

3.2. The Primary Market

This market segment is the main trading tool for the prosumers and consumers in the microgrid.
As outlined previously, two alternatives are provided for determining the consumer and prosumer
trading priority: ‘first-come-first-served’ and merit order. Both methods use the consumer (buy) and
prosumer (sell) offers placed in a centralized secure and anonymous blockchain system established
at the microgrid or market level. The blockchain system is preferred because it guarantees trading
fairness, all players being unaware of the offers placed by others, thus minimizing the risk of
market manipulation.

Another assumption used in the paper is that, by means of an automated system comprising smart
metering, two-way communication and continuous monitoring at the microgrid level, the algorithm
has immediate access to measured and forecasted data at consumer and prosumer buses. For examining
the possible effects on trading, two consumer offer mechanisms are considered:

• Consumers place on the market buy offers for the entire consumption at hour h, in order to
minimize their electricity bill by attempting to buy the maximum quantity of electricity from the
local market, at lower prices, rather than from the main grid, at higher prices.

• Consumers place on the market buy offers determined by forecast techniques using big data
analysis or remote sensing techniques.

The first type of offer is used in the FCFS trading method, where a generic consumer i places
fixed-price-per-kWh and variable quantity offers, the trading order being determined by the time tag of
the offer. The quantities for these offers are determined in the settlement phase, based on consumption
measurements taken from the microgrid. The flowchart of this trading method is given in Figure 2.
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The second type of offer is used in the merit-order trading mechanism. The buy offer prices and
quantities are placed in the blockchain system by the consumers before the trading interval. Quantities
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are given as multiples of 100 W and prices are given for each kWh. The flowchart of this trading method
is given in Figure 3. The trading order and price are determined by the standard merit-order method,
provided in Figure 4, where the trading price is determined as the market clearing price (MCP).
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For both methods, the prosumer sell offers are given as the full available surplus S(i,h), in kWh.
The maximum amount of traded electricity TC is determined by the minimum between the

aggregated buy and sell offers:

TC = min

NCM∑
i=1

CO(h, i),
NPM∑
j=1

GO(h, j)

 (7)

The settlement price of a transaction t made by a prosumer j or consumer i is given by the amount
of traded electricity C(h,t) and its price P(h,t), determined by each transaction, TP(h,t), which can be
different from the sell or buy offer price submitted by the players in the market, PCO(h,i), PGO(h,j).

TP(h, t) = C(h, t) · P(h, t) (8)

The basic flowchart of the primary market algorithm uses the steps presented in Figure 5.
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The trading mechanisms used in the primary market can lead to electricity quantities that cannot
be traded locally. Three scenarios can lead to this situation:
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• At given hours, the total local generation available in the market (sell offers) exceed the total
consumption (buy offers).

• If the merit-order method is used, the buy offers are given as multiples of 100 W, while the sell
offers are the S(h,i) quantities. This leads to S(h,i) fractions that cannot be fulfilled.

• The consumers place in the market buy offers that exceed their real consumption, following
forecast errors or significant accidental deviations from the daily demand pattern.

All these quantities can amount to an important value over longer time periods. If they are not
traded in the local market, the prosumers would sell at minimum price to the aggregator, while the
consumers would buy electricity at standard, high tariffs.

The algorithm proposed in the paper offers the possibility of extending the primary market with a
two-tier secondary market, in order to make prosumer and consumer surplus quantities available for
trading in the local network.

3.3. The Secondary Market—The Energy Poverty Tier

The local market is profitable mostly to consumers with high demand, who can better benefit
from the energy cost reduction obtained from the difference between the grid tariffs and the price per
kWh offered by the local producers. These consumers are also usually those who have the financial
resources to install the physical and software infrastructure required to access the market.

On the other hand, amongst the consumers connected in a microgrid can exist a number of
low-income consumers, who in traditional networks would be classified as belonging to vulnerable
categories and suffer from energy poverty. The paper proposes an optional secondary market tier in
which the surplus that cannot be traded in the primary market would be automatically allocated in the
initial settlement phase (see Figure 1) to such vulnerable consumers who, in normal conditions, would
not be able to access the local market.

The surplus can come from both prosumers and consumers, as summarized in the previous
subsection. In all the cases, the electricity quantities will result from the mismatch between the
quantities offered for trading (higher)—CO(h,i) or GO(h,j)—and actual traded quantity, determined by
the existing (lower) generation availability TC(h,j) or realized consumption TC(h,i):

TC(h, i) = CO(h, i)-TC(h, i), i = 1 . . .NCM, f or consumers
TC(h, j) = GO(h, j)-TC(h, j), j = 1 . . .NPM, f or prosumers

(9)

Thus, consumers who were buyers in the primary market can act as sellers in the secondary
market, together with the prosumers.

The quantities sold to vulnerable consumers in the secondary market are determined using the
merit-order method where the buyers’ prices are set as 0 mu/kWh (mu is the monetary units) and the
quantities are ranked in descending order. The cost for traded kWh can be set using as reference the
price obtained by the seller in the primary market, the original price offer placed by the seller in the
primary market or an agreed fixed tariff, according to the policy agreed in the local market.

This trading scheme offers two benefits. The vulnerable consumers from the microgrid will see
social welfare increase by the reduction of their electricity bill, which will be proportional to their
consumption in the trading hours interval and the market price. On the other hand, the prosumers with
remaining generation surplus and the consumers who have surplus to sell after the initial settlement
of the primary market can sell electricity at higher prices than the tariff used by the aggregator.

The flowchart of the first tier of the secondary market is presented in Figure 6.
Since the demand of the vulnerable consumers selected for the energy poverty tier is expected to

be low, the remaining surplus after the settlement of the first tier can be further traded in a second tier
reserved for commercial trading.
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3.4. The Secondary Market—The Commercial Tier

The commercial tier of the secondary market is designed to incentivize market diversity by
allowing other consumers to participate in trading. Several consumer categories are envisioned.
Some consumers would not trade continuously and would seek only occasional access to the market,
buying the local generation surplus to supply automated receptors such as greenhouse irrigation
systems in given hours of preset days. Other types of occasional consumers could benefit from the
price difference when trading on the local market, but the initial investment for the infrastructure
required to get access to the market would be prohibitive.

Two options are available in the algorithm for this trading segment:

• Option 1: Fee access.
• Option 2: Invite access.

In the fee-access model, the consumers who need only occasional access to the market can submit
offers in the secondary market to gain priority access for the surplus remaining after the settlement of
the primary market offers. The trading model considers the merit-order priority method described in
Figure 5 for the primary market, but where the consumers offer to buy from the market their entire
consumption measured in the trading interval, at the lowest price plus a fixed percent fee from the
value of the transaction. The merit order is used to determine the succession in which the offers are
fulfilled. The financial settlement is made using the MCP, the consumer or the prosumer price offers
for all transactions, according to the market policy, and then a fee f% is added to the price resulting
from the trading mechanism.

TP(h, i) = C(h, i) · (PCO(h, i), PGO(h, j) or MCP(h)) · (1 + f %) (10)

The basic flowchart of the fee-access secondary market model is given in Figure 7.
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In the invite-access model, existing market players can act as subcontractors for other consumers
from the microgrid. Certain prosumers or consumers can still have surplus quantities unsold after the
previous settlement sessions have been completed. In order to avoid getting the lowest price per kWh
from the market aggregator, they can optionally choose a partner from the microgrid to which the
remaining quantities will be sold. The transactions are based on P2P contracts existing between the two
entities and notified to the market administrator, who is responsible for the final settlement at market
level. The settlement price is agreed between the parties, chosen from the vendor and buyer offers.

The flowchart of the secondary market invite-access model is provided in Figure 8.
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It should be noted that the secondary market models are optional, and their order of activation
can be changed according to the priorities of a specific microgrid. Instances can exist where the energy
poverty mitigation tier is absent or one or both segments of the secondary commercial tier are used.

4. Results

The new market was tested on an LV distribution network from Romania, with 28 buses and
two four-wire three-phase bundled feeders, with an average distance between the connection points
of 40 m. The network supplies only single-phase residential consumers, some of whom also have
PV generation capabilities. The load and generation profiles used in the study are considered as
daily 24-hour measured values, as provided from the smart metering infrastructure existing in the LV
microgrid. The 24-hour load profiles for the network buses are presented in Table A1 in Appendix A.

Each bus, except bus 1, which is a branching point, has one residence connected. The prosumers are
located at buses 3, 6, 7, 10, 15, 25 and 27, as shown in the one-line diagram from Figure 9. Their 24-hour
generation profiles were modeled using representative data for this type of generation and are provided
in Appendix A, Table A2. The prosumers will use the generated electricity primarily for supplying
their own hourly demand, and wish to sell the remaining surplus to the consumers participating in
the local market set up at microgrid level and managed by a non-profit aggregator. From Table 2
and Figure 10, it is seen that generation occurs only in the 06:00–18.00 interval, when solar energy is
available. The surplus is maximized in the 10:00–13:00 interval and minimized towards the evening
time, when the peak load hours are near.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 43 
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Table 2. The prosumers’ electricity surplus, in kWh.

Hour P27 P21 P7 P15 P6 P3 P10 P25 Total

h6 0.000 1.588 0.000 1.948 0.000 1.208 2.496 3.052 10.292
h7 0.000 1.805 0.263 1.585 0.000 1.806 2.616 3.487 11.562
h8 0.668 1.726 0.704 1.586 0.000 2.879 0.714 3.826 12.103
h9 1.437 1.749 1.056 2.228 0.741 2.836 1.279 3.956 15.282

h10 1.607 2.292 1.093 1.302 1.116 3.251 2.794 4.232 17.687
h11 1.655 2.038 1.400 2.775 1.886 3.372 0.000 4.175 17.301
h12 1.595 1.822 1.225 1.880 2.328 3.392 0.980 4.060 17.282
h13 1.508 0.685 1.413 2.826 2.294 3.462 0.826 4.240 17.254
h14 1.372 1.182 1.385 2.945 1.347 3.178 0.000 4.214 15.623
h15 1.106 2.028 1.048 1.546 1.184 2.331 0.000 3.702 12.945
h16 0.563 0.819 0.410 1.325 0.000 2.133 0.000 3.209 8.459
h17 0.000 0.000 0.000 1.062 0.000 1.134 0.046 2.877 5.119
h18 0.000 1.170 0.000 1.161 0.000 1.221 0.914 2.599 7.065

Total 11.511 18.904 9.997 24.169 10.896 32.203 12.665 47.629 167.974
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4.1. The Primary Market

From the 27 consumers existing in the microgrid, the case study considers that only 11 are
participating in the primary market as buyers (from buses 5, 8, 9, 11, 12, 14, 16, 19, 20, 24, 26), chosen
mainly between the residences with high daily electricity demand. For each hour h, they can submit
to the market two types of offers according to the traded quantity: the entire hourly demand and
forecasted values, in multiples of 100 kW, as discussed in Section 3.2. For the forecasted offers, the
values used in the case study are given in Table A3 in Appendix A, and in Figure 11, only for the hour
intervals in which prosumer generation exists.
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The sellers who place offers in the primary market are the prosumers with generation surplus.
It is considered that they wish to sell the entire surplus on the market to maximize their revenue.
The quantities offered, derived from Tables A1 and A2, are presented in Table 2 and Figure 10, where it
can be seen that surplus exists for trading in all hourly intervals from 06:00 to 18:00, but there are
prosumers who cannot trade electricity at some hours (for example, P27 or P6).

For all quantity offers, the consumers and the prosumers must also provide in the blockchain system
of the primary market the desired price offers, which are given in Tables A4 and A5 in Appendix A.
These values were set between 0.39 and 0.6 mu/kWh for consumers, and in the 0.4–0.55 mu/kWh
range for prosumers. The higher maximum prices for consumers were chosen taking into account the
merit-order method, in which the offers with the highest prices are prioritized. Furthermore, both the
prosumers’ and consumers’ price offers were set higher than the regulated tariff to incentivize the
trading in the local market.

If the market would not be present, the total electricity surplus quantity (167.97 kWh) would be
traded by the aggregator back in the grid, at a regulated tariff. Using the reference value of 0.251 mu/kWh
applied in Romania [73,74], the total revenue of the prosumers would be of 42.16 mu/day.

For demonstrating the advantages and disadvantages of each trading priority method used in the
market, FCFS and MO, the case study results are be provided as comparisons between these alternatives.

As it can be seen from Figure 11, there are hours when the MO offers differ from the total demand
used in the FCFS offers. This can happen because of two reasons: the forecast error and the standardized
offer type (multiple of 100 W) used by the MO method. On the other hand, the offers placed by the
consumers in the market are identical for both trading methods, and equal to the available surplus
(Figure 10), because one of the main objectives of the local market is to enable prosumers to sell
the entire surplus locally, and offers given as multiples of 100 W would impede the achievement of
this goal.

The traded quantities and revenues/costs for each prosumer/consumer and hourly interval are
given in Figures 12 and 13 and Tables 3–6.Sustainability 2020, 12, x FOR PEER REVIEW 16 of 43 
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The data from Tables 3–6 show some interesting results regarding the hourly and daily offers and
traded quantities for the consumers and prosumers.

The local generation surplus (167.97 kW) is insufficient to supply all the consumer needs
(203.43 kWh). From Table 3, it is seen that, for the chosen consumption, local generation and primary
market offers, when using the FCFS trading priority, the consumers can trade quantities lower than
their consumption, and will need to buy the rest from the grid, at higher tariffs. If the MO trading
priority is used, Table 4 shows that the hourly buy offers placed by the consumers are usually not fully
fulfilled, but the traded quantities exceed the consumption. This leads to a surplus with the consumers,
which will be traded to the grid, at regulated tariffs, or sold in the secondary market.

For prosumers, there are trading intervals where the surplus exceeds the traded prosumer offer
and traded consumer quantities which are equal (for example, at h11, as seen from Tables 4 and 6).
This suggests that the prosumer will not be able to sell their entire surplus because of lack of demand.
Additionally, applying the FCFS and MO trading priorities in fulfilling the market offers has different
effects on the traded quantities, both hourly and for individual prosumers or consumers. If the FCFS
trading priority is used, the total quantity traded by the prosumers is larger (Table 5) because the
prosumer surplus offers can be matched more closely by the consumer offers. This means that if the
MO trading priority is used, it is expected to have more surplus unsold to the local consumers, thus
reducing the profitability of the prosumers. In this case, they would have to sell extra surplus to the
grid in exchange for the regulated tariff, which is lower than the local consumer offers. As it can be
seen from Table 6, the generation surplus remaining after the primary market is concentrated in the
09:00–14:00 interval, while the evening and morning intervals see the highest deficit in local generation
(Table 4).

Table 3. The daily offer, traded and remaining quantities for each buyer in the primary market, kWh.

Consumer C5 C8 C9 C11 C12 C14 C16 C19 C20 C24 C26 Total

Consumption
(offers FCFS) 21.25 24.44 30.70 18.96 8.79 20.92 23.84 4.08 12.90 25.27 12.26 203.41

offers MO 23.2 25.30 30.9 16.50 9.30 20.80 23.8 4.10 11.80 25.20 12.50 203.40
traded FCFS 17.32 20.29 25.07 15.33 6.04 13.20 16.54 3.08 9.05 21.04 9.44 156.40
traded MO 12.55 25.30 26.42 10.30 4.85 20.80 16.36 1.40 7.40 24.02 4.70 154.10
rem. FCFS 3.93 4.15 5.62 3.64 2.75 7.72 7.30 1.01 3.85 4.23 2.82 47.01
rem. MO 10.65 0 4.48 6.20 4.45 0 7.44 2.70 4.40 1.18 7.80 49.30

Table 4. The hourly offer, traded and remaining quantities in the primary market for all buyers, kWh.

Hour h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

Consumption
(offer FCFS) 11.8 14.06 18.87 13.47 13.55 14.96 16.04 18.16 13.7 12.83 15.23 20.77 19.99 203.43

offer MO 12.1 14.9 17.5 13.6 13.6 14.7 13.6 18.3 13.8 14 15.8 20.5 21 203.40
traded FCFS 10.29 11.56 12.1 13.47 13.55 14.96 16.04 17.25 13.7 12.83 8.46 5.12 7.07 156.40
traded MO 10.29 11.56 12.1 13.6 13.6 14.7 13.6 17.25 13.8 12.95 8.46 5.12 7.07 154.10
rem. FCFS 1.51 2.5 6.77 0 0 0 0 0.91 0 0 6.77 15.65 12.92 47.03
rem. MO 1.81 3.34 5.40 0 0 0 0 1.05 0 1.05 7.34 15.38 13.93 49.30

Table 5. The daily offer, traded and remaining quantities for each seller in the primary market, kWh.

Prosumer P27 P21 P7 P15 P6 P3 P10 P25 Total

surplus 11.51 18.90 10.00 24.17 10.90 32.20 12.67 47.63 167.97
traded FCFS 11.51 17.72 9.88 22.87 8.92 25.20 12.67 47.63 156.40
traded MO 11.51 9.89 10.00 19.80 10.90 31.71 12.67 47.63 154.10
rem. FCFS 0 1.18 0.11 1.30 1.98 7.00 0 0 11.58
rem. MO 0 9.02 0 4.37 0 0.49 0 0 13.88
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Table 6. The hourly offer, traded and remaining quantities in the primary market, for all sellers, kWh.

Hour h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

Surplus 10.29 11.56 12.10 15.28 17.69 17.30 17.28 17.25 15.62 12.95 8.46 5.12 7.07 167.97
traded FCFS 10.29 11.56 12.10 13.47 13.55 14.96 16.04 17.25 13.70 12.83 8.46 5.12 7.07 156.40
traded MO 10.29 11.56 12.10 13.60 13.60 14.70 13.60 17.25 13.80 12.95 8.46 5.12 7.07 154.10
rem. FCFS 0 0 0 1.82 4.14 2.35 1.24 0 1.92 0.11 0 0 0 11.58
rem. MO 0 0 0 1.68 4.09 2.60 3.68 0 1.82 0 0 0 0 13.88

The profitability of the FCFS and MO trading priorities can be assessed from Figure 14 and Tables 7
and 8 for the buyers and Figure 15 and Tables 9 and 10 for the sellers. The market model offers the
possibility of performing financial settlement in three assumptions for the prices: using the market
clearing price (MCP), the consumer offers (COP) and the prosumer offers (POP), because different
microgrids can pursue different objectives when establishing the local market. For example, using
POP coupled with MO in the primary market can be an advantage for the buying consumers, who will
buy electricity at lower prices from the local prosumers instead of paying the standard residential tariff.
Using the MCP favors the prosumers with lower prices. In generation surplus scenarios, they can sell
electricity at a higher clearing price. Using the COP will be an advantage for the prosumers, who will
be able to obtain settlement prices larger than their initial offers.

The sellers/vendors with the highest cost/revenue can be considered as making the most profit
because quantities are bought by consumers at a price lower than the standard LV residential tariff,
while the sell offers are settled by the vendors at a price higher than the resell tariff to the grid.
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For the scenario considered in the case study, Figures 14 and 15 show that the highest revenues
are obtained by prosumers when the consumer offer prices (COP) are used for settlement. If the FCFS
trading priority is used, the MCP and POP settlements give the same results, because the methodology
from [40] uses as settlement price the prosumer offers, and the MCP and POP trading priorities would
result the same, as the buy offer price is not relevant and thus considered 0 um/kWh for all buyers.
For the MO trading priority, the MCP settlement results in higher trading prices than POP, because
the trading price for all sellers and buyers is determined by the price unrestricted merit order used in
wholesale markets (Figure 4).

As it can be seen from Tables 7–10, the players who get the most advantage from the local market
are C8, C9, C24, the consumers without generation capability that have the highest demand, and P15,
P3, P25, the prosumers with the largest daily surplus.

Table 7. The daily cost for each buyer in the primary market, mu.

Consumers C5 C8 C9 C11 C12 C14 C16 C19 C20 C24 C26 Total

FC
FS

MCP 8.28 9.23 11.30 6.96 2.70 5.87 7.59 1.36 4.00 9.42 4.39 71.11
COP 7.80 12.17 13.79 7.97 2.90 7.92 8.10 1.20 4.98 11.99 4.72 83.54
POP 8.28 9.23 11.30 6.96 2.70 5.87 7.59 1.36 4.00 9.42 4.39 71.11

M
O

MCP 6.40 13.15 13.91 5.44 2.47 10.89 8.49 0.68 3.94 12.53 2.46 80.36
COP 5.65 15.18 14.53 5.36 2.33 12.48 8.01 0.55 4.07 13.69 2.35 84.20
POP 6.03 10.52 11.79 4.80 2.34 9.00 7.91 0.67 3.41 10.56 2.25 69.28



Sustainability 2020, 12, 7265 20 of 43

Table 8. The hourly cost in the primary market for all buyers, mu.

Consumers h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

FC
FS

MCP 4.74 5.31 5.58 6.11 6.06 6.81 7.30 7.73 6.12 5.90 3.87 2.30 3.28 71.11
COP 5.60 6.33 6.21 7.20 7.35 7.84 8.51 9.12 7.51 7.06 4.42 2.61 3.79 83.54
POP 4.74 5.31 5.58 6.11 6.06 6.81 7.30 7.73 6.12 5.90 3.87 2.30 3.28 71.11

M
O

MCP 5.66 6.36 6.66 7.48 6.39 7.06 6.53 9.49 6.62 7.12 4.65 2.46 3.89 80.36
COP 5.66 6.43 6.60 7.28 7.33 7.68 7.26 9.13 7.53 7.18 4.90 3.05 4.15 84.20
POP 4.74 5.31 5.58 6.04 5.90 6.52 5.94 7.73 6.13 5.95 3.87 2.30 3.28 69.28

Table 9. The daily revenue for each seller in the primary market, mu.

Prosumers P27 P21 P7 P15 P6 P3 P10 P25 Total

FC
FS

MCP 4.95 9.75 3.95 10.98 3.83 11.85 5.32 20.48 71.11
COP 6.02 9.04 5.15 11.86 4.74 13.95 7.04 25.74 83.54
POP 4.95 9.75 3.95 10.98 3.83 11.85 5.32 20.48 71.11

M
O

MCP 5.88 5.44 5.13 10.50 5.51 16.44 6.67 24.78 80.36
COP 6.11 4.98 6.00 9.80 5.90 16.25 7.54 27.61 84.20
POP 4.95 5.44 4.00 9.51 4.69 14.90 5.32 20.48 69.28

Table 10. The hourly revenue in the primary market for all sellers, mu.

Prosumers h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

FC
FS

MCP 4.74 5.31 5.58 6.11 6.06 6.81 7.30 7.73 6.12 5.90 3.87 2.30 3.28 71.11
COP 5.60 6.33 6.21 7.20 7.35 7.84 8.51 9.12 7.51 7.06 4.42 2.61 3.79 83.54
POP 4.74 5.31 5.58 6.11 6.06 6.81 7.30 7.73 6.12 5.90 3.87 2.30 3.28 71.11

M
O

MCP 5.66 6.36 6.66 7.48 6.39 7.06 6.53 9.49 6.62 7.12 4.65 2.46 3.89 80.36
COP 5.66 6.43 6.60 7.28 7.33 7.68 7.26 9.13 7.53 7.18 4.90 3.05 4.15 84.20
POP 4.74 5.31 5.58 6.04 5.90 6.52 5.94 7.73 6.13 5.95 3.87 2.30 3.28 69.28

4.2. The Secondary Market—The Energy Poverty Mitigation Tier

The proposed local market model uses in the secondary market an optional energy poverty
mitigation tier, designed to include a category of consumers that can usually will not be able to trade
on the market because of their low income or other social vulnerabilities. The microgrid community
can decide to assist these consumers by supporting the reduction of their electricity bill. The simplest
way to achieve this goal is to automatically allocate the prosumer surplus available after the settlement
of the primary market to cover the demand of such consumers. In the data used for the case study,
a single consumer, C28, fulfills the requirements of a vulnerable consumer. As seen in Table A1, its total
daily consumption amounts to 3.31 kWh, with 1.79 kWh in the 06:00–18:00 interval.

Since the two trading priority methods (FCFS and MO) give in the primary market different
results regarding the trading participants and quantities at each hour, a similar behavior is propagated
in the secondary market. Thus, the trading results will be presented in the same manner as for the
primary market, as a comparison between the cases in which the primary market uses the FCFS or the
MO in determining the priorities of the traded quantities. It is considered that the secondary market
uses the same price offers entered in the blockchain system for the primary market.

According to the data from Tables 3 and 5, after the settlement of the primary market, prosumers
P21, P7, P15, P6, P3, P25 have unsold surplus if the FCFS trading priority is used. No consumers can
participate in the secondary market, because they cannot have surplus after trading. If the MO priority
is used, the prosumers with available surplus are P21, P15, P3, and also there are consumers which
have placed in the primary market offers exceeding their real consumption, and can become sellers
on the secondary market (C5, C9, C11, C12, C16, C19, C20, C24, and C26). The hours in which the
sellers are having surplus after the primary market are presented in Appendix B, Tables A6 and A7.
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The only entity buying in this market is C28, and its hourly buy offer match its entire consumption (See
Table A1). However, these are total quantities, and each seller can trade different surplus quantities in
each hour. This will lead to the necessity of prioritization of the sell offers, and subsequent settlement
between C28 and possibly multiple sellers. The quantities traded hourly are presented in Appendix B,
Tables A8 and A9. The sell offers and traded quantities are given in Figures 16 and 17. Tables 11–14
summarize the daily and hourly offers and quantities traded by buyers and sellers.
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Table 11. The daily traded quantities for consumer C28 in the energy poverty mitigation market, kWh.

Consumer C28

Consumption (offers FCFS) 1.79
offers MO 1.79

traded FCFS 0.72
traded MO 1.79
rem. FCFS 1.07
rem. MO 0
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Table 12. The hourly traded quantities in the poverty mitigation market for consumer C28, kWh.

Hour h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

Consumption
(offer FCFS) 0.19 0.14 0.15 0 0 0.08 0.51 0.06 0.02 0.24 0.09 0.08 0.23 1.79

offer MO 0.19 0.14 0.15 0 0 0.08 0.51 0.06 0.02 0.24 0.09 0.08 0.23 1.79
traded FCFS 0 0 0 0 0 0.08 0.51 0 0.02 0.11 0 0 0 0.72
traded MO 0.19 0.14 0.15 0 0 0.08 0.51 0.06 0.02 0.24 0.09 0.08 0.23 1.79
rem. FCFS 0.19 0.14 0.15 0 0 0 0 0.06 0 0.13 0.09 0.08 0.23 1.07
rem. MO 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 13. The daily traded quantities for each vendor in the energy poverty mitigation market, kWh.

Vendor P21 P7 P15 P6 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

surplus FCFS 1.18 0.11 1.30 1.98 7.00 0 0 0 0 0 0 0 0 0 11.58
surplus MO 9.02 0 4.37 0 0.49 10.65 4.48 6.20 4.46 7.44 2.70 4.40 1.18 7.80 63.18
traded FCFS 0 0.11 0 0.53 0.08 0 0 0 0 0 0 0 0 0 0.72
traded MO 0 0 0.60 0 0.00 0 0 0 0 0 1.18 0 0 0 1.79
rem. FCFS 1.18 0.00 1.30 1.45 6.92 0 0 0 0 0 0 0 0 0 10.86
rem. MO 9.02 0.00 3.76 0 0.49 10.65 4.48 6.20 4.46 7.44 1.52 4.40 1.18 7.80 61.39

Table 14. The hourly traded quantities in the energy poverty mitigation market for all vendors, kWh.

Hour h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

surplus FCFS 0 0 0 1.82 4.14 2.35 1.24 0 1.92 0.11 0 0 0 11.58
surplus MO 1.81 3.34 5.40 1.68 4.09 2.60 3.68 1.05 1.82 1.06 7.34 15.38 13.94 63.18
traded-FCFS 0 0 0 0 0.00 0.08 0.51 0 0.02 0.11 0 0 0 0.72
traded-MO 0.19 0.14 0.15 0.00 0.00 0.08 0.51 0.06 0.02 0.24 0.09 0.08 0.23 1.79
rem. FCFS 0 0 0 1.82 4.14 2.27 0.73 0 1.90 0 0 0 0 10.86
rem. MO 1.62 3.20 5.25 1.68 4.08 2.53 3.17 0.99 1.80 0.81 7.25 15.30 13.71 61.39

Figures 16 and 17 and Tables 11–14 reveal significantly different trading scenarios on the energy
poverty mitigation market when the two trading priority methods (FCFS and MO) are used in the
primary market. For FCFS, 3 out of 5 prosumers will trade electricity with C28, while if MO were to
be used, only P15 and P3 will sell electricity, the rest of the buying offer being fulfilled by just one
consumer, C19. Also, if the secondary market is activated, the available surplus rises when MO is
used from 13.88 kWh in the primary market to 63.18 kWh, due to the presence of the consumers who
need to sell the surplus generated by the forecast error or offer quantity rounding. In the absence of
the secondary market, these two quantities would be sold back to the grid at minimal price. Thus,
in addition to allowing prosumer to sell more surplus, the secondary market offers a mechanism
for minimizing the effect of consumption forecast errors at the consumer side when the MO trading
priority method is used. However, the prosumer and consumer surplus to be sold back to the grid
remain high, at 13.27 kWh and 48.12 kWh respectively (Table 13).

The costs of the consumer C28 and revenues of the vendors in the energy poverty market tier
are given in Tables 15–18 and Figures 18 and 19. The financial settlement is performed in this case
using as reference only the vendor price offer, similar to POP from Tables 7–10, because with just one
vulnerable consumer trading in the market, the COP is viable only if the consumer would buy at a
fixed tariff, and MCP results are the same as POP when COP is not specified.

The results show that the vendor revenues are lower than in the primary market, because of the
smaller traded quantities, but they can become significant if they are averaged over longer periods
(months, years). The consumer C28 will pay less in the local market than when buying electricity from
the grid, and the MO trading priority maximizes its earnings and the number of hourly intervals in
which trading can be made. A more profitability analysis will follow in the Discussions section, for all
the trading segments considered in the market algorithm.
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Figure 19. The energy poverty mitigation market revenue for vendors: (a) hourly values, FCFS; (b) daily
values for each consumer, FCFS; (c) hourly values, MO; (d) daily values for each consumer, MO.
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Table 15. The daily cost for each consumer in the energy poverty mitigation market, mu.

Consumers C28

FCFS POP 0.72
MO POP 0.75

Table 16. The hourly cost for all buyers in the energy poverty mitigation market, mu.

Consumers h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

FCFS POP 0 0 0 0 0.00 0.08 0.51 0 0.02 0.11 0 0 0 0.72
MO POP 0.07 0.05 0.06 0 0.00 0.04 0.24 0.02 0.01 0.10 0.03 0.03 0.09 0.75

Table 17. The daily revenue for each vendor in the energy poverty mitigation market, mu.

Vendors P21 P7 P15 P6 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

FCFS POP 0 0.11 0 0.53 0.08 0 0 0 0 0 0 0 0 0 0.72
MO POP 0 0 0.29 0 0.00 0 0 0 0 0 0.46 0 0 0 0.75

Table 18. The hourly revenue in the energy poverty mitigation market for all vendors, mu.

Prosumers h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

FCFS POP 0 0 0 0 0.00 0.08 0.51 0 0.02 0.11 0 0 0 0.72
MO POP 0.07 0.05 0.06 0 0.00 0.04 0.24 0.02 0.01 0.10 0.03 0.03 0.09 0.75

4.3. The Secondary Market—The Commercial Tariff Access Tier

As seen previously, the vendors can remain after the primary market with surplus available for
selling. Both prosumers and consumers can become sellers on the secondary market. The energy
poverty mitigation tier can help to reduce the surplus, but, if the vulnerable consumers have low
demand and are in low numbers, the quantities still remaining after the settlement can be significant.
For the demand-generation balance and the set of offers used in the case study, the total primary
market surplus is of 63.18 kWh and reduces only to 61.39 kWh after the energy poverty mitigation
market, if the MO trading method is used. For the FCFS method, the remaining surplus decreases
from to 11.58 kWh to 10.86 kW. For further reducing the quantity sold to the grid, the local market
model uses the second tier of the secondary market, operated according to the MO trading priority
method used in the primary market, but with different market participants.

The sellers that can enter this market segment are the same as for the energy poverty mitigation
market: prosumers with remaining surplus and consumers whose offers placed in the blockchain
system of the primary market exceed their actual demand, thus becoming surplus. The buyers are
consumers from the same microgrid who did not participate in the primary market, but are ready to
occasionally buy surplus from the secondary market when it is available, at market prices. In exchange
for this facility, they pay an extra fee, according to the formula from Equation (10). The quantities
are determined automatically in the settlement phase of the energy poverty market or at the end
of the primary market, if the EP tier is not used. The sell price offers are the offer prices entered
by prosumers in the blockchain system of the primary market. For consumers the buy prices are:
C13–0.47 mu/kWh, C17–0.30 mu/kWh, C18–0.42 mu/kWh, lower than the average offers from the
primary market, in order to minimize the effect of the added tariffs. The fulfilment priority for the
buy and sell offers is determined using the MO strategy from Figure 4, and the actual quantities and
financial exchanges between sellers and buyers are settled as in the primary market.

Using as reference the trading data from Table 13, the sellers participating in the market are P21,
P15, P6 and P3, if the FCFS method is used in the primary market, and P21, P15, P3, C5, C9, C11, C12,
C16, C19, C20, C24, and C26. The buyers are three consumers that did not participate in the primary
market, namely C13, C17 and C18. The fee applied for all the consumers is a 10% increase of the final



Sustainability 2020, 12, 7265 25 of 43

buy price, and it is charged by the market administrator. For evaluating all the possibilities regarding
the financial settlement, all three price alternatives will be considered: MCP, COP and POP, similar to
the primary market. The quantities offered and actually traded by each vendor and buyer in the two
primary market methodologies (FCFS and MO) are given in Appendix C, Tables A10–A14.

The results show that the use of the MO in the primary market leads to higher quantities traded in
the tariff-access market tier, while if the FCFS priority is chosen, prosumer surplus is lower. The hourly
results for the market and the daily quantities traded by the prosumers and the consumers are
summarized, as for the previous market tiers, in Figures 20–23 and Tables 19–22.

The results from Tables 19–22 show that the tariff-access consumers are able to acquire 7.67 kWh
for the FCFS primary market trading priority, exclusively from prosumer surplus. 21.28 kWh are
bought for the MO trading priority method, mainly from consumer surplus, as it can be seen in Table 21.
When the MO method is used, the consumer buy offers are fulfilled from the most part from the local
market (Table 20), only 1.2 kWh remaining to be bought from the grid. After the settlement of the two
commercial market tiers, the prosumers lower their unsold surplus to only 3.19 kWh (FCFS) or 4.7 kWh
(MO), while the consumer surplus remains high, at 35.94 kWh. The prosumer surplus is available
mainly in the 09:00–14:00 interval, while the consumer surplus can be accessed outside this interval,
between 06:00–8:00 and 15:00–18:00 (see Table A11).

Because of the larger quantities bought by the three consumers, the fee-access tier is more profitable
for the surplus vendors, compared to the energy poverty mitigation market. In addition, considering
the lower price offers used for the tariff-access consumers, the COP settlement option is the best choice
for the consumers, incurring the lowest costs (see Table 25). For the FCFS trading priority method,
MCP and POP give the same results, which suggests that the merit order clearing price is determined
by higher vendor price offers (Table 26).
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Table 19. The daily traded quantities for each buyer in the secondary tariff market, kWh.

Consumer C13 C17 C18 Total

offer FCFS 7.30 8.55 6.62 22.48
offer MO 7.30 8.55 6.62 22.48

traded FCFS 2.49 2.99 2.20 7.67
traded MO 7.30 7.61 6.36 21.28
rem. FCFS 4.82 5.57 4.43 14.81
rem. MO 0.00 0.94 0.26 1.20

Table 20. The hourly traded quantities in the secondary tariff market for all buyers, kWh.

Hour h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

offer FCFS 1.99 1.03 1.11 1.39 2.12 1.85 2.16 1.08 1.58 1.55 2.41 1.79 2.42 22.48
offer MO 1.99 1.03 1.11 1.39 2.12 1.85 2.16 1.08 1.58 1.55 2.41 1.79 2.42 22.48

traded FCFS 0 0 0 1.39 2.12 1.85 0.73 0 1.58 0 0 0 0 7.67
traded MO 1.62 1.03 1.11 1.39 2.12 1.85 2.16 0.99 1.58 0.81 2.41 1.79 2.42 21.28
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Table 21. The daily traded quantities for each vendor in the secondary tariff market, kWh.

Vendor P21 P15 P6 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

surplus FCFS 1.18 1.30 1.45 6.92 0 0 0 0 0 0 0 0 0 10.86
surplus MO 9.02 3.76 0.00 0.49 10.65 4.48 6.20 4.46 7.44 1.52 4.40 1.18 7.80 61.39
traded FCFS 0.86 0 1.45 5.36 0 0 0 0 0 0 0 0 0 7.67
traded MO 4.84 3.76 0 0.49 6.38 0 0.00 2.78 1.51 1.52 0 0 0 21.28
rem. FCFS 0.32 1.30 0 1.56 0 0 0 0 0 0 0 0 0 3.19
rem. MO 4.17 0 0 0 4.27 4.48 6.20 1.68 5.94 0 4.40 1.18 7.80 40.11

Table 22. The hourly traded quantities in the secondary tariff market for all vendors, kWh.

Hour h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

surplus FCFS 0 0 0 1.82 4.14 2.27 0.73 0 1.90 0 0 0 0 10.86
surplus MO 1.62 3.20 5.25 1.68 4.08 2.53 3.17 0.99 1.80 0.81 7.25 15.30 13.71 61.39
traded FCFS 0 0 0 1.39 2.12 1.85 0.73 0 1.58 0 0 0 0 7.67
traded MO 1.62 1.03 1.11 1.39 2.12 1.85 2.16 0.99 1.58 0.81 2.41 1.79 2.42 21.28
diff FCFS 0 0 0 0.43 2.02 0.42 0.00 0 0.32 0 0 0 0 3.19
diff MO 0 2.16 4.14 0.30 1.96 0.67 1.01 0 0.23 0 4.84 13.51 11.29 40.11

The costs of the buyers and the revenues of the vendors in this market tier are summarized in
Figures 24 and 25 and Tables 23–26, for all three available settlement policies (MCP, COP, POP).
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Table 23. The daily cost for each consumer in the tariff-access market, mu.

Consumers C13 C17 C18 Total Total + 10% Fee

FC
FS

MCP 1.14 1.47 1.01 3.61 3.98
COP 1.17 0.90 0.92 2.99 3.29
POP 1.14 1.47 1.01 3.61 3.98

M
O

MCP 3.71 3.86 3.20 10.77 11.85
COP 3.43 2.28 2.67 8.39 9.23
POP 3.37 3.84 3.02 10.23 11.26

Table 24. The hourly cost for all buyers in the tariff-access market, mu.

Consumers h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total Total + 10% Fee

FC
FS

MCP 0 0 0 0.65 1.00 0.87 0.32 0 0.78 0 0 0 0 3.61 3.98
COP 0 0 0 0.56 0.88 0.65 0.34 0 0.55 0 0 0 0 2.99 3.29
POP 0 0 0 0.65 1.00 0.87 0.32 0 0.78 0 0 0 0 3.61 3.98

M
O

MCP 0.79 0.50 0.50 0.76 1.17 1.02 1.19 0.45 0.87 0.39 1.18 0.81 1.16 10.77 11.85
COP 0.75 0.45 0.42 0.56 0.88 0.65 0.88 0.38 0.55 0.33 0.95 0.65 0.95 8.39 9.23
POP 0.77 0.47 0.49 0.76 1.04 0.99 1.09 0.43 0.82 0.37 1.12 0.79 1.10 10.23 11.26

Table 25. The daily revenue for each vendor in the tariff-access market, mu.

Vendors P21 P15 P6 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

FC
FS

MCP 0.47 0 0.62 2.52 0 0 0 0 0 0 0 0 0 3.61
COP 0.26 0 0.63 2.10 0 0 0 0 0 0 0 0 0 2.99
POP 0.47 0 0.62 2.52 0 0 0 0 0 0 0 0 0 3.61

M
O

MCP 2.66 2.07 0 0.27 2.97 0 0 1.35 0.74 0.71 0 0 0 10.77
COP 1.65 1.65 0 0.23 2.55 0 0 1.05 0.56 0.70 0 0 0 8.39
POP 2.66 1.81 0 0.23 2.87 0 0 1.33 0.74 0.59 0 0 0 10.23
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Table 26. The hourly revenue in the tariff-access market for all vendors, mu.

Prosumers h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 Total

FC
FS

MCP 0 0 0 0.65 1.00 0.87 0.32 0 0.78 0 0 0 0 3.61
COP 0 0 0 0.56 0.88 0.65 0.34 0 0.55 0 0 0 0 2.99
POP 0 0 0 0.65 1.00 0.87 0.32 0 0.78 0 0 0 0 3.61

M
O

MCP 0.79 0.50 0.50 0.76 1.17 1.02 1.19 0.45 0.87 0.39 1.18 0.81 1.16 10.77
COP 0.75 0.45 0.42 0.56 0.88 0.65 0.88 0.38 0.55 0.33 0.95 0.65 0.95 8.39
POP 0.77 0.47 0.49 0.76 1.04 0.99 1.09 0.43 0.82 0.37 1.12 0.79 1.10 10.23

4.4. The Secondary Market—The Commercial Invite Access Tier

An alternative proposed in the local market model for the tariff-access secondary market is an
invite-access market tier. This solution, while it has lower impact on the surplus reduction at market
level, is viable for individual prosumers and consumers which are in the situation of frequently having
unsold surplus after the final settlement. The invite-access strategy proposes that long-term P2P
contracts can be established between seller–buyer pairs, stipulating that the buyer can automatically
access the unsold surplus of the seller when it is available. In this case, the settlement is not performed
at market level, but only for the two parties involved, and it can be considered that the buyer is an
‘invited guest’ in the local market.

The market diagram from Figure 1 considers the invite-access market as an alternative to the
tariff-access market, but this approach is not mandatory, as the energy mitigation market, the tariff-access
market and the invite-access market can be used in any desired order or number in the architecture of
the local market.

Considering the layout from Figure 1 and the data from Tables 2, A2, A7 and A13, the evolution
of the surplus of prosumer P21 in the MO primary market priority case is the one seen in Table 27.
The prosumer is able to sell 4.844 kWh on the tariff-access market.

Table 27. The surplus of prosumer P21 in the primary and secondary markets (energy poverty
mitigation and tariff-access), kWh.

Hour Initial
Generation

Surplus

Initial
After the
Primary
Market

After the
Secondary Market,

1st Tier

After the Secondary
Market, 2nd Tier

(Tariff-Access)

h01 2.361 1.588 0 0 0
h02 2.785 1.805 0 0 0
h03 3.286 1.726 0 0 0
h04 3.329 1.749 1.682 1.682 0.296
h05 3.639 2.292 2.292 2.292 1.963
h06 3.751 2.038 2.038 2.038 0.672
h07 3.735 1.822 1.822 1.822 1.014
h08 3.812 0.685 0 0 0
h09 3.742 1.182 1.182 1.182 0.227
h10 3.461 2.028 0 0 0
h11 2.832 0.819 0 0 0
h12 2.403 0 0 0 0
h13 2.237 1.17 0 0 0

Total 41.373 18.904 9.016 9.016 4.172

On the other hand, if the prosumer has a P2P contract with consumer C22 who did not participate
in the primary market, and the tariff access option is not activated, then it would be possible to sell in
the invite-access market almost the same quantity, as can be seen in Table 28. Furthermore, a scenario
can be imagined in which the invite market is activated first, followed by the tariff-access market,
in which case prosumer P21 would be able to sell their entire surplus in the local blockchain market.
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Thus, if the market model is optimally configured, it can lead to the maximization of the local trading,
thus minimizing the surplus sold to the grid at regulated tariffs.

Table 28. Comparison between the quantities sold by prosumer P21 in the tariff- and invite-access
markets, kWh.

Hour Surplus, P21 Consumption, C22 Electricity Sold in the
Tariff-Access Market

Electricity Sold to C22 in
the Invite-Access Market

h06 0 1.340 0 0
h07 0 0.960 0 0
h08 0 0.270 0 0
h09 1.682 0.420 1.386 0.420
h10 2.292 1.000 0.329 1.000
h11 2.038 0.930 1.366 0.930
h12 1.822 1.050 0.808 1.050
h13 0 1.020 0 0
h14 1.182 0.970 0.955 0.970
h15 0 1.010 0 0
h16 0 1.110 0 0
h17 0 1.540 0 0
h18 0 1.630 0 0

Total 9.016 13.250 4.844 4.370

5. Discussion

The results presented in the case study show that the secondary market has a positive effect
regarding the surplus quantities sold by the prosumers in the local market. A key aspect that still
needs to be discussed is the profitability of the local market, with its two components. Using Tables 3,
5, 11, 13, 19 and 21 for quantities, the influence of the primary and secondary markets on the quantities
sold by the prosumers and consumers back to the grid is determined in Tables 29 and 30.

Table 29. The evolution of the electricity quantities bought from the grid in the time interval 06:00–18:00,
before and after trading on each market segment, kWh.

Trading
Priority in

PM

Initial
Consumption
(No Market)

Traded in
PM

Consumer
Surplus
for SM

Consumption
Bought from the

Grid after PM

Traded in
SM1

Traded in
SM2

Consumption
Bought from the

Grid after SM

FCFS 203.41 156.4 0 47.01 0.72 7.67 38.62
MO 203.41 154.1 49.31 98.62 1.79 21.28 75.55

Table 30. The evolution of the surplus quantities sold to the grid in the hourly interval 06:00–18:00,
after trading on each market segment, kWh.

Market Player
Type

PM Trading
Priority

Initial
Surplus

Traded in
PM

Surplus
after PM

Traded in
SM1

Traded in
SM2

Surplus
after SM

prosumers FCFS 167.97 156.4 11.58 0.72 7.67 3.18
MO 167.97 154.1 13.88 0.6 9.1 4.17

consumers FCFS 0 0 0 0 0 0
MO 0 0 49.31 1.18 12.68 35.45

Table 29 shows that the offer quantities used in the MO trading priority determine a 49.3 kWh
surplus at the consumers, which represents electricity traded but not consumed. This represents a
high value, at 25% of the total consumption, and is mainly determined by hourly demand forecast
errors. In the absence of the secondary market, the entire quantity would be sold to the grid, and the
price mismatch between the buy price on the market (high) and sell price to the grid (low) would
represent a cost increase for the consumers. Thus, accurate demand forecasts could reduce the costs for
the consumers participating in the market. Additionally, it can be seen that the FCFS trading priority
results in lower quantities sold back to the grid, as consumer surplus is absent.
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Table 30 shows that the secondary market makes a significant contribution to reducing the
prosumer surplus from 11.58/13.88 kWh to 3.18/4.17 kWh. Here, it can be seen that while the bulk
of the surplus is sold on the primary market, the secondary market allows an important increase
of local generation sold locally. The primary market helps prosumers to sell the majority of their
surplus in the local market, and the supplementary market tiers allow consumers to mitigate forecast
errors by acting as sellers, and also reduce the share of surplus prosumer generation sold back to the
grid. These trading options can have, depending on local conditions, positive effects in increasing
the number of prosumers in the microgrid and reducing the electricity acquired by the consumers
from the grid, at higher prices and taxes. In other words, social and environmental sustainability can
be improved.

The reduction of local generation quantities sold back to the grid has positive financial effects
for both prosumers and consumers. In the absence of the local market, the prosumers would sell any
surplus to the grid at the regulated price. The market allows them to obtain better prices, which are
still attractive for consumers as long as they do not exceed the tariff paid for the electricity imported
from the grid. On the other hand, by participating in the local market, the consumers have the chance
of paying less for electricity. From Tables 7, 9, 15, 17, 23 and 25, the costs and revenues for the sellers
and vendors on each market segment can be summarized in Tables 31 and 32, for the 06:00–18:00
interval of the analyzed day.

Table 31. Comparison between the costs of the consumers in each market segment and for each
settlement price, mu.

Trading Priority in PM Settlement Price PM SM1 SM2 SM Total PM + SM

FCFS
MCP 71.11 0 3.98 3.98 75.09
COP 83.54 0 3.29 3.29 86.83
POP 71.11 0.72 3.98 4.7 75.81

MO
MCP 80.36 0 11.85 11.85 92.21
COP 84.2 0 9.23 9.23 93.43
POP 69.28 0.75 11.26 12.01 81.29

Table 32. Comparison between the vendor revenues on all market segments, mu.

Sellers
Revenue

without Local
Market

PM
Trading
Priority

Settlement
Price PM SM1 SM2 SM Total PM +

SM
Total PM +
SM + Grid

pr
os

um
er

s

42.16

FCFS
MCP 71.11 0 3.61 3.61 74.72 75.52
COP 83.54 0 2.99 2.99 86.53 87.33
POP 71.11 0.72 3.61 4.33 75.44 76.24

MO
MCP 80.36 0 5 5 85.36 86.41
COP 84.2 0 3.53 3.53 87.73 88.78
POP 69.28 0.29 4.7 4.99 74.27 75.32

co
ns

um
er

s

12.38

FCFS
MCP 0 0 0 0 0

12.38COP 0 0 0 0 0
POP 0 0 0 0 0

MO
MCP 0 0 5.77 5.77 5.77 14.67
COP 0 0 4.86 4.86 4.86 13.76
POP 0 0.46 5.53 5.99 5.99 14.89

Table 31 shows that the highest costs for the consumers occur when the COP settlement is used,
while the POP settlement offers the best buy prices from the market. In Table 32, it can be seen that the
prosumer revenues can double when the primary and secondary markets are used, with the highest
profits being achieved on the primary market. The secondary market is, however, useful for the
consumers who need to sell surplus remaining from the primary market, increasing their daily revenue
by up to 200% (14.89 mu, compared to 12.38 mu).

Using the traded quantities and factoring the costs and revenues presented above, a comparison
can be made between the daily electricity costs for the aggregated network demand in the 06:00–18:00
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interval. Table 33 shows that the combined effect of the primary and secondary markets can decrease
the cost by up to 26% when the FCFS trading prioritization is used. For MO prioritization, because
of the significant consumer surplus in the primary market, the cost increases when MCP or COP
settlement is used, but the effect of the secondary market is to compensate a fraction of the increase.

Table 33. Comparison between the influence of the primary secondary market on the electricity costs
for the microgrid, time interval 06:00–18:00, mu.

PM Trading
Priority

Settlement
Price

Cost with
Regulated Tariff

Cost with
PM

Cost with
PM and SM

% Reduction
PM

% Reduction
PM + SM

FCFS
MCP 136.89 102.75 101.08 24.94 26.16
COP 136.89 115.18 112.82 15.86 17.59
POP 136.89 102.75 101.80 24.94 25.64

MO
MCP 136.89 146.73 137.29 −7.19 −0.29
COP 136.89 150.57 139.42 −9.99 −1.84
POP 136.89 135.65 126.15 0.91 7.85

It is important to note that the results presented in the paper are highly dependent on the input
data used for the case study. The profits of the prosumers and the cost reductions for the consumers
are affected by the quantities and prices offered in the market by both parties and can vary significantly
from the results presented in the paper. Also, depending on local constraints, the trading tiers of the
secondary market can be used only partially and in a different order. The case study presents a scenario
of a complete market trading sequence to show the capabilities of the proposed model.

The results presented in Tables 29–33 use for the commercial tier of the secondary market only the
tariff-access option.

6. Conclusions

The paper proposes a new local market for active microgrids, designed to maximize the surplus
sold by the prosumers to the local consumers. The local market requires smart grid features in the
microgrid and a blockchain ledger for submitting buy and sell offers. Trading is performed in two
phases, first on a primary marked, followed by a two-tier secondary market. The case study shows that
the secondary market can help the prosumers to sell more surplus to the local consumers, increasing
their profitability. The advantages of the local market can be discussed from several perspectives:

• The reduction of electricity quantities traded back to the grid (at lower prices) for prosumers;
• The reduction of electricity costs for consumers, brought by acquiring cheaper electricity from the

local prosumers;
• The increase of profits for prosumers, by selling larger quantities to local consumers, at higher

prices than the regulated tariff used to sell back to the grid. This can also be seen as an incentive
for increasing sustainable electricity generation from renewable resources;

• The energy poverty mitigation for some consumers, an aspect regarding economic and
social sustainability.

However, as main disadvantages, accurate demand forecasts are necessary for the consumers
if the MO trading method is used, for optimal market benefits. Furthermore, the implementation of
the proposed market model is dependent on several prerequisites: the implementation of smart grid
capabilities in the microgrid, the creation of adequate regulations by regional or national authorities,
and the development of residential renewable electricity generation, all these being in incipient
development stages across the world.

The proposed algorithm is a comprehensive tool of the trading process for consumers and
prosumers in microgrids, considering the current regulation framework regarding prosumer activity
in the Romanian electricity market, and future research directions considered by the authors aim
to extend its capabilities for social inclusion, analyzing the influence of storage capabilities on local
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market trading dynamics and profitability, and considering new trading options, by comparison with
similar real local market models, as they become available in the literature.

7. Patents

National Patent Application “Innovative method of decision-making assistance aimed at
streamlining the management of prosumer activity”, Romania, 2020, in press.

Author Contributions: Conceptualization, B.-C.N., O.I. and G.G.; methodology, B.-C.N. and O.I.; software, B.-C.N.
and O.I.; validation, O.I. and B.-C.N.; formal analysis, M.G. and D.-M.I.; investigation, O.I. and G.G.; data curation,
O.I.; writing—original draft preparation, B.-C.N. and O.I.; writing—O.I., G.G., D.-M.I. and M.G.; supervision,
M.G. and D.-M.I. All the figures and tables used in the paper were created by the authors. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by “Gheorghe Asachi” Technical University of Iasi, Romania, through the
support of national project PNIII-1.2.PDI-PFC-C1–2018, as COMPETE project no. 9PFE/2018, financed by the
Romanian Government.

Acknowledgments: The authors would like to express their gratitude to Maria Carmen Loghin, the Vice Rector of
the “Gheorghe Asachi” Technical University of Iasi for his technical support, supporting logistics and open access
of this journal publication.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ADMM Alternating Direction Method of Multipliers
ADN Active Distribution Network
AEA Active Energy Agent
ANRE Romanian Energy Regulatory Authority
C Consumers/Consumption Quantity
CO Consumption Offers
COP Consumer Offers Price
DM Demurrage Mechanism
DNOs Distribution Network Operators
DR Demand Response
EU European Union
f% fee added to the price resulting from trading mechanism
FCFS First-Come-First-Served
G Generation Quantity
GO Generation Offers
HEM Home Energy Management
kWh kilowatt-hours
LEM Local Electricity Market
LV Low Voltage
MCP Market Clearing Price
MEP Multiple Energy Prosumers
MO Merit-order
mu Monetary units
NC Total Number of Consumers
NCM Number of Consumers participating in the Market
NP Total Number of Prosumers
NPM Number of Prosumers participating in the Market
P Prosumer/Price
P2P Peer-to-Peer
PCO Price of Consumption Offers
PGO Price of Generation Offers
PM Primary Market
POP Prosumer Offers Price
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PoW Proof-of-Work
PV Photovoltaic
REScoop European Federation of Renewable Energy Cooperatives
S Surplus
SM Secondary Market
SSRES Small-Scale Renewable Energy Sources
TC The Maximum Amount of Traded Electricity by Consumers
TP Transaction of Prosumers
TCO The Quantity of Electricity Actually Traded
WEM Wholesale Electricity Market

Appendix A. Input Data for the Primary Market

Table A1. The hourly demand profiles for the entire microgrid, in kW (27 consumers).

Hour C2 C3 C4 C5 C6 C7 C8 C9 C10

h1 0.616 2.010 0.273 0.000 1.370 2.418 1.152 1.936 0.310
h2 0.608 1.908 0.078 0.020 1.520 2.210 1.664 1.368 0.678
h3 0.557 2.004 0.048 0.260 1.910 2.149 2.056 1.376 0.300
h4 0.522 2.010 0.306 0.040 1.770 2.151 2.048 2.048 0.640
h5 0.522 1.902 0.063 0.050 1.990 2.192 1.816 1.528 0.360
h6 0.571 2.004 0.165 0.250 2.070 2.299 1.168 2.992 0.468
h7 0.529 1.836 0.213 0.125 2.280 2.364 0.720 3.352 0.748
h8 0.592 1.236 0.060 4.710 2.530 2.543 1.704 2.240 3.208
h9 0.562 1.302 0.312 1.290 1.850 2.382 1.976 2.112 2.815

h10 0.616 1.200 0.258 0.525 1.850 2.549 1.944 2.192 1.483
h11 0.860 1.188 0.243 2.985 1.460 2.426 1.904 2.232 4.538
h12 0.535 1.146 0.423 1.895 1.180 2.414 1.872 2.144 3.295
h13 0.641 1.140 0.198 4.595 1.650 2.450 2.456 2.048 3.650
h14 0.322 1.374 0.378 0.930 1.950 2.418 2.632 2.176 5.230
h15 0.181 1.944 0.321 0.260 1.810 2.444 1.896 2.256 4.293
h16 0.214 1.542 0.207 0.535 2.640 2.467 2.072 2.328 3.895
h17 0.781 2.148 0.495 2.125 2.810 2.553 2.080 2.288 3.028
h18 0.764 1.902 0.282 1.025 2.720 2.757 2.016 2.336 1.980
h19 0.426 1.968 0.336 0.140 3.580 3.042 2.720 2.464 1.768
h20 0.426 1.968 0.336 0.140 3.580 3.042 2.720 2.464 1.768
h21 0.496 1.956 0.207 0.210 5.310 3.515 2.672 3.136 3.033
h22 0.561 1.986 0.405 0.480 5.390 3.248 2.488 1.312 5.695
h23 0.554 1.872 0.246 0.195 4.750 3.075 2.432 1.336 4.033
h24 0.578 1.986 0.045 0.100 3.170 2.713 2.088 1.184 1.180

h06–18 7.168 19.962 3.555 21.250 26.800 32.066 24.440 30.696 38.631

Hour C11 C12 C13 C14 C15 C16 C17 C18 C19

h1 0.230 0.585 0.142 0.910 2.783 2.220 0.210 0.360 0.345
h2 0.220 0.765 0.078 0.920 2.411 1.320 0.000 0.525 0.286
h3 0.200 0.585 0.352 0.925 2.548 0.942 0.000 0.534 0.243
h4 0.200 0.675 0.440 1.225 2.313 0.972 0.045 0.636 0.213
h5 0.200 0.660 0.062 1.345 2.288 0.954 0.000 0.444 0.237
h6 1.240 0.570 1.416 1.290 2.426 1.044 0.115 0.462 0.242
h7 1.400 0.900 0.482 1.325 3.239 1.374 0.075 0.477 0.281
h8 1.440 0.630 0.182 1.520 3.798 3.984 0.475 0.450 0.287
h9 1.170 0.765 0.502 1.430 3.097 2.184 0.380 0.504 0.278

h10 1.130 0.645 1.046 1.120 4.371 1.986 0.495 0.579 0.268
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Table A1. Cont.

Hour C11 C12 C13 C14 C15 C16 C17 C18 C19

h11 1.390 0.555 0.150 1.170 2.994 1.986 1.130 0.573 0.285
h12 1.740 0.630 1.032 1.265 3.763 2.844 0.630 0.498 0.315
h13 1.760 0.615 0.056 1.760 2.999 1.566 0.420 0.600 0.301
h14 1.200 0.570 0.056 2.000 2.759 0.930 0.980 0.540 0.329
h15 0.280 0.750 0.236 1.840 3.807 0.798 0.955 0.357 0.312
h16 0.460 0.555 1.024 1.815 3.317 1.152 0.965 0.423 0.350
h17 3.180 0.825 0.232 2.015 3.214 1.944 0.970 0.588 0.366
h18 2.570 0.780 0.890 2.365 2.940 2.046 0.960 0.570 0.468
h19 2.890 0.780 0.458 2.480 3.445 2.460 1.450 0.678 0.443
h20 2.890 0.780 0.458 2.480 3.445 2.460 1.450 0.678 0.443
h21 3.210 0.630 0.864 2.580 3.278 1.884 1.385 0.753 0.454
h22 3.260 0.570 1.326 2.365 2.475 1.374 1.660 0.621 0.482
h23 2.815 0.720 0.376 2.060 2.073 1.380 1.235 0.750 0.509
h24 1.780 0.570 0.200 1.495 2.769 1.158 0.880 0.390 0.328

h06–18 18.960 8.790 7.304 20.915 42.724 23.838 8.550 6.621 4.082

Hour C20 C21 C22 C23 C24 C25 C26 C27 C28

h1 0.973 0.636 0.790 0.049 1.266 0.384 0.248 0.024 0.973
h2 1.013 0.484 0.780 0.056 1.194 0.384 0.296 0.000 1.013
h3 0.733 0.448 0.730 0.749 1.056 0.388 0.260 0.000 0.733
h4 0.453 0.460 0.920 1.148 1.032 0.392 0.292 0.000 0.453
h5 0.680 0.520 0.800 1.148 1.014 0.400 0.208 0.000 0.680
h6 0.773 0.512 1.340 1.148 1.020 0.396 0.356 0.192 0.773
h7 0.980 0.428 0.960 1.946 1.122 0.376 0.700 0.140 0.980
h8 1.560 0.368 0.270 1.393 1.116 0.352 0.336 0.152 1.560
h9 1.580 0.408 0.420 1.596 1.110 0.356 0.144 0.000 1.580

h10 1.347 0.408 1.000 2.975 1.110 0.360 0.128 0.004 1.347
h11 1.713 0.668 0.930 1.519 1.242 0.620 0.204 0.076 1.713
h12 1.913 0.412 1.050 2.492 1.260 0.344 0.320 0.508 1.913
h13 3.127 0.344 1.020 1.974 1.266 0.324 0.476 0.056 3.127
h14 2.560 0.428 0.970 1.974 1.260 0.332 0.384 0.020 2.560
h15 1.433 1.068 1.010 2.240 1.206 0.940 0.456 0.244 1.433
h16 2.013 0.424 1.110 2.296 1.134 2.500 0.352 0.088 2.013
h17 4.000 0.448 1.540 1.778 1.140 2.544 2.000 0.080 4.000
h18 1.067 0.468 1.630 1.939 1.260 2.820 0.876 0.228 1.067
h19 1.907 0.436 1.570 1.750 1.296 2.104 1.824 0.000 1.907
h20 1.907 0.436 1.570 1.750 1.296 2.104 1.824 0.000 1.907
h21 2.473 1.092 1.280 1.106 1.212 2.144 0.728 0.408 2.473
h22 2.253 1.484 1.110 1.092 1.194 2.084 0.688 0.412 2.253
h23 1.933 1.364 0.710 1.092 1.194 2.248 0.256 0.532 1.933
h24 1.260 0.880 0.840 0.763 1.176 2.008 0.324 0.144 1.260

h06–18 12.900 24.066 6.384 13.250 25.270 15.246 12.264 6.732 1.788

Table A2. The hourly generation profiles for the prosumers in the microgrid, in kW (8 prosumers).

Hour P27 P21 P7 P15 P6 P3 P10 P25

h1 0 0 0 0 0 0 0 0
h2 0 0 0 0 0 0 0 0
h3 0 0 0 0 0 0 0 0
h4 0 0 0 0 0 0 0 0
h5 0 0 0 0 0 0 0 0
h6 0.249 2.361 2.183 4.374 2.011 2.212 1.965 4.072
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Table A2. Cont.

Hour P27 P21 P7 P15 P6 P3 P10 P25

h7 0.518 2.785 2.627 4.824 2.132 2.642 2.364 4.609
h8 1.004 3.286 3.247 5.384 2.357 3.115 2.922 4.942
h9 1.581 3.329 3.438 5.325 2.592 3.139 3.094 5.066

h10 1.735 3.639 3.642 5.673 2.966 3.451 3.278 5.342
h11 1.859 3.751 3.826 5.769 3.346 3.561 3.443 5.417
h12 1.915 3.735 3.639 5.643 3.509 3.539 3.275 5.320
h13 1.984 3.812 3.863 5.825 3.945 3.603 3.477 5.506
h14 1.756 3.742 3.803 5.704 3.297 3.553 3.423 5.474
h15 1.562 3.461 3.492 5.353 2.994 3.276 3.143 4.908
h16 0.915 2.832 2.877 4.642 2.541 2.675 2.589 4.343
h17 0.495 2.403 2.305 4.276 2.352 2.283 2.075 4.017
h18 0.308 2.237 2.105 4.101 1.791 2.123 1.895 3.859
h19 0 0 0 0 0 0 0 0
h20 0 0 0 0 0 0 0 0
h21 0 0 0 0 0 0 0 0
h22 0 0 0 0 0 0 0 0
h23 0 0 0 0 0 0 0 0
h24 0 0 0 0 0 0 0 0

Table A3. The forecasted quantity offers of the buyers (consumers) for the primary market, MO trading
priority, in kWh (11 consumers).

Trading
Interval C5 C8 C9 C11 C12 C14 C16 C19 C20 C24 C26

h6 0.30 1.10 3.20 1.30 0.60 1.20 2.00 0.20 0.50 1.20 0.50
h7 0.40 0.80 3.40 1.40 0.80 1.30 2.00 0.30 2.10 2.00 0.40
h8 4.10 1.70 2.10 1.30 0.60 1.40 3.50 0.30 0.60 1.50 0.40
h9 1.50 2.00 2.20 1.00 0.80 1.50 2.00 0.20 0.40 1.60 0.40

h10 0.80 1.90 2.10 1.00 0.80 1.10 2.00 0.30 0.40 2.80 0.40
h11 3.20 1.90 2.20 0.90 0.60 1.20 2.00 0.30 0.30 1.50 0.60
h12 2.00 2.00 2.10 0.00 0.60 1.30 2.00 0.30 0.50 2.40 0.40
h13 4.70 2.50 2.00 1.50 0.70 1.80 1.80 0.30 0.70 2.00 0.30
h14 1.10 2.40 2.20 1.20 0.70 2.00 1.00 0.30 0.60 2.00 0.30
h15 0.60 2.10 2.20 0.70 0.80 1.80 1.00 0.30 1.30 2.20 1.00
h16 0.60 2.20 2.30 0.70 0.70 1.90 1.00 0.40 1.20 2.30 2.50
h17 2.60 2.40 2.40 2.50 0.70 2.10 1.50 0.40 1.60 1.80 2.50
h18 1.30 2.30 2.50 3.00 0.90 2.20 2.00 0.50 1.60 1.90 2.80

Table A4. The offer prices submitted by the buyers (consumers) in the primary market, in mu/kWh.

Trading
Interval C5 C8 C9 C11 C12 C14 C16 C19 C20 C24 C26

h6–h18 0.45 0.6 0.55 0.52 0.48 0.6 0.49 0.39 0.55 0.57 0.5

Table A5. The offer prices submitted by the sellers (prosumers) in the primary market, in mu/kWh.

Trading
Interval P27 P21 P7 P15 P6 P3 P10 P25

h6–h18 0.43 0.55 0.4 0.48 0.43 0.47 0.42 0.43
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Appendix B. Data for the Energy Poverty Mitigation Market

Table A6. The sell offer quantities for the energy poverty mitigation tier (kWh), FCFS trading priority.

Hour P21 P7 P15 P6 P3 Total

h06 0 0 0 0 0 0
h07 0 0 0 0 0 0
h08 0 0 0 0 0 0
h09 0 0 0 0 1.815 1.815
h10 0 0 1.302 0 2.840 4.142
h11 0 0 0 0 2.345 2.345
h12 0 0 0 1.241 0 1.241
h13 0 0 0 0 0 0
h14 1.182 0 0 0.739 0 1.921
h15 0 0.113 0 0 0 0.113
h16 0 0 0 0 0 0
h17 0 0 0 0 0 0
h18 0 0 0 0 0 0

Total 1.182 0.113 1.302 1.980 7.000 11.576

Table A7. The sell offer quantities for the energy poverty mitigation tier, MO trading priority, in kWh.

Hour P21 P15 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

h06 0 0 0 0.300 0 0 0.600 0.708 0.200 0 0 0 1.808
h07 0 0 0 0.400 0 0 0.800 1.838 0.300 0 0 0 3.338
h08 0 0 0 4.100 0 0 0.600 0.397 0.300 0 0 0 5.397
h09 1.682 0 0 0 0 0 0 0 0 0 0 0 1.682
h10 2.292 1.302 0.493 0 0 0 0 0 0 0 0 0 4.087
h11 2.038 0.563 0 0 0 0 0 0 0 0 0 0 2.601
h12 1.822 1.860 0 0 0 0 0 0 0 0 0 0 3.682
h13 0 0 0 0.746 0 0 0 0 0.3 0 0 0 1.046
h14 1.182 0.641 0 0 0 0 0 0 0 0 0 0 1.823
h15 0 0 0 0.600 0 0 0.155 0 0.300 0 0 0 1.055
h16 0 0 0 0.600 0.241 0.700 0.700 1 0.400 1.200 0 2.500 7.341
h17 0 0 0 2.600 2.400 2.500 0.700 1.5 0.400 1.600 1.181 2.500 15.381
h18 0 0 0 1.300 1.835 3.000 0.900 2 0.500 1.600 0 2.800 13.935

Total 9.016 4.366 0.493 10.646 4.476 6.200 4.455 7.443 2.700 4.400 1.181 7.800 63.176

Table A8. The sell quantities traded in the energy poverty mitigation tier, FCFS priority, in kWh.

Hour P21 P7 P15 P6 P3 Total

h06 0 0 0 0 0 0
h07 0 0 0 0 0 0
h08 0 0 0 0 0 0
h09 0 0 0 0 0 0
h10 0 0 0 0 0.004 0.004
h11 0 0 0 0 0.076 0.076
h12 0 0 0 0.508 0 0.508
h13 0 0 0 0 0 0
h14 0 0 0 0.020 0 0.020
h15 0 0.113 0 0 0 0.113
h16 0 0 0 0 0 0
h17 0 0 0 0 0 0
h18 0 0 0 0 0 0

Total 0 0.113 0 0.528 0.08 0.721
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Table A9. The sell quantities traded in the energy poverty mitigation tier, MO priority, in kWh.

Hour P21 P15 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

h06 0 0 0 0 0 0 0 0 0.192 0 0 0 0.192
h07 0 0 0 0 0 0 0 0 0.140 0 0 0 0.140
h08 0 0 0 0 0 0 0 0 0.152 0 0 0 0.152
h09 0 0 0 0 0 0 0 0 0 0 0 0 0
h10 0 0 0.004 0 0 0 0 0 0 0 0 0 0.004
h11 0 0.076 0 0 0 0 0 0 0 0 0 0 0.076
h12 0 0.508 0 0 0 0 0 0 0 0 0 0 0.508
h13 0 0 0 0 0 0 0 0 0.056 0 0 0 0.056
h14 0 0.020 0 0 0 0 0 0 0 0 0 0 0.020
h15 0 0 0 0 0 0 0 0 0.244 0 0 0 0.244
h16 0 0 0 0 0 0 0 0 0.088 0 0 0 0.088
h17 0 0 0 0 0 0 0 0 0.080 0 0 0 0.080
h18 0 0 0 0 0 0 0 0 0.228 0 0 0 0.228

Total 0 0.604 0.004 0 0 0 0 0 1.180 0 0 0 1.788

Appendix C. Data for the Commercial Secondary Market, Fee-Access Method

Table A10. The sell offer quantities for the commercial fee-access tier, FCFS trading priority, in kWh.

Hour P21 P15 P6 P3 Total

h06 0 0 0 0 0
h07 0 0 0 0 0
h08 0 0 0 0 0
h09 0 0 0 1.815 1.815
h10 0 1.302 0 2.836 4.138
h11 0 0 0 2.269 2.269
h12 0 0 0.733 0 0.733
h13 0 0 0 0 0
h14 1.182 0 0.719 0 1.901
h15 0 0 0 0 0
h16 0 0 0 0 0
h17 0 0 0 0 0
h18 0 0 0 0 0

Total 1.182 1.302 1.452 6.920 10.855

Table A11. The sell offer quantities for the commercial fee-access tier, MO trading priority, in kWh.

Vendor P21 P15 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

h06 0 0 0 0.300 0 0 0.600 0.708 0.008 0 0 0 1.616
h07 0 0 0 0.400 0 0 0.800 1.838 0.160 0 0 0 3.198
h08 0 0 0 4.100 0 0 0.600 0.397 0.148 0 0 0 5.245
h09 1.682 0 0 0 0 0 0 0 0 0 0 0 1.682
h10 2.292 1.302 0.489 0 0 0 0 0 0 0 0 0 4.083
h11 2.038 0.487 0 0 0 0 0 0 0 0 0 0 2.525
h12 1.822 1.352 0 0 0 0 0 0 0 0 0 0 3.174
h13 0 0 0 0.746 0 0 0 0 0.244 0 0 0 0.990
h14 1.182 0.621 0 0 0 0 0 0 0 0 0 0 1.803
h15 0 0 0 0.600 0 0 0.155 0 0.056 0 0 0 0.811
h16 0 0 0 0.600 0.241 0.700 0.700 1.000 0.312 1.200 0 2.500 7.253
h17 0 0 0 2.600 2.400 2.500 0.700 1.500 0.320 1.600 1.181 2.500 15.301
h18 0 0 0 1.300 1.835 3.000 0.900 2.000 0.272 1.600 0 2.800 13.707

Total 9.016 3.762 0.489 10.646 4.476 6.200 4.455 7.443 1.520 4.400 1.181 7.800 61.388
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Table A12. The sell quantities traded in the commercial fee-access tier, FCFS trading priority.

Hour 21 15 6 3 Total

h06 0 0 0 0 0
h07 0 0 0 0 0
h08 0 0 0 0 0
h09 0 0 0 1.386 1.386
h10 0 0 0 2.120 2.120
h11 0 0 0 1.853 1.853
h12 0 0 0.733 0 0.733
h13 0 0 0 0 0
h14 0.858 0 0.719 0 1.576
h15 0 0 0 0 0
h16 0 0 0 0 0
h17 0 0 0 0 0
h18 0 0 0 0 0

Total 0.858 0 1.452 5.359 7.668

Table A13. The sell quantities traded in the commercial fee-access tier, MO trading priority, in kWh.

Hour P21 P15 P3 C5 C9 C11 C12 C16 C19 C20 C24 C26 Total

h06 0 0 0 0.300 0 0 0.600 0.708 0.008 0 0 0 1.616
h07 0 0 0 0.400 0 0 0.474 0 0.160 0 0 0 1.034
h08 0 0 0 0.959 0 0 0 0 0.148 0 0 0 1.107
h09 1.386 0 0 0 0 0 0 0 0 0 0 0 1.386
h10 0.329 1.302 0.489 0 0 0 0 0 0 0 0 0 2.120
h11 1.366 0.487 0 0 0 0 0 0 0 0 0 0 1.853
h12 0.808 1.352 0 0 0 0 0 0 0 0 0 0 2.160
h13 0 0 0 0.746 0 0 0 0 0.244 0 0 0 0.990
h14 0.955 0.621 0 0 0 0 0 0 0 0 0 0 1.576
h15 0 0 0 0.600 0 0 0.155 0 0.056 0 0 0 0.811
h16 0 0 0 0.600 0 0 0.700 0.8 0.312 0 0 0 2.412
h17 0 0 0 1.470 0 0 0 0 0.320 0 0 0 1.790
h18 0 0 0 1.300 0 0 0.848 0 0.272 0 0 0 2.420

Total 4.844 3.762 0.489 6.375 0 0 2.777 1.508 1.520 0 0 0 21.275

Table A14. The buy quantities traded in the commercial fee-access tier, MO trading priority, in kWh.

Hour C13 C17 C18 Total

h06 0 0 0 0
h07 0 0 0 0
h08 0 0 0 0
h09 0.502 0.380 0.504 1.386
h10 1.046 0.495 0.579 2.120
h11 0.150 1.130 0.573 1.853
h12 0.733 0 0 0.733
h13 0 0 0 0
h14 0.056 0.980 0.540 1.576
h15 0 0 0 0
h16 0 0 0 0
h17 0 0 0 0
h18 0 0 0 0

Total 2.487 2.985 2.196 7.668
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Table A15. The buy quantities traded in the commercial fee-access tier, MO trading priority, in kWh.

Hour C13 C17 C18 Total

h06 1.416 0 0.200 1.616
h07 0.482 0.075 0.477 1.034
h08 0.182 0.475 0.450 1.107
h09 0.502 0.380 0.504 1.386
h10 1.046 0.495 0.579 2.120
h11 0.150 1.130 0.573 1.853
h12 1.032 0.630 0.498 2.160
h13 0.056 0.334 0.600 0.990
h14 0.056 0.980 0.540 1.576
h15 0.236 0.218 0.357 0.811
h16 1.024 0.965 0.423 2.412
h17 0.232 0.970 0.588 1.790
h18 0.890 0.960 0.570 2.420

Total 7.304 7.612 6.359 21.275
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Abstract: The global climate change mitigation efforts have increased the efforts of national govern-
ments to incentivize local households in adopting PV panels for local electricity generation. Since
PV generation is available during the daytime, at off-peak hours, the optimal management of such
installations often considers local storage that can defer the use of local generation to a later time.
The energy stored in batteries located in optimal places in the network can be used by the utility to
improve the operation conditions in the network. This paper proposes a metaheuristic approach
based on a genetic algorithm that considers three different scenarios of using energy storage for
reducing the energy losses in the network. Two cases considers the battery placement and operation
under the direct control of the network operator, with single and multiple bus and phase placement
locations. Here, the aim was to maximize the benefit for the whole network. The third case considers
selfish prosumer battery management, where the storage owner uses the batteries only for their
own benefit. The optimal design of the genetic algorithm and of the solution encoding allows for
a comparative study of the results, highlighting the important strengths and weaknesses of each
scenario. A case study is performed in a real distribution system.

Keywords: residential electricity distribution networks; renewable generation sources; energy stor-
age; optimization; multipurpose algorithm; genetic algorithms

1. Introduction

The transition from the old vertically integrated, government-owned electricity trading
model to the deregulated market has brought in many parts of the world the supply–
demand balance as the main factor in establishing the price for electricity sold to the end
consumers. On the wholesale market, which determines the prices offered by the suppliers
to their clients, the short-term trading price can vary significantly between minimal values
in off-peak intervals and maximal prices in high demand hours, which usually coincide
with the peak demand hours of residential demand and network loading. In Romania, this
market behavior is more significant, since more than half of the electricity is traded daily in
the day-ahead market, for example, for 10 August 2021, there was a price variation from
77 EUR/MWh at 04.00 to 212 EUR/MWh at 21.00 [1].

On the other hand, in the last few decades, the developed countries have seen a shift
in consumption from heavy industrial branches to an energy-efficient knowledge-based
economy and a steady increase in the residential electricity demand [2]. At the same time,
the growing concerns related to global warming have prompted international organizations
and national governments to take concrete actions regarding the reduction in fossil fuel
consumption and growth incentivization of the renewable electricity generation sector.
The latest revision of the EU climate targets specify raising the share of renewable energy
to 40% of the total electricity consumption by 2030 and reducing the GHG emissions by
55% by 2030, from the 1990 levels, with the aim of eliminating them by 2050 [3]. For
the final consumers, these ambitious goals translate into the proliferation of small-scale
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clean electricity generation, especially in the residential sector. National governments
are currently offering incentive packages to encourage individual residences to become
prosumers, entities that consume and produce electricity at the same time [4].

The low-voltage (LV) electricity distribution networks (EDN), where the vast majority
of these residential consumers are located, have the distinction that they supply one-phase
consumers using a three-phase four-wire main feeder configuration. This generates the
problem that, in most cases, the load is unbalanced between the three phases, leading
to increased active energy losses and poor voltage quality. The presence of prosumers,
which need to inject their unused generation surplus back into the network outside the
control of the distribution network operator (DNO) can further impact the secure and
efficient operation of the supply infrastructure. It follows that an adequate prosumer
surplus management is required for the optimal operation of LV EDNs [5]. One method of
achieving this goal is to use storage in the EDN.

It is usually considered that the prosumers generate electricity mainly for their own
use, but they have to manage their surplus. If they use PV panels as a means to generate
electricity, it is often the case that the hours that generation occurs do not coincide with the
hours of maximum consumer and EDN load. In this case, the surplus can be injected back
into the network or stored for later use.

In Romania, the current regulations issued by the Romanian Energy Regulatory
Authority (RERA) specify that prosumers must sell back to the grid all surplus at regulated
prices, computed as the average day-ahead market price for the previous year [6]. For 2020,
this resulted in an actual price of 40 EUR/MWh, much lower than the day-ahead market
price. Thus, storage can be used to replace the expensive energy used in peak demand
hours with local generation, eliminating the need to sell back to the grid at low prices. Since
storage systems are not yet subsidized, they are accessible for a relatively small number of
prosumers. Community storage can also be used [7].

This paper proposes an algorithm for flexible energy storage management in residen-
tial low-voltage electricity distribution grids (ESMRG) that considers the optimization of
storage placement in the network from the perspectives of prosumer and DNO gain.

The main contributions of the paper are:

• The conceptualization of the mathematical model for three storage management
approaches;

• The adaptation of the general GA structure using common encoding for the three
proposed scenarios;

• The validation of the proposed algorithm in a case study that uses a real LV EDN from
Romania; and

• Discussions regarding the possible advantages and disadvantages of each storage
solution.

The remaining sections of the paper are organized as follows. Section 2 discusses the
state-of the art in the problem of storage management in EDNs and the use of metaheuristic
methods in this type of optimization; Section 3 presents the adaptation of the basic GA to
the problem of storage management as developed by the authors; and Section 4 provides
the results of the case study. The paper ends with a discussion and main conclusions.

2. Related Literature

Prosumer surplus management is a key factor for the safe and efficient operation of
EDNs. It is of importance for the prosumers who seek to maximize their advantage in
terms of energy cost savings, and also for the network operator, who seeks to minimize
the potential negative effect of the presence of the prosumers with unpredictable power
injections in the grid. The latest research shows the need to better understand the effect
of prosumer presence in LV distribution grids and their interaction with the DNO. Such a
study was performed in [8] for Denmark and in [9] for the United States. The uncertainty
of renewable generation patterns is also a factor requiring attention. In [10], this issue
was studied by comparing the efficiency of several short-term forecasting methods. Based
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on such data, the prosumer–network interaction was modeled in [11] as a profit model
of DNO concurrent with a utility model of the PV prosumers, where the operator wants
to maximize its profit and the prosumers adjust their energy consumption and sharing
according to the feed-in time-varying prices. Energy sharing between prosumers and its
advantages and challenges were thoroughly reviewed in [12]. The authors of [13] analyzed
the possibility of DNO strategies that use price-based demand side management (DSM)
schemes for incentivizing the demand reduction. Another approach, developed in [14],
considered the possibility of optimally managing prosumers that are acting independently,
only in their self-interest, to maintain the voltage stability in the network within acceptable
limits. The uncertainty of PV generation was managed in [10] by using a combination
of load profiling and demand response techniques, and in [15] by creating energy hubs
of prosumer communities. Prosumer management is more challenging for the network
operator in islanded networks, a problem that was approached in [16].

Energy storage is used by prosumers to defer self-generated electricity consumption
in order to avoid paying for electricity at high, peak-load tariffs. In [17], the authors
analyzed the possibility of coordinating the operation of a PV prosumer with storage
battery, with the goal of integrating it into the grid. At the level of an entire building, [18]
proposed the management of HVAC systems by prosumers in cooperation with the grid
operator and using storage to minimize the energy cost. The study in [19] proposed specific
billing mechanisms to encourage selfish prosumers to combine energy exchange between
households and to utilize their energy storage systems for minimizing the electricity cost.
In [20], the same goal was pursued, but also encouraged the creation of “energy coalitions”
between prosumers. Such coalitions can then use storage to participate in the wholesale
market [21]. The optimal size of PV and power/energy capacities of the battery were also
investigated in [22,23].

The research presented above concentrates on the optimization of prosumer operation
and improving their goals. However, a second party directly interested in the behavior
of the prosumer is the network operator. The accomplishment of the goals pursued by
the prosumer must be correlated with the technical and economic interests of the DNO,
which are directly influenced by the presence of the prosumer, as modeled in [24]. The
intermittent nature of prosumer generation can negatively influence the energy losses [25]
or bus voltage levels [26]. Current research suggests the optimization of the power injected
to the grid by prosumers by using storage, resulting in over-voltage [27], generation–
demand balance [28], or power loss [29] mitigation.

The latest trends regarding the use of storage for prosumer management is the im-
plementation of community-shared storage, which can reduce the investment costs for
prosumers and give network operators supplementary tools for optimizing the state of the
distribution network [7,30,31].

Regarding the computational effort, the study carried out in [32] concluded that pro-
sumer scheduling in microgrids is a NP-hard problem, for which optimization algorithms
will find approximate solutions. It follows that, if the prosumer management is formulated
as an optimization problem, the computational-intensive classical algorithms could be
successfully replaced with other methods with marginal performance decrease. The litera-
ture survey from above lists several methods used for prosumer management problems:
game theory [11,14,19,20], clustering [13], neural networks, random forest [10], mixed
integer linear optimization [15,22,31], genetic algorithm [23], linear programming [21],
alternating direction method of multipliers [18,30], dynamic programming [24], optimal
power flow [26], and the proof-of-stake blockchain trading algorithm [29].

The classic optimization methods rely on deterministic analytical algorithms and
converge to the optimal solution [33,34]. However, they are computationally intensive and
are not suitable for problems with discrete search spaces. For problems belonging to this
category, heuristic algorithms have been proven to be more flexible and efficient, with the
drawback of decreased performance when the complexity of the problem increases [35].
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Considering the particularities of the problem solved in the paper, a metaheuristic ap-
proach was chosen by the authors for implementing the optimization of storage placement
in the LV distribution networks. Metaheuristic algorithms such as the genetic algorithm,
particle swarm optimization, differential evolution, whale algorithm, and fireworks algo-
rithm are nature-inspired optimization techniques that have proven their performance in
problems regarding the optimization of operation conditions in electrical networks. Re-
cently, they have been applied for integrating electric vehicles and distributed generation
into smart grids [36], optimal reconfiguration of distribution networks [37], optimal power
flow analysis in DC distribution networks [38], reliability improvement [39], and optimal
consumption planning [40]. In this paper, a genetic algorithm was used to determine the
optimal buses and phases of connection for a fixed number of storage units (batteries) with
the aim of reducing the energy losses over a time interval of 24 h. The GA was preferred
because, as the following subsection of the paper will describe in detail, it allows for simple
and efficient modeling of the mentioned storage use scenarios, which is the same as using
the same basic approach in solving three different problems with minimal modifications to
a base case. This is an advantage offered by the metaheuristic approach, which retains its
simplicity and flexibility with minimal performance cost.

To further develop the research performed in the literature and described above, the
study assumed that storage could be installed in the network using two assumptions:

• In the standard approach, where the individual prosumers acquire storage batteries
together with the PV system, and employ them mainly to defer the use of surplus
generated during the daytime for the peak load hours, in order to lower their daily
costs of electricity.

• In a novel approach, when the storage system is installed in the network at the
initiative of the DNO, with the main aim of improving the operation conditions of the
EDN. In this case, storage can be seen as

# individual batteries placed in different locations in the network; and
# a single community storage system [7].

The proposed algorithm investigates the advantages and disadvantages of each of the
three proposed approaches, in terms of reducing the active energy losses in the EDN over
a time interval of 24 h.

3. Materials and Methods

The genetic algorithm (GA) is a well-known metaheuristic belonging to the class
of population-based evolutionary algorithms. Like many metaheuristics, it is inspired
from natural behaviors and patterns, in this case the Darwinian natural selection. The
algorithm mimics the continuous adaptation of a species to its environment by means of
the ‘survival of the fittest’ principle. In the natural world, populations of variable sizes
survive by reproduction and adaptation, with the most powerful or intelligent individuals
being favored to pass their strong genes on to the next generation. The GA uses a math-
ematical representation of this process, and its application in solving NP-hard problems
has been successful in a multitude of research and industry fields such as scheduling,
multimedia content processing, network optimization, engineering, data mining, IoT, and
blockchain [41–43].

The authors chose the GA to implement the energy storage management in residential
electricity distribution grid (ESMRG) algorithm because of its specific technique of manip-
ulating the elements of an individual from the population to obtain the optimal solution.
The following subsections describe the basic structure of the GA and the implementation
chosen by the authors for the ESMRG algorithm.

3.1. The Genetic Algorithm

The mathematical model of the GA considers a (usually) fixed size population where
each member is hierarchized by using a numerical value called ‘fitness function’, which
measures the performance in solving an optimization problem. Each member from the
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population is called a ‘chromosome’, and its elements are ‘genes’. The genes encode the
parameters of a solution and each of them constitutes a search direction (dimension) for
the algorithm. Thus, the GA can be considered as a parallel search algorithm.

Based on the values of their fitness functions, the chromosomes from the initial
population are subjected to an iterative process in which their genetic structure is subjected
to change through crossover (reproduction, gene exchange from parents to siblings) and
mutation (random small changes in gene values). In each iteration (‘generation’), the
chromosomes that are favored for reproduction are chosen using a selection procedure.

The literature lists various procedures for the selection and crossover operators [44]
that must be chosen according to the specificities of the solved problem. To improve
convergence, elitism techniques can be used to propagate the best-known solution from
the current generation to the next. The basic flowchart of the GA is presented in Figure 1.
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3.2. The Energy Storage Management Problem

The problem studied in the paper can be formulated as follows: given a low-voltage
residential electricity distribution network in which a number of prosumers are active and
can generate a surplus of electricity that otherwise would be injected back in the grid, find
the optimal position of a number of storage devices (batteries) of known, fixed capacity, so
that the active energy losses resulting from the operation of the network over a given time
interval will be minimized.

The implementation chosen by the authors considered the following assumptions:

• the LV network is operated in a three-phase, four-wire configuration and supplies
one-phase residential consumers;

• the demand pattern is unbalanced in space due to the uneven distribution of the con-
sumers (as number and power demand, as connection on the phases), and unbalanced
in time because of the normal demand variation of each consumer;

• the prosumers connected in the network use PV panels for generating electricity,
primarily for their own consumption;

• to avoid injecting the prosumer surplus back into the grid, a number of equal capacity
storage batteries will be placed in the network; and

• the optimal placement of the batteries is performed so that the energy loses computed
in the network for a time interval of 24 h, with the bus loads affected by the charge
and discharge of the stored energy, will be minimized.

In the literature, surplus management is performed centered on maximizing the
wellbeing of the prosumers. One of the main contributions proposed in the paper is the
consideration of DNO priorities in the optimization of storage management.

Storage equipment is mainly installed in the network by the prosumers, together with
the PV system, and used to defer the consumption of the surplus at peak hours. In this
way, the prosumer will contribute to reducing the peak load in the EDN, and replace the
expensive electricity bought from the grid with the stored surplus, at no immediate cost.
In this case, the batteries are managed by the prosumer using their own home energy
management system and the benefits for the DNO are minimal and indirect, often in the
form of lower loss due to unoptimized power flow reduction in prosumer buses. In this
scenario, the main beneficiary is the prosumer.
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In contrast, this paper investigates the benefits that can arise for the DNO if the storage
system is developed independently from the prosumers. One way to achieve this goal is
the use of a community storage system [7,30], in which a limited number of batteries is used
across the entire network, charged during night time, at low-cost tariff, and discharged
when needed. In this case, through optimal placement and sizing, the DNO can derive
improved benefits in terms of loss reduction. The paper proposes a new hybrid approach
that capitalizes on the advantages of both sides. Considering a fixed number of one-phase
storage batteries managed by the DNO, with a nominal storage capacity compatible with
equipment used generally by individual prosumers, the ESMRG algorithm needs to find
the optimal placement of storage to buses and connection phase (a, b, or c), with the goal
of minimizing the active energy losses. The storage can be installed at a single bus or at
independent buses for each battery. The first case can be considered as a low-investment
case, since all the batteries are grouped, and the second is the high-optimality case, with
the best potential of reducing the energy losses. In both cases, it is considered that the
initial investment and the management for the batteries is governed by the DNO, which
will choose the bus(es) and connection phase for each battery. The efficiency of the two
approaches was compared with the case when the storage management is performed by the
prosumers, and the connection phase of the battery is limited by the prosumer connection
phase and bus.

The optimization problem can be formulated mathematically as find the bus and
phase connection for each storage system, s = 1, . . . , NSS:

[{b1, ph1}, {b2, ph2}, . . . ., {bNSS, phNSS}] (1)

Therefore, the following objective function will be minimized:

min(F) = min(∆Wtot) =
H

∑
h=1

NB

∑
b=1

∆Pb
h · ∆th (2)

where ∆Wtot represents the total energy losses, and ∆Ph
b are the hourly active power losses

for each branch b = 1, . . . , NB, computed as:

NB

∑
b=1

∆Pb
h =

NB

∑
b=1

[
Rb · (Ib

h)
2
+ Kb

h

]
(3)

where Rb is the branch resistance; Ih
b is the branch current flow on branch b at hour h; and

Kh
b is the loss increase factor accounting for the supplementary current flow on the neutral

wire due to the phase load unbalance on branch b at hour h [45].
The formulations in Equations (1)–(3) are subjected to a set of technical restrictions:

• The voltage magnitude Uh
n must not exceed the allowable upper and lower limits in

each bus n = 1, . . . , NN and in each hour h in the interval of analysis h = 1, . . . , H:

Un
min ≤ Un

h ≤ Un
max (4)

• The current flow Ih
b must be lower than the allowable ampacity (Imax) on all branches

from the EDN, b = 1, . . . , NB and in each hour h in the interval of analysis h = 1, . . . , H:

Ib
h ≤ Ib

max (5)

• The state of charge (SOC) limits for the storage batteries should not exceed the technical
limits for all the batteries s = 1, . . . , NSS, in each hour h in the interval of analysis
h = 1, . . . , H:

SOCmin ≤ SOCs
h ≤ SOCmax (6)
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3.3. The Adaptation of the Genetic Algorithm for the Storage Management Problem

As stated in Section 3.2, the goal of the ESMRG algorithm is to find the optimal bus and
phase of connection for a given number of storage devices with the aim of minimizing the
active energy losses. For that purpose, the structure of the chromosome was chosen in such
a way as to encode in a straightforward manner the principle illustrated by Expression (1).
Thus, the individuals used by the GA use the structure from Figure 2. The chromosome is
divided in two parts of equal length. The first part encodes the buses, while the analogue
elements from the second part specify the phases of connection for each battery installed
in the EDN. The chromosome from Figure 2 can be decrypted as follows: there are NSS
batteries in the network; a battery will be placed in bus 14, in phase a; and another in bus
38, in phase c.
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This structure can be adapted to describe all three scenarios compared in the study.
The following assumptions and constraints must be considered:

• For DNO priority:

# Scenario 1 (all the batteries should be installed at the same bus): All the values
from b1 to bNSS must be positive integers and equal, in the range (1, NN) (the
total number of buses in the EDN); the values from ph1 to phNSS can have the
value 1, 2, or 3, denoting the phases a, b, or c:

SC1 :
{

bi ∈ Z, b ∈ [1, NN], b1 = . . . = bNSS
phi ∈ Z, phi ∈ [1, 3]

(7)

# Scenario 2 (the batteries can be installed at different buses and phases): All
the values from b1 to bNSS must be positive integers, in the range (1, NN); the
values from ph1 to phNSS can have the value 1, 2, or 3, denoting the phases a, b,
or c.

SC2 :
{

bi ∈ Z, b ∈ [1, NN]
phi ∈ Z, phi ∈ [1, 3]

(8)

• For prosumer priority:

# Scenario 3: (batteries installed at prosumer residences): All the values from
b1 to bNSS must be positive integers, denoting prosumer codes (because more
than one prosumer can be located at a given bus), for prosumers that have
surplus, a small subset of the entire bus range; the values from ph1 to phNSS can
be 1, 2 or 3, depending on the phase of connection used by the prosumer PS
chosen for storage installation.

SC3 :
{

bi ∈ Z, b ∈ [PS1, . . . , PSNPS],
phi ∈ Z, phi ∈ [1, 3], phi taken f rom PS(bi)

(9)

This approach shows the flexibility of the GA chromosome structure, which allows
for the simultaneous encoding of three problems with distinctive limitations inside the
same algorithm.

The computation of the energy losses, which is the objective function of the problem,
is part of the fitness function calculation for the GA. The standard tool used for this purpose
is a classical load flow calculation, which would be the same regardless of the algorithm,
classic or metaheuristic, used to find the optimal solution. The load flow method used in
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the paper is described by Equations (1)–(6). The GA is simply a mechanism of generating
possible solutions encoded as vectors, employing a specific methodology. In this regard,
any metaheuristic could be used in the same manner. However, the GA was chosen by the
authors over other metaheuristics because, as Equations (7)–(9) show, all the elements from
a solution are integer numbers, bounded in specified intervals. This is the ideal case for the
crossover and mutation procedures used by the GA. At the same time, the integer encoding
would create validation problems for other methods such as the well-known particle
swarm optimization, fireworks algorithm, honey bees mating algorithm, etc. that use
multiplication with random sub-unit numbers to change the values of individual elements
from a solution. The GA eliminates the need to perform additional computation steps.

The literature offers multiple variants for the genetic operators (selection, crossover,
mutation). Based on preliminary testing, the tournament selection method was used for GA
selection, and the uniform crossover was preferred for the reproduction step. To observe
the limitations (7)–(9), the crossover operator has been modified. The uniform crossover
was applied on the second half of the chromosome, where the phases are encoded. Then,
based on the result and scenario, one of the following procedures was used:

• For Scenario 1: the connection buses for the offspring chromosomes, which must be
the same for all the batteries, were chosen with random probability from the buses
used by the parent chromosomes (as in Figure 3a); and

• For Scenarios 2 and 3, the crossover for buses was applied using the same random
mask as for the phases (as in Figure 3b).
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The mutation was performed by randomly selecting and altering a gene on the entire
length on the chromosome, but particularized for each scenario:

• For Scenario 1: a phase gene can be mutated to any value 1, 2, or 3; but if a bus
gene is selected from the mutation, then the entire first half of the chromosome is
also mutated;

• For Scenario 2: any phase gene can be randomly mutated to any value 1, 2, or 3, and
any bus gene can be mutated to any value describing a valid bus number; and

• For Scenario 3: the mutation is first performed on the buses by randomly replacing
a prosumer with another from the available pool; then, its corresponding phase is
replaced accordingly in the second half of the chromosome.

These assumptions ensure that for each scenario, its constraints are always fulfilled and
that the chromosomes resulting from crossover and mutations are always valid, reducing
the computational effort and the number of solutions evaluated by the algorithm, thus
increasing the speed of convergence toward the optimal solution. Using a more randomized
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scheme for updating the chromosome would require complex validation procedures, built
separately for each scenario. In contrast, the GA eliminates the need for this step.

4. Results

The ESMRG algorithm was tested on a real LV EDN from northern Romania for which
consumption data were measured for an interval of 24 h using the local Smart Metering
infrastructure. The general data for this network and its one-line diagram are provided in
Figure 4 and Table 1.
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Table 1. Summary data for the network used in the case study.

Number of buses 121
Number of consumers 113

Total load (24 h/06:00—18:00) 219.85/76.01 kW
Total prosumer generation 122.00 kW

Total prosumer surplus 75.38 kW
Network type Overhead, classic

Total/main feeder length 4840/2240 m

In the network, there are eight active prosumer buses depicted in black in Figure 4
that use PV panels and generate electricity during daytime in the 06:00–18:00 h interval.
The electricity not used for local consumption constitutes the surplus that can be injected
back in the grid or stored in batteries for later use, if storage capabilities exist. This surplus
is represented, for each prosumer, in Figure 5.
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On the other hand, the charge and discharge of the batteries influence the power
demand from the grid at the buses where the batteries are located. For reference, the
aggregated hourly consumption in each phase is presented in Figure 6, which shows that
the load is highly unbalanced, with phase b having the lowest loading. With an optimal
placement, the batteries can be used to balance the load and reduce the active energy losses
in the network.
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4.1. The Reference Case

The presence of storage in the network has the potential to reduce the energy losses
in several ways. First, in the battery charging phase, the energy stored at the prosumers
will not be injected in the network and the power flow on the branches adjacent to the
respective bus will not increase. Depending on the operating scenario, the total losses in
the network will also be affected (will increase or will decrease, according to the location
of the prosumer buses). In the discharging phase, if this operation occurs at peak load,
the total load of the network will be reduced, also reducing the energy losses. The loss
reduction will depend on the placement of the batteries in the network at specific buses
and connection phases. To analyze the effect of each storage placement solution, the losses
obtained in each case were compared in this paper with the reference active losses value
obtained when the consumption used the pattern from Figure 6 and the entire surplus
from Figure 5 was injected back in the grid. In this case, the losses computed by a load
flow algorithm amounted to 8.74 kWh in the interval 0:00–24:00, 6.90 kWh in the interval
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06:00–24.00 and 5.04 kWh between 18:01–24:00 (Figure 7). These intervals were delimited
considering as an initial assumption in the study that the prosumers begin to generate
electricity at 06:00 and the batteries will begin to discharge at 18:01.

Mathematics 2021, 9, 2375 11 of 17 
 

 

respective bus will not increase. Depending on the operating scenario, the total losses in 
the network will also be affected (will increase or will decrease, according to the location 
of the prosumer buses). In the discharging phase, if this operation occurs at peak load, the 
total load of the network will be reduced, also reducing the energy losses. The loss reduc-
tion will depend on the placement of the batteries in the network at specific buses and 
connection phases. To analyze the effect of each storage placement solution, the losses 
obtained in each case were compared in this paper with the reference active losses value 
obtained when the consumption used the pattern from Figure 6 and the entire surplus 
from Figure 5 was injected back in the grid. In this case, the losses computed by a load 
flow algorithm amounted to 8.74 kWh in the interval 0:00–24:00, 6.90 kWh in the interval 
06:00–24.00 and 5.04 kWh between 18:01–24:00 (Figure 7). These intervals were delimited 
considering as an initial assumption in the study that the prosumers begin to generate 
electricity at 06:00 and the batteries will begin to discharge at 18:01. 

 
Figure 7. The active energy losses in the reference case. 

Starting from this case, the three scenarios were run and the optimal solutions were 
determined for each case. The algorithm used each time for 100 generations and 100 indi-
viduals in the population, with a crossover rate of 0.9 and a mutation rate of 0.1. The so-
lutions are presented in Table 2. The first part of the chromosomes for Scenarios 1 and 2 
uses bus codes, while Scenario 3 uses prosumer codes, taken from the input data provided 
in the Supplementary Materials. The correspondent bus numbers are given for Scenario 3 
in round brackets. Furthermore, the losses are given for the entire 24 h period. For Scenar-
ios 1 and 2, it was considered that the batteries were loaded at 95% at the beginning of the 
interval of analysis. For Scenario 3, the batteries start at the minimum loading limit (20%) 
and can be charged up to the maximum limit of 95% from the prosumer surplus. The hour 
at which the batteries begin to discharge is at the beginning of the peak load time from 
Figure 7 (18:01–19:00). Five batteries with a maximum 4 kWh storage capacity each were 
considered for placement. 

Table 2. The solutions obtained using the ESMRG algorithm. 

Scenario Solution ΔW, kWh 
Scenario 1 85 85 85 85 85 1 1 3 1 2 6.63 
Scenario 2 85 119 119 85 56 1 2 2 1 1 5.62 
Scenario 3 107 (85) 83 (63) 107 (85) 94 (119) 44 (37) 1 2 1 2 3 7.61 

4.2. Scenario 1—Batteries Installed at the Same Bus 
For this scenario, an interesting fact occurred. The algorithm chose bus 85 for instal-

lation, which is located near the far end of the network and has the highest demand in the 
interval of discharge 18:01–24:00 (6.81 kWh). For this case, taking into account the imposed 
min 20%–max 95% charging limits, a maximum of three batteries can be discharged in bus 
85, which were placed by the algorithm in phase a, where the entire bus consumption is 

Figure 7. The active energy losses in the reference case.

Starting from this case, the three scenarios were run and the optimal solutions were
determined for each case. The algorithm used each time for 100 generations and 100 in-
dividuals in the population, with a crossover rate of 0.9 and a mutation rate of 0.1. The
solutions are presented in Table 2. The first part of the chromosomes for Scenarios 1 and 2
uses bus codes, while Scenario 3 uses prosumer codes, taken from the input data provided
in the Supplementary Materials. The correspondent bus numbers are given for Scenario
3 in round brackets. Furthermore, the losses are given for the entire 24 h period. For
Scenarios 1 and 2, it was considered that the batteries were loaded at 95% at the beginning
of the interval of analysis. For Scenario 3, the batteries start at the minimum loading limit
(20%) and can be charged up to the maximum limit of 95% from the prosumer surplus. The
hour at which the batteries begin to discharge is at the beginning of the peak load time
from Figure 7 (18:01–19:00). Five batteries with a maximum 4 kWh storage capacity each
were considered for placement.

Table 2. The solutions obtained using the ESMRG algorithm.

Scenario Solution ∆W, kWh

Scenario 1 85 85 85 85 85 1 1 3 1 2 6.63
Scenario 2 85 119 119 85 56 1 2 2 1 1 5.62
Scenario 3 107 (85) 83 (63) 107 (85) 94 (119) 44 (37) 1 2 1 2 3 7.61

4.2. Scenario 1—Batteries Installed at the Same Bus

For this scenario, an interesting fact occurred. The algorithm chose bus 85 for installa-
tion, which is located near the far end of the network and has the highest demand in the
interval of discharge 18:01–24:00 (6.81 kWh). For this case, taking into account the imposed
min 20%–max 95% charging limits, a maximum of three batteries can be discharged in
bus 85, which were placed by the algorithm in phase a, where the entire bus consumption
is measured. Two batteries will be discharged down to the lowest limit of 20%; one will
be discharged partially, while the remaining two will not be used at all, as presented in
Figure 8. For reference purposes, this figure also contains the battery loading level an hour
before the discharging begins.
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icant improvement compared to Scenario 1. The loss reduction in the interval 18:01–24:00 
is presented in Figure 11, and amounted to 3.02 kWh, the highest value achieved in the 
three scenarios considered in the paper. By optimally distributing the use of storage on 
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Figure 8. The discharge pattern for the batteries, Scenario 1.

The total hourly load from Figure 6 will change starting from 18:01 only in phase a,
resulting in a more balanced operation of the network at peak load hours. Consequently,
the energy losses saw an important reduction from 8.74 kWh in the reference case to
6.63 kWh. This reduction of 2.11 kW was concentrated in the (18:01–24:00) interval, as
depicted in Figure 9 and was the highest in the peak interval 18.01–20.00 (h19 and h20 from
Figure 8).
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4.3. Scenario 2—Batteries Can Be Installed at Different Buses and Phases

In this case, as Table 2 shows, the algorithm chose three buses for installing the
batteries: 85, 56 (in phase a, batteries 1, 4, 5), and 119 (in phase b, batteries 2, 3). All three
were prosumer buses, with high load and located near the far end of the network. The
batteries all discharged differently. Those located in phase a discharged faster and were
almost depleted at the end of the day. The batteries installed in phase b discharged later
and slower, according to the load of the bus in the same time interval. This behavior can
be seen in Figure 10. Battery 3 retained half of its load due to insufficient consumption in
bus 119.

Because of the higher amount of energy used from the batteries, the energy loss reduc-
tion was much higher, with the total energy loss in 24 h only being 5.62 kWh, a significant
improvement compared to Scenario 1. The loss reduction in the interval 18:01–24:00 is
presented in Figure 11, and amounted to 3.02 kWh, the highest value achieved in the three
scenarios considered in the paper. By optimally distributing the use of storage on different
buses and phases, the effect is maximized.
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4.4. Scenario 3—Batteries Can Be Installed Only in Prosumer Buses

This scenario illustrates another set of operating conditions that can occur in the
network. The results from Table 2 show that in Scenario 2, the batteries were placed in
prosumer buses located at significant distance from the MV/LV substation, while the
batteries are considered to be charged. This placement scheme could also be considered
as a valid solution for Scenario 3. However, here, the assumption is that the batteries
start at the minimum level of charge and are charged during the day by each prosumer
using its surplus, and the charging sequence changes the hourly loss profile during the
daytime. Thus, the optimal solution changes. The battery discharge pattern is modified
as in Figure 12, supplemented with the charge pattern from Figure 13 (hours 06:00–17:59).
The corresponding loss patterns in the same intervals are presented in Figures 14 and 15.

Mathematics 2021, 9, 2375 13 of 17 
 

 

 
Figure 10. The discharge pattern for the batteries, Scenario 2. 

 
Figure 11. The energy loss reduction at peak hours, Scenario 2. 

4.4. Scenario 3—Batteries Can Be Installed Only in Prosumer Buses 
This scenario illustrates another set of operating conditions that can occur in the net-

work. The results from Table 2 show that in Scenario 2, the batteries were placed in 
prosumer buses located at significant distance from the MV/LV substation, while the bat-
teries are considered to be charged. This placement scheme could also be considered as a 
valid solution for Scenario 3. However, here, the assumption is that the batteries start at 
the minimum level of charge and are charged during the day by each prosumer using its 
surplus, and the charging sequence changes the hourly loss profile during the daytime. 
Thus, the optimal solution changes. The battery discharge pattern is modified as in Figure 
12, supplemented with the charge pattern from Figure 13 (hours 06:00–17:59). The corre-
sponding loss patterns in the same intervals are presented in Figures 14 and 15. 

 
Figure 12. The discharge pattern for the batteries, Scenario 3. Figure 12. The discharge pattern for the batteries, Scenario 3.



Mathematics 2021, 9, 2375 14 of 17
Mathematics 2021, 9, 2375 14 of 17 
 

 

 
Figure 13. The charge pattern for the batteries, Scenario 3. 

 
Figure 14. The energy loss pattern at battery discharging hours, Scenario 3. 

 
Figure 15. The energy loss pattern at battery charging hours, Scenario 3. 

As Figure 15 shows, the increase in losses during the charge of the batteries is respon-
sible for the high loss difference from Scenarios 2 and 3. The energy used to charge the 
batteries would be otherwise injected in the grid, replacing an equivalent supply from the 
substation. A high quantity of energy imported from the grid, which needs to supply con-
sumption near the far end of the network, is likely to create equivalently high losses, ac-
counting for the increase seen between hours 06:00 and 14:00, as seen in Figure 15. The 
loss reduction at peak time is of 2.74 kWh, comparable with the values obtained in the 
previous scenarios, but the increase in the 06:00–17:59 interval was 1.61 kWh. 

Another aspect, emphasized by Figure 13, is the fact that if the batteries are managed 
by the prosumer, they cannot not used to their maximum capacity, depending on their 
available surplus. This was the case of battery 2, which did not reach the maximum al-
lowed loading of 95%. 

Figure 13. The charge pattern for the batteries, Scenario 3.

Mathematics 2021, 9, 2375 14 of 17 
 

 

 
Figure 13. The charge pattern for the batteries, Scenario 3. 

 
Figure 14. The energy loss pattern at battery discharging hours, Scenario 3. 

 
Figure 15. The energy loss pattern at battery charging hours, Scenario 3. 

As Figure 15 shows, the increase in losses during the charge of the batteries is respon-
sible for the high loss difference from Scenarios 2 and 3. The energy used to charge the 
batteries would be otherwise injected in the grid, replacing an equivalent supply from the 
substation. A high quantity of energy imported from the grid, which needs to supply con-
sumption near the far end of the network, is likely to create equivalently high losses, ac-
counting for the increase seen between hours 06:00 and 14:00, as seen in Figure 15. The 
loss reduction at peak time is of 2.74 kWh, comparable with the values obtained in the 
previous scenarios, but the increase in the 06:00–17:59 interval was 1.61 kWh. 

Another aspect, emphasized by Figure 13, is the fact that if the batteries are managed 
by the prosumer, they cannot not used to their maximum capacity, depending on their 
available surplus. This was the case of battery 2, which did not reach the maximum al-
lowed loading of 95%. 

Figure 14. The energy loss pattern at battery discharging hours, Scenario 3.

Mathematics 2021, 9, 2375 14 of 17 
 

 

 
Figure 13. The charge pattern for the batteries, Scenario 3. 

 
Figure 14. The energy loss pattern at battery discharging hours, Scenario 3. 

 
Figure 15. The energy loss pattern at battery charging hours, Scenario 3. 

As Figure 15 shows, the increase in losses during the charge of the batteries is respon-
sible for the high loss difference from Scenarios 2 and 3. The energy used to charge the 
batteries would be otherwise injected in the grid, replacing an equivalent supply from the 
substation. A high quantity of energy imported from the grid, which needs to supply con-
sumption near the far end of the network, is likely to create equivalently high losses, ac-
counting for the increase seen between hours 06:00 and 14:00, as seen in Figure 15. The 
loss reduction at peak time is of 2.74 kWh, comparable with the values obtained in the 
previous scenarios, but the increase in the 06:00–17:59 interval was 1.61 kWh. 

Another aspect, emphasized by Figure 13, is the fact that if the batteries are managed 
by the prosumer, they cannot not used to their maximum capacity, depending on their 
available surplus. This was the case of battery 2, which did not reach the maximum al-
lowed loading of 95%. 

Figure 15. The energy loss pattern at battery charging hours, Scenario 3.

As Figure 15 shows, the increase in losses during the charge of the batteries is respon-
sible for the high loss difference from Scenarios 2 and 3. The energy used to charge the
batteries would be otherwise injected in the grid, replacing an equivalent supply from
the substation. A high quantity of energy imported from the grid, which needs to supply
consumption near the far end of the network, is likely to create equivalently high losses,
accounting for the increase seen between hours 06:00 and 14:00, as seen in Figure 15. The
loss reduction at peak time is of 2.74 kWh, comparable with the values obtained in the
previous scenarios, but the increase in the 06:00–17:59 interval was 1.61 kWh.

Another aspect, emphasized by Figure 13, is the fact that if the batteries are managed
by the prosumer, they cannot not used to their maximum capacity, depending on their
available surplus. This was the case of battery 2, which did not reach the maximum allowed
loading of 95%.
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5. Discussion

The authors proposed an algorithm capable of managing one-phase storage batteries
installed in a three-phase low-voltage distribution network. Three scenarios were consid-
ered for optimization, and each of them shows possible situations that can occur in the
operation of this type of network and storage, in real conditions.

In Scenario 1, where all the batteries need to be concentrated in one bus, the network
operator is able to manage the batteries with minimal cost, but its options can be limited
in reducing the energy losses. The electricity consumption was, in this case, lower than
the available storage capacity, which is used sub-optimally. Two batteries were installed,
but not discharged in the peak load interval. The operator will need to sustain minimal
investment costs for storage installation, but will also obtain sub-optimal loss reduction.

Scenario 2 is the optimal case from the technical standpoint, because the loss reduction
is maximal. However, the investment cost will increase for the network operator, because
it will need to install and remotely mange batteries in three separate locations.

Scenario 3 shows that, even if the management of the batteries is outside the control
of the DNO, the presence of storage can still provide energy loss reduction, although it can
be significantly lower compared to the previous scenarios.

The genetic algorithm has been proven to be an efficient tool for computing the differ-
ent formulations of the storage management problem. By properly choosing a chromosome
structure that can be adapted to simulate these scenarios, it eliminates the need to build
and solve each problem separately and can provide the necessary results for quick and
meaningful comparison of the specificities encountered in each analyzed scenario.

Another aspect to be mentioned is the initial assumption for Scenarios 1 and 2, where
the batteries were fully loaded at the beginning of the study. In real operation conditions,
they would need to be charged at no-load night hours. As the loss profile from Scenario
3 shows, the charge could significantly impact the total daily losses. However, different
strategies used for this purpose can result in significant differences (fast charge vs. low
charge). A pertinent analysis should also take into account the price of electricity at night
time, and the load profile of the network in the charging interval. These problems require
an in-depth study and will be addressed in future research derived from this paper.

Other future research includes the possibility of combining storage technologies with
reactive power compensation devices and substation transformer tap management, which
would allow for further reduction in energy losses and bus voltage level improvement. It
is expected that the impact of these measures would provide even more insights regarding
the optimal use of storage in low-voltage distribution networks.

The results obtained in the paper show the necessity of the optimal use of storage in
low-voltage unbalanced distribution networks. The problem is the cost of the batteries
for the network operator, but, given the EU initiatives sustaining renewable electricity
generation, it is foreseeable that these costs could be partially mitigated, but this also
depends on local energy policies put forward by national governments.

6. Conclusions

The paper takes a new approach in prosumer surplus management, tested on a low-
voltage electricity distribution network. Compared with the approach in which storage is
owned and managed by the individual prosumers for their own benefit, which is preferred
in the literature, the algorithm proposed by the authors considered two supplementary
scenarios in which one-phase storage is used by the network manager to reduce the
energy losses in three-phase, four-wire feeders. The community storage and the optimal
distributed storage case were investigated, highlighting their strengths and weaknesses.
Using the flexibility of the genetic algorithm approach, the three scenarios were modeled
within the same chromosome structure, making the results easier to compare and evaluate,
a feature that is a key factor for industry application.
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Abstract: Incorporating demand-side management (DSM) into residential energy guarantees dynamic
electricity management in the residential domain by allowing consumers to make early-informed
decisions about their energy consumption. As a result, power companies can reduce peak demanded
power and adjust load patterns rather than having to build new production and transmission units.
Consequently, reliability is enhanced, net operating costs are reduced, and carbon emissions are
mitigated. DSM can be enhanced by incorporating a variety of optimization techniques to handle
large-scale appliances with a wide range of power ratings. In this study, recent efficient algorithms
such as the binary orientation search algorithm (BOSA), cockroach swarm optimization (CSO), and
the sparrow search algorithm (SSA) were applied to DSM methodology for a residential community
with a primary focus on decreasing peak energy consumption. Algorithm-based optimal DSM
will ultimately increase the efficiency of the smart grid while simultaneously lowering the cost of
electricity consumption. The proposed DSM methodology makes use of a load-shifting technique in
this regard. In the proposed system, on-site renewable energy resources are used to avoid peaking of
power plants and reduce electricity costs. The energy Internet-based ThingSpeak platform is adopted
for real-time monitoring of overall energy expenditure and peak consumption. Peak demand,
electricity cost, computation time, and robustness tests are compared to the genetic algorithm (GA).
According to simulation results, the algorithms produce extremely similar results, but BOSA has
a lower standard deviation (0.8) compared to the other algorithms (1.7 for SSA and 1.3 for CSOA),
making it more robust and superior, in addition to minimizing cost (5438.98 cents of USD (mean
value) and 16.3% savings).

Keywords: demand-side management; energy management; smart grid; sparrow search algorithm;
binary orientation search algorithm; cockroach optimization algorithm; load shifting

MSC: 68Wxx

1. Introduction

Smart grid (SG) technology is regarded an innovation with the potential to improve
the electricity grid in the 21st century. Owing to its distributed generation, universal control,
digital two-way communication, and self-monitoring characteristics, the SG has acquired
considerable appeal. Using contemporary information and communication technology, the
SG can regulate the production of energy, electricity grid distribution, and transportation
and develop intelligent monitoring systems. In addition, the SG is capable of managing
the power market, controlling decentralized energy resources, and reconstructing infras-
tructure. Converting the traditional grid to an SG can enable a new era of DSM. DSM
can be used to improve grid efficiency, reduce the expense of generation, possibly reduce
load pressure, improve system reliability and sustainability, and maximize system capacity
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without modifying the power system’s physical infrastructure. The concurrently realized
objectives of the incorporation of SG and DSM are (i) to minimize carbon emissions in order
to combat global warming and (ii) to reduce electricity costs through demand management.
By lowering carbon emissions and electricity costs, the combination of DSM and SG can
ease the transition of citizens to smart, sustainable, and economic communities [1,2].

Because SGs can be grid-connected or islanded and because the Internet of Things
(IoT) is a technique to connect people and things in any place at any time with anyone and
anything through any electrical network or service, SGs serve as primary building blocks
for an Energy Internet (EI). With the installation of smart meters in residential areas, real-
time energy consumption monitoring is possible using EI. EI is hailed as a game-changing
network of intelligent grids. It is considered a general IoT application for the energy
and power sectors. The EI is made up of a variety of components and techniques, which
can be divided into three classes: (i) communication systems, (ii) control algorithms, and
(iii) power systems. Electricity generators and users (prosumers) are interconnected with
renewable energy resources (RERs), electric loads, and storage systems, opening up infinite
opportunities for energy sharing and giving rise to the EI concept. The Energy Internet is a
game-changing innovation because it facilitates two-way flows of electricity and data in
real time. This change is expected to be caused by the ongoing shift to renewable energy
and the improvement of green technologies, such as SGs, storage systems, vehicle-to-grid
systems, etc. [3–8].

SG technology facilitates grid connection and RER management and distribution.
RERs are intermittent, posing a challenge for the grid. RERs increase the size of abrupt
power output deficits due to adverse weather conditions, requiring the grid operator to
maintain a higher level of backup power. This may be easily accomplished by reducing
energy usage with DSM technology. Thus, load control methodologies must be used. A
DSM system ought to be able to communicate with the controllable loads and the main
controller [9,10]. The domain of optimal demanded power consumption criteria can be quite
broad. Criteria could include increasing distributed production penetration, minimizing
peak load demand, and enhancing economic gains by offering customers incentives to
reduce demand during peak times [11,12].

The SG is distinguished by its dynamic pricing structures. Dynamic pricing schemes
such as time of use (ToU), real-time pricing (RTP), and critical peak pricing (CPP) are
frequently used in DSM methodologies, with the main difference being in price levels
during operation times. Under RTP, the price changes every hour of the day. Under
ToU, prices are fixed in advance (often up to one year in advance), and a variable pricing
structure is designed for shoulder, on-peak, off-peak, and low-peak hours. Under CPP, the
price of electricity is generally the same throughout the whole year, except during essential
peak periods, when it reaches its maximum value. Price adjustments affect only the energy
cost outcomes (not energy usage). The utility provides a pricing indication to smart home
energy controllers. The energy management controller creates a schedule based on the
user’s load demand and the price signal. When any dynamic pricing scheme is combined
with DSM strategies, the cost of electricity is calculated by the user’s energy consumption
estimations. Generally, the price can be increased if consumer demand is higher than
supply. This growth in electricity pricing impacts all users of the power system. DSM
governs the price of electricity in an energy market by lowering the peak demand. To this
end, all residential loads are divided into shiftable and non-shiftable categories [13]. During
peak hours, DSM techniques modify the demand patterns of customers in order to achieve
the desired change in the load shape by shifting shiftable appliances to a more cost-effective
time [14]. Therefore, DSM concentrates on energy-saving technology solutions, bill tariffs,
and economic incentives instead of improving the grid’s transmission and distribution
grids or adding more power plants. Moreover, higher consumption demand can cause
the load factor deteriorate (average load divided by the peak value), making the system
unstable. This can be fixed by rescheduling the distribution system’s peak load periods
using the proper objective and DSM methodology. The load profile curve can be altered
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using six DSM techniques: (1) peak clipping, (2) load shifting, (3) valley filling, (4) strategic
load growth, (5) strategic conservation, and (6) load shape flexibility. Figure 1 shows the
DSM strategies [15,16].
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Peak clipping is the practice of removing peaks above a predetermined consumption
point. During peak clipping, loads are controlled directly to reduce the pressure of demand
during the peak period. This causes a disruption in consumer comfort and compromises the
level of consumer satisfaction with the service they receive. To increase electric loads during
off-peak hours, valley filling necessitates the use of energy storage units [17]. The primary
goal of load shifting is to move on-peak loads to off-peaks periods, thereby lowering the
peak demand for energy. By reducing demand directly at the customer location, load
profiles can be improved through strategic conservation goals. When there is a high level
of demand, strategic load growth enables people to respond more quickly. The load shape
greatly affects a smart grid’s reliability [18]. In SG management, load control strategies are
referred to as flexible loads because they allow for individual participation. Different DSM
techniques can be used in a variety of situations, depending on the implementation of the
optimizing algorithm.

In this paper, a cost-effective model for residential appliance scheduling is presented.
Our appliance-scheduling model seeks to optimize the operational time frame of electrical
appliances using the load-shifting technique. The energy generated from SG RERs is
considered alongside grid-generated energy in the model. This model simulates ToU
pricing and makes use of CSO, SSA, and BSOA to generate optimal schedules. The adopted
algorithms are evaluated based on their simple implementation, recentness, and fast
convergence. The results show that the proposed model is effective in scheduling the
electrical appliances in a residence, which benefits consumers by significantly lowering
their electricity bills.

The remainder of the paper is divided into the following sections: Section 2 presents
the related work. Section 3 explains the problem statement. The proposed system’s overall
architecture is discussed in Section 4. Section 5 describes the proposed DSM methodol-
ogy. Section 6 discusses problem formulation. The adopted optimization algorithms are
described in Section 7. The simulation findings are displayed and discussed in Section 8.
The paper concludes with Section 9.

2. Related Work

In order to reduce energy consumption, peak demand, and carbon emissions, many
different methods have been developed to address energy management issues. In this
context, the models proposed in [19–22] employ stationary techniques to reduce consumers’
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electricity costs and user discomfort. In contrast, [23] presented interactions between
interested consumers using a game of repeated energy scheduling, proving that static
approaches provide inferior value in terms of both comfort and cost. In comparison, the
authors defined non-static DSM techniques in which consumers can choose from a variety
of options according to their energy usage and comfort requirements. The DSM architecture
is described in detail in [24], in which the proposed design integrates green energy into the
power system in order to reduce users’ monitoring costs.

The authors of [25] scheduled power and time-shiftable appliances using an integer
linear programming (ILP) technique. The authors of [26] proposed a Mixed-Integer Linear
Programming (MILP)-based strategy for appliance scheduling to shift loads from peak to
non-peak hours in order to reduce peak load and electricity demand costs. In [27], a cost-
effective optimization-based model was proposed to control energy use in residences using
linear programming (LP) in order to minimize overall cost and the peak-to-average ratio
(PAR). An MILP formulation was proposed in [28] to schedule various types of appliances
in order to minimize the user’s electricity bill. Although dynamic programming (DP) and
MILP have been considered to minimize the total cost of running a household and the
PAR of electricity use, respectively [29,30], they require a great deal of computing time
to implement.

In reference [31], an evolutionary algorithm-based (binary particle swarm optimization
(BPSO), cuckoo search (CS), and genetic algorithm (GA)) DSM model was proposed to
schedule residential users’ appliances, resulting in reduced electricity bills and peaks.
In [32], a DSM strategy based on monotonic optimization was presented; the optimal
usage of renewable energy was demonstrated by mathematical modeling of a central
renewable energy source. Sahar et al. [33] proposed a novel hybrid strategy combining
GA, BPSO, and ant colony optimization (ACO) techniques for cost minimization and PAR
reduction, taking user comfort into account when pricing ToU services. The authors of [34]
proposed a system for managing residential energy demand within the confines of the
user’s budget. The authors used GA to solve an optimization conundrum with the aim of
maximizing user convenience while minimizing energy consumption. The authors of [35]
showed how to use RTP to schedule residential loads. To achieve the best electricity use,
the authors used fractional programming. Simulated results indicate that the price of
electricity was reduced. In [36], the authors came up with a way to shift the electricity
load. They used a distributed algorithm to this end. Game theory was used to solve a
residential load-scheduling problem. The newton method was also used to speed up the
convergence rate of the Nash equilibrium. In [37], a strategy for avoiding distribution
system overload was proposed, as well as an algorithm for checking the priority of an
appliance and to shut it down to prevent distribution system overload. Overloading of
the distribution system is avoided through proper load shedding. The authors of [38]
proposed a scheme for scheduling appliances using the optimal stopping rule (OSR), which
is a mathematical optimization technique used to indicate the lowest price, allowing the
user to schedule their appliance during that time period. This lowers the cost of electricity
consumption. In [39], a stochastic cost-minimization problem was proposed, along with
renewable energy. The problem of cost minimization was solved using the Lyapunov
optimization technique. The authors of [40] proposed a strategy for integrating renewable
energy into the power system in order to increase the network’s efficiency; users can reduce
their monitoring costs by selling/purchasing grid energy. DSM studies were proposed by
the authors of [41,42] using GA, PSO, and hybrid particle swarm optimization (HPSO) [43].
A number of engineering applications of artificial intelligence techniques were discussed
in [44,45]. In [46], the grey wolf and crow search optimization algorithm was used to create
a home appliance scheduling framework. Given the existence of real-time price signals, the
proposed method analyzes the cost of electricity savings, user comfort, and PAR reduction
for home appliances. To optimize energy usage in homes, in [47], researchers looked into
a generic DSM model equipped with a power management controller. Optimization of
electricity load scheduling for multiple residents and appliances using a Ladson generalized



Axioms 2023, 12, 33 5 of 25

bender algorithm was investigated in [48]. In addition, the authors of [49] used a non-
dominated sorted GA to schedule home appliances while minimizing the associated energy
costs. However, this method is computationally expensive and does not prioritize the
convenience of end users.

To assure the lowest energy cost and the highest user comfort, the authors of [50] pre-
sented the grey wolf accretive satisfaction algorithm for DSM. In [51], a candidate solution
updating algorithm (CSUA) was presented. The goal was to minimize the time a user must
wait for PAR and an appliance while still providing that user with the desired level of
comfort. By combining the modified and enhanced differential evolution with grey wolf
optimization, a model for energy management was proposed and implemented with the
goal of reducing peak energy usage and electricity costs [52]. The authors of [53] proposed
a strategy for DSM based on load clipping and shifting. This strategy was simulated in
MATLAB/Simulink and optimized with an artificial neural network (ANN) algorithm.

In this study, we implemented a smart grid Internet energy-based residential optimal
demand management controller using the load-shifting technique. Our implemented
model uses BOSA, SSA, and CSO algorithms. Notably, the use of these algorithms for DSM
programs has not been mentioned in any previous studies to date, and this is the first study
in which these algorithms have been applied in DSM. These optimization algorithms are
compared to GA in terms of peak demand, electricity cost, robustness, and computation
time tests. The Energy Internet is used to monitor meaningful findings by adopting the
ThingSpeak platform. Moreover, adopting on-site RERs decreases peak power plants
and reduces electricity costs in the proposed system. Furthermore, a ToU tariff scheme is
adopted for electricity bill estimation. The simulation outcomes prove the effectiveness of
the energy-optimization controller based on the preceding algorithms. The following are
the highlights of the paper contributions:

1. For the first time, an optimal SG residential load-shifting DSM technique based on
recent efficient optimization algorithms (BOSA, SSA, and CSO) is been proposed. The
proposed DSM model is implemented using ToU dynamic pricing to establish prices
in advance, as well as shoulder, on–off-peaks, and low-peak pricing while creating
an interactive demand management market in which each consumer plays a role in
reducing energy costs.

2. In-home demand consumption can be regulated by integrating applications for embed-
ded systems and the Internet of Things. The model proposed in this study allows for
continuous monitoring of the load, as well as scheduling of the load. Adopting EI and
the ThingSpeak platform, total energy expenditures and peak energy consumption
can be tracked from anywhere in real time.

3. To guarantee the achievement of minimum values of energy consumption, reduced
electricity bills, and improved load factor using the load-shifting technique, the
adopted algorithms are also compared in term of their robustness (code-tested for
20 times running). Computational speed tests are also performed to determine which
algorithm offers the fastest and most effective processing.

4. In order to test the performance and effects of DSM on metrics such as peak consump-
tion and bill electrification with and without DSM, the proposed algorithm-based
optimal DSM is compared to the unscheduling load profile and to a DSM program
with a commonly used algorithm (GA) for computation and evaluation of the opti-
mal solutions.

5. The proposed optimization algorithm-based DSM program in SG is used to solve the
problem of centralized optimization. In particular, each residential load has a local
DSM controller and flexible appliances. By optimizing individual scheduling, the
energy demand is decreased. The proposed algorithms are simple in construction,
require few control parameters, and achieve a high rate of convergence, thereby
avoiding getting stuck in local optima.
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3. Problem Statement

Modern-world concerns include greenhouse gas emissions from fossil fuel electricity
generation, requiring electrical researchers, engineers, and policymakers to optimize grid
electricity consumption and renewable energy use. Residential loads frequently contribute
significantly to both daily and seasonal peak demand, causing the power grid to be over-
sized to accommodate peak-period energy usage. DSM allows for more decentralized and
efficient operation of appliances through the use of intelligent control strategies, mitigating
problems with the current scenario from the perspective of the end user. Numerous other
advantages motivate the use DSM; for example, it reduces spending and helps avoid power
outages, guarantees a steady and long-lasting flow of power, helps to mitigate environ-
mental concerns by decreasing the need for new conventional power plants, and aids the
grid in reducing voltage problems. Without demand management, more power plants will
be needed to increase the energy output of the SG and keep up with increasing energy
demand. Under optimal DSM, its depth-enhancing benefits are maximized. In our work, an
optimal DSM program is proposed to optimally shift the time of shiftable loads and modify
the total load of the utility, thereby reducing anticipated peak loads and accomplishing the
aforementioned goals. Heuristic algorithms should generally be discovered to find the most
appropriate solutions for problems involving global optimization. The chosen algorithms
(BSOA, SSA, and CSO) are evaluated based on their simple implementation, recentness
(BSOA [54]), and significant advantages, such as their low number of parameters, fast
convergence, and immunity to getting “stuck” in a local optimum (SSA [55]). CSO is simple
and efficient and has successfully solved global optimization problems [56]. Here, the
competency and robustness of the adopted algorithm-based methodology are confirmed.
This study paves the way for real-time load monitoring. By using EI and the optimal DSM
on the ThingSpeak platform, total energy costs and peak energy use can be tracked in real
time from anywhere.

4. The Proposed System Structure

Appliances in a residential building should be scheduled in accordance with the ToU
pricing model. An automated system must ensure that the workload is properly distributed.
Residential energy management (EM) depends heavily on automated appliances, especially
in the context of an SG. Below, we present an explanation of the infrastructure and concept
of load scheduling in an energy management system.

4.1. Model Representation and Concept

Figure 2 shows an illustration of the model’s structure, which serves as the basis for the
development of optimization algorithms. An integrated power utility is focused on serving
a diverse range of loads. To meet peak demand, the optimization program gives preference
to residential load appliances that can use power during peak times. This is achieved by
shifting schedulable appliances to off-peak hours. As a result, the load-side management
system contributes to reducing the energy that is acquired from the utility company.

Smart meters, data centers, a communication network, and data incorporation into
application platforms are some of the components of the residential building network.
Figure 2 shows a smart meter, which is located between a home or building’s local area
and utility, and is responsible for transmitting the aggregated demand for electricity to
the utility. Smart meters can tell users when and how to use energy, and they can change
their habits based on price patterns from the grid. Then, the utility calculates and provides
a pricing pattern (e.g., time of use), which is used for load scheduling according to the
collected customer data. A distribution board plays a crucial role in any electrical grid. It is
used to divide a main power supply into several separate circuits. This board is necessary
to separate shiftable appliances from non-shiftable appliances. The smart scheduler (SS) is
an EM architecture-integrated device responsible for the scheduling and decision making
of smart home appliances. Optimal performance is achieved by combining SS and the
appliances. The main power contactor serves as an automatic power switch to transmit elec-
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trical power signals from the utility or microgrid (MG) or SG resources to appliances with
the help of low-power-relay devices and the distribution board. Lastly, through the smart
meter, the adoption of the Energy Internet enables the user to continue real-time monitoring
of total energy expenses and peak energy consumption via the ThingSpeak platform.
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This work applies an intelligent approach that generates appliance usage patterns
based on electricity price tariffs without human intervention. In order to better comprehend
energy consumers, we divided them into two main categories: traditional consumers and
intelligent consumers. Because traditional homeowners are not concerned with price, they
do not include EM architecture in their homes or buildings. EM architecture is not used
in traditional homes or buildings, unlike in the homes of smart users, who adopt an EM
architecture. The EM system consists of the electrical grid, home appliances, and the display,
as shown in Figure 2.

4.2. Energy Management System

The home has a smart appliance scheduling and decision-making device, known as
a smart scheduler, which is implemented into the EM architecture. SS works in tandem
with the appliances. The EMS architecture is depicted in Figure 2. A smart meter sends out
energy price signals, as well as a collection of energy-hungry appliances. The SS calculates
household appliance ON/OFF schedules in the most efficient way. With a smart meter, the
SS receives a signal from the main grid about prices and modifies the user’s hourly load
demand level in line with the pricing signal. First, the SS moves or shifts the maximum
level of electricity usage by each appliance from peak times to off-peak times. The, the SS
calculates the cost of electricity for each hour.

4.3. Energy Internet

We used a simulation test to monitor the energy demand of the SG according to the
Energy Internet approach over the cloud platform to regulate smart home appliances. We
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authors created a ThingSpeak platform interface with an effective and simple user interface
(UI) that allows homeowners to access and monitor the consumption energy cost and peak
energy through cloud-based home energy management. Figure 3 shows an Internet web
page that users can access using an Internet browser after entering their username and
password as uniform resource locator (URL) login credentials.
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MATLAB and the open-source IoT framework are used to model proposed communi-
cation architectures. For real-time cloud simulation, ThingSpeak was chosen because of the
following advantages:

1. Data aggregation, tracking, and analysis on the ThingSpeak Cloud IoT platform.
The power profile is graphically depicted and monitored in real time on multiple
ThingSpeak channels in the smart grid model.

2. User authentication is enabled by login credentials, and every channel has its own
ID. Each channel has two keys for the programming interface. The API’s read and
write keys are generated at random. These keys enable the storage and retrieval of
data from every channel over the Internet or a local area network.

3. A communication network makes it possible for MATLAB and ThingSpeak to send
and receive data over the Internet.

4. Data can be imported, exported, analyzed, and viewed on multiple platforms and
fields at the same time.

5. Proposed DSM Methodology

For purposes of residential load management, we divided home appliances into two
categories. The first category consists of shiftable loads, such as vacuum cleaners, washing
machines, etc., that can freely be shifted to operate at different times of day without
negatively impacting customer convenience. The second type is non-shiftable loads such as
electric vehicles, air conditioners, and water pumps, which cannot be operated in different
time slots. Table 1 illustrates the rated information of both shiftable and non-shiftable
residential loads. There are three water heaters, eight air conditioners, four electric vehicles,
and two water pumps. All other appliances have only one unit. Table 2 shows the detailed
operation hours and consumption energy of each appliance.
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Table 1. Shiftable/non-shiftable residential Loads.

Shiftable/Non-Shiftable
Appliances Appliance Name Energy Consumption (kWh)

Vacuum Cleaner (VC) 1
Microwave Oven (MO) 1.8

Shiftable Appliances Washing Machine (WM) 2
Water Heater (WH) 3.66 per unit
Dish Washer (DW) 1.4
Coffee Maker (CM) 1.6

Air Condition (AC) 12 per unit
Non-shiftable Appliances Electric Vehicle (EV) 5 per unit

Water Pump (WP) 4 per unit

Table 2. Detailed operation hours and power consumption of shiftable/non-shiftable loads.

Operation
Hour(s) VC MO WM WH DW CM Operation

Hour(s)
AC

(Units)
EV

(Units)
WP

(Units)

1–2 ON ON ON OFF OFF ON 1 5 2 2
2–4 OFF ON ON OFF OFF ON 2 5 0 4

5 OFF ON ON OFF OFF OFF 3–5 3 0 3
6 OFF ON OFF OFF ON ON 6 2 2 2
7 ON OFF OFF OFF ON ON 7 2 2 1
8 ON ON OFF OFF OFF ON 8 3 4 0
9 ON ON OFF OFF OFF OFF 9–11 8 0 2

10 ON OFF OFF OFF OFF ON 11–13 8 4 0
11–13 OFF OFF OFF OFF OFF ON 14 8 3 0

14 OFF ON OFF OFF ON OFF 15 8 2 2
15 ON OFF ON OFF OFF ON 16–17 8 0 0
16 ON OFF OFF ON OFF OFF 18–19 2 0 0
17 OFF ON OFF OFF ON OFF 20 2 0 2
18 OFF ON OFF OFF OFF OFF 21 2 0 0
19 OFF OFF OFF OFF OFF OFF 22–24 1 0 1
20 ON ON ON OFF OFF ON
21 OFF ON OFF ON OFF OFF
22 OFF ON ON OFF OFF ON
23 OFF ON OFF OFF OFF OFF
24 OFF ON OFF OFF ON ON

A flow chart illustrating the proposed optimal DSM strategy is shown in Figure 4. The
first step is to conduct a survey to gather load data. Once the loads have been categorized,
a load profile is created, which includes both the shiftable and non-shiftable appliances.
Furthermore, the load curve is used to establish the durations of peak and off-peak pe-
riods. The amount of energy used in an hour is compared to the maximum allowed for
that time period. The load-shifting technique reduces excessive energy consumption by
redistributing it among various appliances in use at given time. The technique of load
shifting is utilized if and only if the system has shiftable loads. We assume a two-day period
to monitor the entire process. Loads can be met by either grid or SG resources once the
optimization process is complete. If the energy consumption is less than the total energy of
RERs, RERs are used to power the loads. Otherwise, the utility grid compensates for the
energy deficit.
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6. Problem Formulation
6.1. Mathematical Framework for Appliance Scheduling

On the basis of energy consumption, end-user preferences, operational hours, appli-
ances can be categorized as either non-shiftable or shiftable. Shiftable appliances can be
modified to operate on any time scale without affecting their performance. By shifting their
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operations to off-peak hours, energy consumption and costs can be reduced. The daily
consumption cost of shiftable appliances (CS) is given by:

CS(t) =
24

∑
t=1

NS

∑
m=1

XS(n, t)× AS(n, t)× PR(t) =
24

∑
t=1

ES(t)× PR(t) (1)

where t is the time slot, n is the number of appliances, NS represents the total number of
shiftable appliances, AS is the appliance’s power consumption during time t, ES is the
total energy consumption of shiftable appliances, and XS denotes the ON/OFF state of
shiftable appliances.

The load profiles of normally operated appliances, which are also referred to as fixed
(non-shiftable) appliances and include the AC, WP, and EV, cannot be modified in any way.
The daily cost of non-shiftable appliances (CNS) can be expressed as:

CNS(t) =
24

∑
t=1

NNS

∑
m=1

XNS(n, t)× ANS(n, t)× PR(t) =
24

∑
t=1

ENS(t)× PR(t) (2)

where NNS represents the total number of non-shiftable appliances, ANS is the power
consumption of non-shiftable appliances, ENS is the total energy consumption of non-
shiftable appliances, and XNS denotes the ON/OFF state of non-shiftable appliances.

The total energy consumption (E(t)) and cost (C(t)) of all non-shiftable and shiftable
appliances are given in Equations (3) and (4), respectively.

E(t) = ENS(t) + ES(t) (3)

C(t) = CNS(t) + CS(t) (4)

6.2. Objective Function

The proposed load-shifting-based DSM schedules shiftable loads so that the energy
consumption curve is as close to optimal as possible. Additionally, time slots and movable
loads are treated as variable components. Our goal is to minimize the user’s electricity bill,
in addition to lowering the peak energy consumption to improve the grid’s efficiency. The
following is the formulation of the minimization problem:

Minimize :
24

∑
t=1

E(t)× PR(t) =
24

∑
t=1

(ENS(t) + ES(t))× PR(t) (5)

where PR denotes the electricity price at the specified time (t), X denotes the ON/OFF state
of appliances, and E is the total energy consumption. The aggregate energy consumption
of N appliances during time slot t is equal to or less than the maximum permissible output
for energy consumption reduction. An appliance’s maximum allowable delay is denoted
by Mn = 24− ln, and the appliance’s duration of operation is ln.

6.3. Constraints

Constraints should be considered during the process of load scheduling. For example,
the total amount of shiftable loads should exceed the total amount of shifted hourly loads.
Otherwise, the inflated demand must be reined in. Additionally, shiftable loads have a
limit of time shift, which can be advanced or delay within a permissible range. There must
be more shifted appliances than there are shiftable appliances at time step t, as stipulated
in Equation (6).

S(n, t) ≤
24

∑
t=1

H(n, t) ∀ − T ≤ t ≤ T (6)

where S and H denote shifted appliances and shiftable appliances, respectively, and T is
the limit of time shift.
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The load demand for scheduled and shifted loads in the entire day should equal the
daily demand usage for loads prior to scheduling.

Subject to
24

∑
t=1

M

∑
m=1

B(m, t) =
24

∑
t=1

M

∑
m=1

A(m, t) (7)

where B(m, t) is the total daily demand prior to the t-th hour of the m-th type of load
shifting, and A(m, t) represents the overall daily demand after shifting for the t-th hour of
the m-th load type.

7. Optimization Algorithms

Three metaheuristic optimization techniques for DSM are covered here. These algo-
rithms are used in typical single building with nine different appliances (six shiftable and
three non-shiftable appliances). The energy consumption patterns of various appliances
necessitate distinct power ratings. Electricity involves four stages: production, transmis-
sion, distribution, and consumption. There are three main types of electricity consumers:
households, businesses, and factories. To be clear, our primary objective is to improve the
building power scheduling. Many scholars have presented various optimization strategies
for DSM in residential areas. As such, we present optimization methods (SSA, BSOA, and
CSO) in order to achieve optimal electrical usage. The concept of SSA is inspired by the
foraging and predator avoidance behaviors of sparrows. The BSOA is a game-theoretic
optimizer based on the principles of the orientation game. Players of BOSA’s orientation
game, i.e., the searcher agents, move around the playground in response to the direction
indicated by the referee. The CSO is an optimization algorithm based on the foraging
behaviors of cockroach swarms. Using these algorithms, the shiftable appliances are shifted
from peak to off-peak hours by comparing energy consumption with the unscheduled
load profile, which helps to bring down the price of electricity because the price goes up
gradually as peak use times get closer. The mathematical models and detailed explanations
of the adopted algorithms are provided below.

7.1. Sparrow Search Algorithm

Xue and Shen presented the sparrow search algorithm in (2020) [57]. The SSA is an
algorithm for swarm intelligence optimization. The SSA is based on predator avoidance
and feeding behavior of sparrow [57]. It simulates sparrow team foraging; those who seek
better food are finders (discoverers), whereas others are followers. Simultaneously, a subset
of the population conducts reconnaissance and early warning. If a threat is detected, they
forgo food for safety. The matrix below represents the position of individual sparrows [57]:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xn,1 xn,2 · · · xn,d

 (8)

where n denotes the number of sparrow, and d denotes the dimension of the variable under
consideration. Then, the following vector can be used to represent the fitness values of
all sparrows:

F(X) =


f ([x1,1 x1,2 · · · x1,d])
f ([x2,1 x2,2 · · · x2,d])

...
...

...
...

f ([xn,1 xn,2 · · · xn,d])

 (9)

where F(X) denote the sparrows’ fitness, and the value of each row represents a sparrow’s
fitness. The discoverers are in charge of locating food and aiding the entire population in
achieving increased fitness levels while prioritizing food acquisition throughout the search.
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Thus, the discoverers can scour a much larger area for food than the participants. When
a sparrow spots a predator, it begins singing as a warning signal. This means that if the
alarm value exceeds the safety value, the finder directs the group to other secure foraging
locations. The updated location of the sparrow finder in each iteration is expressed as
follows [57]:

Xt+1
i,j =

{
Xt

i,j.e
−( i

α.itermax ) f or R < ST
Xt

i,j + Q× L f or R ≥ ST
(10)

where Xt
i,j denotes the sparrow finder’s location; t denotes the current iteration; j = 1, 2,..., d

denotes the dimensions of the i-th sparrow in iteration t; itermax denotes the constant with
the maximum iterations; α ∈ (0,1] denotes a random number; R ∈ [0,1] and ST ∈ [0.5,1]
denote alarm and safety thresholds, respectively; Q is a normally distributed random
number; and L is set to 1 if and only if every entry in a dimensioned matrix is a one.
R < ST indicates that there are no dangers in the area, so the finder begins a thorough
search; R ≥ ST indicates that some sparrows have been attacked by predators, and all
sparrows must flee as soon as possible for safety.

Individuals with lower energy levels are less likely to forage as part of the group.
Some hungry newcomers are more likely to flee in search of additional energy. Entrants
can always search for the finder while foraging, as the finder may obtain food or forage in
the vicinity. Certain entrants may pay close attention to the finders for increased predation
and food competition. Some entrants, on the other hand, pay closer attention to the finders
if they notice the finder leaving their current location to compete for food. If they win, they
receive the finder’s food right away. The following formula is used to update the positions
of enrollees [57]:

Xt+1
i,j =

 Q× e−(
Xt

worst−Xt
i,j

i2
) f or i >

( n
2
)

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣× A+ × L Otherwise
(11)

where Xt
worst is the current worst position in the search space; A+ is a random variable of

dimension d with elements randomly distributed between [1,1]; and A+ = AT(AAT)−1.
If i is greater than n

2 , the i-th entrant has a minimal fitness and is most likely to perish.
Approximately 10% to 20% of the sparrow population is assumed to be danger-aware,
which randomly produces the initial positions of the sparrows. The sparrows on the edge
of the group rapidly fly to the secure area to find a better spot. The sparrows in the middle
of the group relocate randomly to find other sparrows. The mathematical model of the
scout is expressed as follows:

Xt+1
i,j =


Xt

best + β×
∣∣∣Xt

i,j − Xt
best

∣∣∣ f or fi > fg

Xt
i,j + K×

( ∣∣∣Xt
i,j−Xt

worse

∣∣∣
( fi− fw)+ε

)
f or fi = fg

(12)

where Xt
best denotes the current optimal global location; β denotes the control parameter

for step size in the form of random number normal distribution with a variance of “1”
and a mean of “0”; K denotes the direction of sparrow movement in the form of a random
number (∈ [−1,1]); f denotes the fitness function of the optimization problem, where fi, fg,
and fw denote the global current and best and worst sparrow fitness values, respectively;
and ε is the smallest constant required to prevent a zero division error. For simplicity’s sake,
fi > fg indicates that sparrows are at the group’s edge, and Xt

best indicates that sparrows
are around the center of the group; otherwise, fi = fg indicates that sparrows in the middle
of the population know that there is a threat to their species.

Here, power consumption is managed by introducing the SSA into the DSM control
strategy, taking into account the discoverer’s position based on the positions of shiftable
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loads. The algorithm SSA manipulates the vertical and horizontal axes of the energy
consumption pattern. The vertical axis represents the magnitude of energy consumption,
whereas the horizontal axis represents the time of energy consumption. This algorithm
determines the optimal energy consumption pattern that results in the lowest power cost
based on maximum energy consumption and maximum time slot parameters. The chosen
objective function to be minimized is shown in Equation (5).

The main steps of SSA are described in the Algorithm 1:

Algorithm 1 SSA Steps

Step 1: The utility’s ToU price, the daily demand profile, and the unscheduled load timing are all
indications of input data that must be defined at the outset of the program.
Step 2: Input the control parameters R, ST, n and itermax.
Step 3: Initialize a population with n sparrows using Equation (8).
Step 4: Calculate the initial fitness function, and determine the global best sparrow fitness value
and global optimal location using Equations (5) and (9).
Step 5: t = 1.
Step 6: Rate the fitness values and assess the current worst and best evaluation.
Step 7: i = 1.
Step 8: Update the positions of producers, scroungers, and afraid sparrows using
Equations (10)–(12).
Step 9: Last individual? yes > return to step 7, else > calculate the updated fitness values.
Step 10: If new xi,j less than old xi,j > update the sparrow positions and fitness value, else > return
to 7.
Step 11: Last iteration?, yes > print the optimal solution, else > return to step 6.

7.2. Binary Orientation Search Algorithm

BOSA was proposed in (2019) [54] and simulates the rules of an orientation game. In
this game, players move around the playground according to the referee’s instructions. The
starting positions of the players are depicted in Equation (13) [54].

Xi =
(

x1
i , . . . , xd

i , . . . , xn
i

)
(13)

where xd
i denotes the position of player i of dimension d, and n denotes the number

of variables.
In each iteration, the player (P) with the best value of the fitness function is the referee

(R), as described in Equation (14):

R =

{
Maximization problem : location o f max( f )
Minimization problem : location o f min( f )

(14)

The value of the fitness function is denoted by ( f ).
A referee’s hand may or may not be moving in the same body direction. Players, on the

other hand, must only take into consideration the referee’s hand. Equations (15) and (16)
are used to simulate the direction [54]:

Pi = 0.8 + 0.2
t
T

(15)

Orientationd
i =

sign
(

Rd − Pd
i

)
f or rand < Pi

−sign
(

Rd − Pd
i

)
otherwise

(16)

At iteration t and maximum iteration T.
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Although each player is required to move in the direction of the referee, a few players
may not be able to do so. This problem is simulated in Equations (17) and (18) [54].

error = 0.2
(

1− t
T

)
(17)

xd
i =

{
xd

i + rand ∗Orientationd
i ∗ xd

h
xd

l + rand ∗
(

xd
h − xd

l

) (18)

where xd
l and xd

h are the lower and upper limits, respectively.
In discrete space, the dimensions of the particle position are denoted by the numbers

“0” and “1” for each dimension. In any dimension, the movement of an agent corresponds
to the change in its value from zero to one or vice versa. Therefore, the displacement in each
dimension is determined as a probability function, and the player’s position is updated in
response to this probability function. In BOSA, the probability function (dX j,d) is chosen to
be restricted to the interval of [0–1]. The probability function is given in Equation (19) [54].

S(dX j,d (t)) =
∣∣∣tanh

(
dX j,d (t)

)∣∣∣ (19)

Each player’s new position is simulated based on the probability function using
Equation (20).

X j,d (t + 1) =

{
complement

(
X j,d (t)

)
f or rand < S(dX j,d (t))

X j,d (t) Otherwise
(20)

The following procedures detail how to apply the BSOA-based proposed optimal DSM
program to the investigated problem, taking into account the player positions based on the
positions of the shiftable loads. This algorithm alters the axes of the energy consumption
pattern. The vertical axis shows energy usage, whereas the horizontal axis shows time.
Based on the adjusted parameters of maximum energy consumption and maximum time
slots, this algorithm calculates the lowest-cost energy consumption pattern. In Algorithm 2,
the steps involved in applying BSOA are as follow:

Algorithm 2 BOSA Steps

Step 1: The utility’s ToU price, the daily demand profile, and the unscheduled load timing are all
indications of input data that must be defined at the outset of the program.
Step 2: All of the BOSA settings in Table 2 should be set.
Step 3: The DSM objective (Equations (5) and (14)) can be minimized by randomly sampling a
population.
Step 4: The player’s position is updated for every population inside the iteration range using
Equations (19) and (20).
Step 5: Verify each population’s constraints.
Step 6: Repeat steps 3–5 until the stop condition is met.

7.3. Cockroach Swarm Optimization Algorithm (CSOA)

CSO is derived from the foraging behavior of cockroaches, which includes swarming,
scattering, and light evasion [58–60]. As a result, the CSOA employs a set of rules to mimic
the collective behavior of cockroaches. The initial step of the algorithm is to generate a
set of potential solutions. Initial solutions are typically generated at random in the search
area. Additionally, the CSOA includes three different procedures for the purpose of solving
various optimization issues during each iteration, including dispersing, ruthless behavior,
and chase swarming. The strongest cockroaches in the chase-swarming process take the
best local solutions (Pi ), create small swarms, and progress toward the global optimum
in the new cycle (Pg ). Each individual (Xi ) in this procedure reaches its local optimum
within its visibility range. Because individuals pursue their local optima in different ways,
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it is possible for a cockroach in a small group to be the strongest by finding a better
solution. A single cockroach’s local optimum exists within its own field of vision, and it
seeks the best global solution [61]. Another procedure is for individuals to be dispersed.
It is performed on a periodic basis to maintain cockroach diversity. In the search space,
each cockroach takes a random step. This process is analogous to the phenomenon of the
weakest cockroaches being consumed in the absence of sufficient food [61]. The following
is the CSOA model [62,63]:

(1) Chase-Swarming Behavior:

Xi =

{
Xi + step.rand.(Pi − Xi ) Pi 6= Xi
Xi + step.rand.

(
Pg − Xi

)
Pi = Xi

(21)

where Xi denotes the cockroach position, step denotes a constant value, rand denotes a
random number between 0 and 1, Pi denotes an individual’s best position, and Pg denotes
the global optimum position. Consider:

Pi = Optj
{

Xj, |Xi − X| ≤ v
}

(22)

where the perception distance, v is constant, j = 1, 2, . . . , N and i = 1, 2, . . . , N. Consider:

Pg = Opti{Xi} (23)

(2) Dispersion Behavior:

Xi = Xi + rand(1, D) (24)

where the random vector rand(1, D) has D dimensions.

(3) Ruthless Behavior:

Xk = Pg (25)

where k is a random non-zero integer between [1, N].
In this paper, we introduce the CSO into the DSM control strategy to manage power

consumption. As a result of this algorithm, the axis along which energy is used is shifted.
Electricity consumption is shown vertically, with time displayed horizontally. This method
determines the least expensive energy consumption pattern given user-specified maximum
energy consumption and maximum time slots. The principal steps for using the proposed
optimal DSM program based on CSO are outlined in Algorithm 3 as:

Algorithm 3 CSOA Steps

Step 1: Indicators of input data that must be defined at the outset of the program include the
utility’s ToU price, the daily demand profile, and the unscheduled load timing.
Step 2: Set all parameters to their default values and initialize the cockroach swarm using
uniformly distributed random numbers.
Step 3: Use Equations (22) and (23) to determine Pi and Pg, respectively.
Step 4: Use Equations (21), (24), and (25), to carry out chase swarming, dispersion behavior, and
ruthless behavior, respectively.
Step 5: Loop until a predetermined condition is met.

8. Performance Results

The adopted algorithm-based system was developed and tested using MATLAB
software (R2021b). The simulation program was executed on a laptop computer with
an extendable 2.30 GHz processor and 32.00 GB RAM. The program is executed with
control parameters of each adopted algorithm, which are illustrated in Table 3. These
parameters are set in the following manner: some algorithms (such as SSA and CSO)
cannot be stable before 500 iterations (a stable operation means the results are exactly
the same at any time of running the code). The maximum intended shift time for every
shiftable appliance is 4 h, and this parameter can be adjusted based on the appliance’s
maximum desired shift time. The maximum energy consumption parameter can be set
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to reflect the maximum intended energy consumption of the residential building. The
maximum energy consumption for appliances is set at 100 kW. Lastly, the algorithm finds
the optimal load pattern by rescheduling shiftable loads within a 4 h window and lowering
peak consumption to less than the maximum desired value (100 kW), all based on the
user’s preferences as set in the algorithm parameters. Figure 5 illustrates the ToU pricing
pattern that was been adopted.

Table 3. CSO, SSA, and BOSA control parameters.

Populations Size Maximum Iterations Maximum Limit Allow Max. Shift Time Slot

30 1000 100 4
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The non-shiftable load profile on an hourly basis based on the load data (Tables 1 and 2)
is shown in Figure 6a. The hourly curve of shiftable loads is presented in Figure 6b.
Figure 6c depicts the total load profile, which includes both shiftable and non-shiftable
loads. The adopted virtual load data were assumed to be approximately simulated do-
mestic actual load statistics in houses and residential structures. Therefore, they can be
installed in homes or residential buildings. When the load data are input into an optimiza-
tion method, a change is made to the time slot of the unschedulable shiftable load profile.
To minimize the energy demand, PAR, and electricity cost, the proposed optimal DSM
program only manipulates the non-scheduling shiftable load curve based on the maximum
energy consumption and time shift hours according to Table 3. With this change, various
appliances may be scheduled to run during off-peak hours rather than during peak hours,
resulting in lower energy use. As the time intervals (horizon axis) shift, the magnitude of
energy consumption is also altered, as peak consumption is shortened and peak-to-average
energy is lowered.

Figure 7 illustrates the simulation results for the adopted residential area energy
consumption and for two days (48 h) when the DSM programs based on optimization
algorithms are applied and loads are successfully shifted to off-peak hours. It can be seen
in the scheduled load curves that on-peak energy consumption (from 9 h to 16 h in the
first day) decreases, and off-peak consumption (off-peak hours equal daily hours except
on-peak hours) increases. Consequently, the peak-to-average ratio decreases. Therefore,
management reduces energy consumption and the electricity cost. The peak demand value
of the proposed algorithm-based DSM is up to 87 kW, which is the lower than without the
use of the DSM program and optimization algorithms (114.2 kW). Residential customers
should attempt to schedule their peak loads for times when electricity prices are relatively
low, which results in a lower electric bill. As illustrated in Figure 7, residential users can
significantly reduce their daily bill for electricity through proper scheduling of loads. The
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adopted algorithms achieve very similar energy consumption and cost-saving results (all
up to 16.3% savings). The peak demand is decreased below the maximum predetermined
energy consumption limit in the scheduled curve, from 114.2kW to 87kW. In general, the
DSM technique performs better as the number of controllable or shiftable appliances grows.
The results prove that the proposed optimal DSM program effectively manages a number
of residential loads in a residential area by shifting controllable loads in order to reduce
peak energy consumption.
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Figure 8 illustrates the amount of power generated by the MG and the grid, the amount
of power consumed by loads, and the costs associated with the grid. Figure 8a,c,e,g assume
that the MG supply power is set to 0%, 50%, 100%, and 125% of the total power consumed
by the loads, respectively. Their costs are represented graphically in Figure 8b,d,f,h, respec-
tively. As shown in Figure 8a, there is no MG power, and all loads are supplied by the
utility grid, implying that the cost will be high, as illustrated in Figure 8b. In Figure 8c, the
MG power is half of the consumption power, so there is a power supply deficit. Therefore,
the utility grid supplies this deficit, and its cost shown in Figure 8d. There is no power
supply shortage in Figure 8e because the MG power is equal to the consumption power.
Consequently, the total energy demand is met by MG resources. As depicted in Figure 8f,
there are no costs in this case because all loads are supplied by MG resources only. In
the final case shown in Figure 8g,h, no power is purchased, but power is sold from the
adopted MG to the utility grid, as the MG power is been expanded by 25% of the total
consumption power.
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Figure 8. The amount of power generated by the MG and the grid, the amount of power consumed
by loads, and the grid costs with the MG supply power set to 0 (a,b), 0.5 (c,d), 1 (e,f), and 1.25 (g,h)
from the total power consumed.

Figure 9 demonstrates the peak energy consumption and total electricity cost for
both unscheduled and scheduled load profiles, illustrating the outcomes of the adopted
algorithms, as well as GA, which is a commonly used algorithm in research studies. It
can be observed that all algorithms yield similar results. The unscheduled peak energy
consumption and cost are showcased as 114.2 kWh and 650.5 cents of USD, as indicated by
black bars. With the proposed DSM, peak consumption energy is reduced to around 87 kWh
by all algorithms, except for the BSOA (red bar), which can produce peak consumption
of up to 85.8 kWh. The scheduled electricity costs are reduced to 5438 cents of USD.
Figure 10 shows the peak amount of energy used and the total cost of electricity for both
unscheduled and scheduled load profiles displayed on the ThingSpeak platform using the
Energy Internet. As can be seen, the unscheduled peak energy consumption and cost are
114.2 kWh and 6505 cents, respectively. After applying the proposed optimal DSM, the
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peak of consumption energy drops to about 87 kWh, whereas the electricity costs drop
to 5438 cents of USD. The results indicate that the optimal DSM can properly address
the shiftable load in the presence or absence of EI. The convergence rates of the adopted
algorithms are shown in Figure 11. The y-axis displays the value of the fitness versus time,
whereas the x-axis depicts the iteration number. It is evident that the BSOA converges to the
lowest cost compared to the other algorithms (up to 5438 cents of USD). In order to evaluate
the robustness of the algorithms, a total of 20 independent runs were performed for each
algorithm. Figure 12 demonstrates the mean of peak demand and the standard deviation
for a total of 20 runs. As can be seen, the mean value of the CSO is the lowest (86.61 using
CSO-based DSM and 114.2 without DSM) in comparison with the other algorithms. Because
the BOSA algorithm exhibits the smallest amount of deviation, it is superior to the other
algorithms in this regard. It results in peak demand of 85.8 kWh, a cost of 5438.98 cents
of USD, and 16.3% savings. Figure 13 illustrates the required computation time for each
optimization algorithm. The elapsed time (ET) is computed based on the parameters of
each algorithm, as shown in Table 3. It is clear that the BSOA and GA are superior in terms
of computation time because they have shorter elapsed times (ET = 27.71 s for the BSOA
and ET = 30.22 s for the GA). Finally, it can be stated that the BOSA is superior to the other
algorithms in terms of peak energy demand reduction, cost minimization, robustness, and
speed of computation.

Axioms 2023, 12, x FOR PEER REVIEW 22 of 26 
 

 

cents of USD. The results indicate that the optimal DSM can properly address the shiftable 
load in the presence or absence of EI. The convergence rates of the adopted algorithms are 
shown in Figure 11. The y-axis displays the value of the fitness versus time, whereas the 
x-axis depicts the iteration number. It is evident that the BSOA converges to the lowest 
cost compared to the other algorithms (up to 5438 cents of USD). In order to evaluate the 
robustness of the algorithms, a total of 20 independent runs were performed for each al-
gorithm. Figure 12 demonstrates the mean of peak demand and the standard deviation 
for a total of 20 runs. As can be seen, the mean value of the CSO is the lowest (86.61 using 
CSO-based DSM and 114.2 without DSM) in comparison with the other algorithms. Be-
cause the BOSA algorithm exhibits the smallest amount of deviation, it is superior to the 
other algorithms in this regard. It results in peak demand of 85.8 kWh, a cost of 5438.98 
cents of USD, and 16.3% savings. Figure 13 illustrates the required computation time for 
each optimization algorithm. The elapsed time (ET) is computed based on the parameters 
of each algorithm, as shown in Table 3. It is clear that the BSOA and GA are superior in 
terms of computation time because they have shorter elapsed times (ET = 27.71 s for the 
BSOA and ET = 30.22 s for the GA). Finally, it can be stated that the BOSA is superior to 
the other algorithms in terms of peak energy demand reduction, cost minimization, ro-
bustness, and speed of computation. 

 
(a) (b) 

Figure 9. (a) Peak energy consumption and (b) electricity costs for both the unscheduled and sched-
uled load profiles. 

 
(a) (b) 

Figure 10. (a) Peak energy consumption and (b) electricity costs for both the unscheduled and sched-
uled load profiles displayed via ThingSpeak platform. 

Figure 9. (a) Peak energy consumption and (b) electricity costs for both the unscheduled and
scheduled load profiles.

Axioms 2023, 12, x FOR PEER REVIEW 22 of 26 
 

 

cents of USD. The results indicate that the optimal DSM can properly address the shiftable 
load in the presence or absence of EI. The convergence rates of the adopted algorithms are 
shown in Figure 11. The y-axis displays the value of the fitness versus time, whereas the 
x-axis depicts the iteration number. It is evident that the BSOA converges to the lowest 
cost compared to the other algorithms (up to 5438 cents of USD). In order to evaluate the 
robustness of the algorithms, a total of 20 independent runs were performed for each al-
gorithm. Figure 12 demonstrates the mean of peak demand and the standard deviation 
for a total of 20 runs. As can be seen, the mean value of the CSO is the lowest (86.61 using 
CSO-based DSM and 114.2 without DSM) in comparison with the other algorithms. Be-
cause the BOSA algorithm exhibits the smallest amount of deviation, it is superior to the 
other algorithms in this regard. It results in peak demand of 85.8 kWh, a cost of 5438.98 
cents of USD, and 16.3% savings. Figure 13 illustrates the required computation time for 
each optimization algorithm. The elapsed time (ET) is computed based on the parameters 
of each algorithm, as shown in Table 3. It is clear that the BSOA and GA are superior in 
terms of computation time because they have shorter elapsed times (ET = 27.71 s for the 
BSOA and ET = 30.22 s for the GA). Finally, it can be stated that the BOSA is superior to 
the other algorithms in terms of peak energy demand reduction, cost minimization, ro-
bustness, and speed of computation. 

 
(a) (b) 

Figure 9. (a) Peak energy consumption and (b) electricity costs for both the unscheduled and sched-
uled load profiles. 

 
(a) (b) 

Figure 10. (a) Peak energy consumption and (b) electricity costs for both the unscheduled and sched-
uled load profiles displayed via ThingSpeak platform. Figure 10. (a) Peak energy consumption and (b) electricity costs for both the unscheduled and

scheduled load profiles displayed via ThingSpeak platform.



Axioms 2023, 12, 33 22 of 25Axioms 2023, 12, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure 11. Convergence curves for BOSA, SSA, CSOA, and GA. 

  
(a) (b) 

Figure 12. Standard deviation (a) and mean of peak values (b) using BOSA, SSA, CSO, and GA. 

 
Figure 13. Elapsed times of the optimization algorithms in seconds. 

  

Figure 11. Convergence curves for BOSA, SSA, CSOA, and GA.

Axioms 2023, 12, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure 11. Convergence curves for BOSA, SSA, CSOA, and GA. 

  
(a) (b) 

Figure 12. Standard deviation (a) and mean of peak values (b) using BOSA, SSA, CSO, and GA. 

 
Figure 13. Elapsed times of the optimization algorithms in seconds. 

  

Figure 12. Standard deviation (a) and mean of peak values (b) using BOSA, SSA, CSO, and GA.

Axioms 2023, 12, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure 11. Convergence curves for BOSA, SSA, CSOA, and GA. 

  
(a) (b) 

Figure 12. Standard deviation (a) and mean of peak values (b) using BOSA, SSA, CSO, and GA. 

 
Figure 13. Elapsed times of the optimization algorithms in seconds. 

  

Figure 13. Elapsed times of the optimization algorithms in seconds.



Axioms 2023, 12, 33 23 of 25

9. Conclusions

DSM plays a crucial role in ensuring that electricity supply and demand are in balance.
DSM aids in the maintenance of a reliable power system and the reduction in both electricity
costs and PAR. In this study, we developed MATLAB-based optimization algorithms and
an Energy Internet for residential users to reduce peak consumption of the load curve. This
work has potential applications in the development of future SGs. Optimal DSM based on
metaheuristic optimization algorithms was applied to a variety of residential controllable
appliances. The proposed DSM program was optimized by recent optimizers of BOSA, SSA,
and CSO using the load-shifting technique. The residential loads are primarily supplied
by the SG’s RERs, whereas the deficiency is compensated by the utility grid (grid is last
priority). In addition, by using secure EI technology, the SG’s energies are monitored
properly. Total energy expenditures and peak energy consumption can be tracked in real
time from anywhere. The proposed model indices, such as peak demand and electricity
costs, ensure that the BOSA-based DSM outperforms other algorithms. Whereas the CSO
algorithm has the smallest mean value of peak demand (86.61 kWh), the BOSA algorithm
has the smallest deviation (i.e., standard deviation for BOSA = 0.8, SSA = 1.7 and CSO = 1.3),
making it superior to the other algorithms in terms of electricity costs and savings (BOSA
produced 5438.98 cent of USD cost (mean value) and 16.3% savings). Therefore, the BOSA
technique is effective in lowering electricity bills and power consumption. Moreover,
the results of the proposed approaches were compared to GA results. The GA produces
nearly identical results to SSA and CSO in terms of mean peak demand and electricity
cost, but the high standard deviation renders the GA inferior. In terms of computation
time, the BOSA and GA are superior, owing to their shorter elapsed times (ET = 27.71 and
30.21 s, respectively).

The proposed system has one limitation: it is only applied to controllable appliances
in order to minimize energy consumption using an optimal load-shifting DSM technique. It
cannot reduce the amount of electricity used by manipulating non-controllable appliances
with an optimal peak-clipping technique and operating non-shiftable appliances according
to the priority of each appliance. In this paper, we propose recommendations for future
research, including, in addition to the load-shift technique, the use of an optimal peak-
clipping DSM program and running each appliance according to its priority in order to
more efficiently cut power consumption.
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Abstract: The paper presents a new vision on the energy consumption management in the case of the
small and medium enterprises (SMEs), integrated into an advanced decision support platform, with
technical and economic benefits on increasing the energy efficiency, with four modules for database
management, profiling, forecasting, and production scheduling. Inside each module, artificial
intelligence and data mining techniques were proposed to remove the uncertainties regarding the
dynamic of technological flows. Thus, the data management module includes the data mining
techniques, that extract the technical details on the energy consumption needed in the development of
production scheduling strategies, the profiling module uses an original approach based on clustering
techniques to determine the typical energy consumption profiles required in the optimal planning of
the activities, the forecasting module contains a new approach based on an expert system to forecast
the total energy consumption of the SMEs, and production scheduling module integrates a heuristic
optimization method to obtain the optimal solutions in flattening the energy consumption profile.
The testing was done for a small enterprise from Romania, belonging to the domain of trade and
repair of vehicles. The obtained results highlighted the advantages of the proposed decision support
platform on the decrease in the intensity of energy consumption per unit of product, reduction of the
purchase costs, and modification of the impact for which energy bills have on the operational costs.

Keywords: energy management; energy efficiency; small and medium enterprises; artificial
intelligence techniques; decision support platform

1. Introduction

Combating climate change is one of the five main themes of the Europe 2020 comprehensive
strategy [1], adopted by the European Council in 2010, for smart, sustainable, and inclusive growth.
The specific targets of the strategy consider that by 2020, greenhouse gas emissions to be reduced by
20%, 20% of electricity to be covered from renewable sources, and energy efficiency to be improved
by 20%. However, the European Commission modified the targets set at the European Union (EU)
level according to the document “Towards a Sustainable Europe by 2030” [2]. These targets refer to
ensure at least 32% of the total energy consumption from renewable sources and energy efficiency of at
least 32.5% in 2030, which will lead to exceeding the commitments made in within the framework of
the Paris Agreement on climate change concerning to the reducing greenhouse gas emissions by at
least 40% by 2030 compared to 1990 levels. If for the 2020 targets on greenhouse gas emissions and
renewable energy, the EU is on track to achieve the target on the energy efficiency that may not be
reached [3]. On 4 February 2020, Eurostat published a document [4] which stipulates that in 2018, the
primary energy consumption in the EU was 4.9% above the efficiency target for 2020 and 22.0% away
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from the 2030 target, see Figure 1 adapted from [4]. It can highlight that since 1990, the primary energy
consumption had a high variation between a maximum value recorded in 2006, with a gap by 15.2%
from the 2020 target, and a minimum value recorded in 2014, representing a difference of 1.5% from
the 2020 target.
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In December 2018, in the Official Journal of the European Union (L328), three normative acts related
to the “Clean Energy for All Europeans” legislative package, with effect on 24 December 2018, were
published. EU Directive 2018/2002 on energy efficiency establishes a common framework for measures
to promote energy efficiency throughout the Union, to ensure that its main objectives are reached at least
32.5% by 2030 and to pave the way for future efficiency gains energy after this data [5]. The European
Energy Regulatory Authorities supports the small and medium enterprises (SMEs) to use energy
efficiently, including through special schemes, in compliance with state aid regulations. The support
schemes for SMEs were established, including, if they have entered into voluntary agreements, to
cover the costs of an energy audit and the implementation of cost-effective recommendations made in
the following energy audits [6]. The EU Directive 27/2012 on energy efficiency [7] represents the base
through which the small and medium enterprises (SMEs) are encouraged to participate in the energy
audit programs. However, the SMEs have no obligation to follow energy auditing programs, although
Article 8 of this Directive stipulates that “the Member States must develop programs that encourage
SMEs to undergo energy audits and to subsequently implement the recommendations from these
audits”. Moreover, “the member States may establish aid schemes for SMEs, including where voluntary
agreements have been concluded, to cover the costs of an energy audit and the recommendations of
energy audits, the costs involved being high, if it is decided to implement the proposed measures” [7].

In this context, many industrial consumers become actively interested in the implementation of
measures to reduce energy consumption because the energy efficiency is not only a tool to save money
and resources but also a need for flexible adaptation to own needs.

Supporting SMEs and the promotion of energy efficiency measures are essential for economic
progress because about 23 million European SMEs represent 98% of the total number of businesses.
The majority of SMEs are microenterprises with less than 10 people, having an annual turnover of up
to 2 million euros [8]. The share of SMEs with less than 250 persons is very high, approximately 99.79,
see Table 1 and Figure 2 [9].
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Table 1. Classification of small and medium enterprises (SMEs).

SMEs’ Type Share (%) Employees Annual Turnover (mil. Euro)

Micro 92.13 0–10 ≤2

Small 6.61 11–49 ≤10

Medium 1.05 50–250 ≤50
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Most activities of the SMEs are in the following fields: trade/repair of vehicles and
motorcycles (32%), professional/scientific/technical (10%), transport and storage (10%), construction
and manufacturing (10%), and others (38%), see Figure 3.
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In these conditions, SMEs represent one of the biggest potentials of energy saving, not fully
exploited at present. The modern technologies available today, regarding the monitoring and control
tools of energy consumption, have the potential to save at least 40% of energy consumption. The analyses
have highlighted the significant energy savings, available at each point of the consumption chain
if energy efficiency measures are implemented. Only one SME can save an amount of electricity
equivalent to that of 1000 private houses [8]. In the case of investments, there are hidden costs whose
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share can be quite high for SMEs. Thus, for the large industrial consumers, energy efficiency measures
require investments and resources. Their application could reduce the energy consumption with a
certain percent, which is recovered with a very high probability because the energy bill is of thousands
of euros. However, the allocation of financial resources is very difficult in the case of the SMEs due
to the investments, which should lead to saving energy with a similar percent. Thus, the recovery
must do from the benefits of energy saving, this being several hundred euros in most cases. In these
conditions, more SMEs cannot allocate financial resources to purchase equipment or services [9,10].

Another aspect encountered in the case of many SMEs refers to the fact that there is not a
relationship between the energy department, which takes care of the operation and maintenance of
equipment and installations and the financial department, which pays the energy bills. In this case,
there are no bonuses from the management staff to encourage the employees to save energy, this being
a fixed component, without paying much attention, in the final cost of the final products, without the
energy department to be responsible for it [11].

In addition, it is important to know whether SMEs are showing interest or make certain efforts
to apply current management standards or moreover, how many of the SMEs seek to meet the
requirements of an integrated management system. Most of the SMEs have implemented the following
management systems: Quality Management System (ISO 9001), Environmental Management System
(ISO 14001), and Health and Safety Management System (ISO OHSAS 18001) [12]. Regarding the Energy
Management System ISO 50001 [13], published in 2018, it does not define the specific performance
criteria associated with the SMEs’ energy consumption and energy efficiency. Instead, a management
model is proposed to influence the development and implementation of energy policy to achieve
the targets and action plans, considering both legislation and information from the analysis and
management of energy consumption. The standard describes the final target, but not how it can be
achieved, and does not allow SMEs to understand clearly its position on the process to achieve this
final target. Implementation of the ISO 50001 system alone is not enough for the SMEs, because it is
necessary to follow the consumption indicators with the purpose of rational energy utilization, to fulfil
the targets of the management system efficiency. Thus, the production planning based on an efficient
energy use strategy, following ISO 50001, should consider monitoring the energy consumption and
measures for increasing the energy efficiency.

In these conditions, SMEs have needed software products to monitor and control the consumption
and to identify solutions that allow the adoption of measures to increase energy efficiency.

Thus, a decision support platform is proposed, having the modules with characteristics that
differentiate it and offer more advantages compared to the other approaches which treated the energy
management at the SMEs, whatever the industrial activity branch:

(i) The data management module is based on the data mining technique that extracts the technical
details on energy consumptions used to develop production scheduling strategies. It allows the
analysis of large size databases regarding the daily, monthly, and yearly energy consumption or
technical and operating characteristics for equipment and installations. In addition, it ensures the
interface between the application modules, having a query that follows the correlation between
energy consumption, economic indicators (the turnover, production value, personnel costs, and
total purchases with goods and services), and costs.

(ii) The profiling module integrates an original approach based on clustering techniques to determine
the typical energy consumption profiles (TECPs) assigned to different activities necessary for
establishing the type of tariffs that will lead to the reduction of energy bills and optimal planning
of the activities.

(iii) The forecasting module contains a new approach that uses an expert system based on the rules
If -Then to forecast the energy consumption of each installation and equipment. The total energy
consumption at the SME level is obtained through the aggregated process of all individual energy
consumptions associated with each equipment and installation.
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(iv) The production scheduling module includes a novel approach based on the combinatorial optimization
for daily consumption programming, which uses a fast searching algorithm to find the optimal
solutions in the admissible set. The algorithm uses the status (on or off), type (programmable or
non-programmable), working period, the number of operating cycles, and dependence (within
the activities) of the equipment and installations as input data, determining the optimal solutions
regarding the flattening of daily energy consumption profile with the benefits on the cost of
energy bills.

The remainder of the paper is structured as follows. Section 2 presents a review on the treated
topic highlighting the advantages of the proposed decision support platform. Section 3 details the
characteristics of the developed decision support platform, highlighting the advantages of the proposed
approaches inside of each module. The obtained results in testing of the platform at a small enterprise,
from a representative field (the trade and repair of vehicles), are presented in Section 4. Section 5
highlights the conclusions and future works.

2. Literature Review

The various approaches were developed by companies in software applications for the management
and analysis of energy consumption.

The software application developed in [14] allows the management, analysis, and control of energy
consumption. Some disadvantages can be highlighted: an optimal consumption programming module
according to the equipment and installations for an analysis contour is not developed, the forecasting
module is missing, and the application domain is only for the large industrial consumers. The software
tool developed in [15] allows, also, the management of energy consumption at large industrial
consumers, without the forecasting and optimal production scheduling modules. The software
product [16] has implemented energy consumption control and forecasting modules. The disadvantage
refers to the fact that it only does short-term forecasting of the consumption, without considering the
medium- or long-term forecasting. The software solution presented in [17] allows the acquisition,
monitoring, management, and analysis of all types of consumption. The data analysis is presented for
different consumption points, in tabular form, graphical representations, or brief reports, respectively
maps. The disadvantages refer to the lack of energy consumption forecasting and the optimal
scheduling modules. The solution identified in [18] envisages a software tool that allows management
based on the energy balances for industrial consumers. The measures with major investments are
proposed, without a deeper analysis of energy consumption, forecasting, and production scheduling.
A management solution, which considers the analysis and control of the energy consumptions, is
developed in [19], but with a lack of the consumption forecasting and production scheduling modules
to obtain a streamline of the technological process and reducing the costs at the energy bills.

In addition, there are the patented approaches and systems for energy management. An energy
management system applied to the large industrial consumers, which offers a complete knowledge of the
energy consumption corresponding to their installations, is presented in the reference [20]. The system
consists of two modules to analyse energy consumption and communicate with data acquisition points.
However, it does not include energy efficiency modules based on energy consumption forecasting
and production scheduling. Another system is developed in [21] to schedule the equipment to work
at certain time intervals when the energy tariff is low. The energy storage system uses batteries and
alternative energy sources that work to sell electricity to the distribution network operator during
certain periods in favourable cost conditions. However, this system refers strictly to residential
consumers and office buildings that have available renewable sources and storage units.

In addition, regarding software tools based on the statistical processing of input data and
classical forecasting and optimization methods, there are researches carried out within European
projects to propose new innovative approaches and methodologies. The main targets are to develop
decision-making strategies to fulfil European goals regarding energy efficiency. The project “A
holistic framework for supporting SMEs in increasing energy efficiency—SMEmPower Efficiency” [22]
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focuses on increasing the energy savings in SMEs, being involved in eight countries from the main
geographical regions of Europe: West (Spain), Central (Germany), South (Italy), North (Great Britain),
and Eastern and Southern Europe (Romania, Slovenia, Greece, and Cyprus). The project supposes the
development of the tools referring to a web platform for energy analysis, a tool for monitoring, and
an instrument for measurement and verification. The SME Program for Energy Efficiency through
Delivery and Implementation of the Energy Audits (SPEEDIER) program, a European project in the
H2020 framework program, was officially launched on June 18 and 19, 2019. The project aims to
address the obstacles encountered by SMEs in terms of expertise and resources when conducting
energy audits and implementing recommended energy-saving measures [23].

In addition to research in projects, patents, and decision-making software products, there are also
approaches published in journals and conferences that offer solutions for increasing energy efficiency at
the SMEs. A comprehensive presentation on energy management for SMEs based on automatic meter
reading (AMR) systems and an energy manager, which applies the energy efficiency recommendations,
is done in [24]. The paper considers that the AMR system is not available to SMEs and the classical
meters are read only annually or quarterly. The authors consider in [25] that a rational decision-making
process (DMP) based on a databases management (DBM) is imperative for a real application of energy
efficiency measures, which should also consider a schedule and optimization steps (SOS). Two typical
load profiles for SME energy demand are found in [26] using a Smart Meter database, one for operation
process, which includes the peak load, and other for the inactivity time. The two forecasted load
profiles are improved using a Gaussian mixture technique. The E-learning platform presented in [27]
contains practical tools for energy efficiency improvement on the SMEs’ level.

On the other hand, some studies propose various approaches to minimize energy consumption.
Some studies consider that a successful key for energy efficiency programs is the outreach of all SMEs
personal: staff, employees, customers, guests [28], or energy audits [29,30]. However, the optimization
of the operating parameters represents a no-cost strategy which can be implemented by SMEs to
achieve real energy efficiency [31,32]. The various barriers encountered in increasing the SMEs’ energy
efficiency were investigated in [33–36]. Thus, six most important barriers were identified in [33]
for the SMEs belonging to the ferrous material industry, namely, the government energy policy, the
financial-economic problem, the managerial-organizational process, the technological factors, the
quality of the workforce, the raw material, and the used fuel. The barriers are linked because they
are interdependent. According to [36], the main drawback consists of restricted access to capital
corroborated with a lack of information and low priority.

One way to develop a plan to improve energy efficiency (PIEE) is the use of new approaches
and modern technologies to minimize energy consumption [37]. This PIEE should also be a priority
for the SMEs [38]. Reorganization of production, modernization of technologies, and introduction of
efficient equipment lead to the growth of industrial production. With the inclusion of these measures
in the SMEs’ sector, the reduction of consumed resources and energy, simultaneous with decreasing
the cost, will appear. Optimal management of SMEs implies the aspects of the energy efficiency
and environmental investments, with results on the increase of energy savings and reduction of
greenhouse gas (GHG) emissions [39–41]. The energy management methodology adapted to each
SMEs proposed in [42] is focused on the individual level of a triggering practice to increase energy
efficiency. In this context, internal capabilities were used as a minimal resource required for energy
management implementation.

Evidence of the high economic potential was highlighted in the case of active energy management
in SMEs [43,44] and the implementation of a barrier’s taxonomy regarding the adoption of
energy-efficiency measures [45]. In addition, recent studies concluded that increasing energy efficiency
could use the lean management concept at the SMEs level [46–48]. The lean refers to create more value
for consumers with fewer resources [46]. Besides this concept, the intelligent energy management
concept was also applied to buildings in the last period [49–51]. A detailed review of the studies
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that developed data-driven building energy consumption prediction models based on the intelligent
algorithms (machine learning) is presented in [51].

A brief description of the literature is presented in Table 2 to highlight the advantage of our new
vision on energy consumption management, proposed as an advanced decision support platform, with
technical and economic benefits on increasing energy efficiency.

Table 2. Comparison between proposed approach and the literature.

Number of
Reference

Database
Management

Consumption
Profiling

Consumption
Forecasting

Schedule and
Optimization

Cost
Analysis

Decision
-Making

[24,42,47] Yes No No No No Yes

[25,27,30] Yes No No Yes No Yes

[26] Yes Yes Yes No No Yes

[28,29] Yes No No Yes Yes Yes

[31,32] No No No Yes Yes Yes

[33–35] No No No No Yes Yes

[36,41] Yes No No No No No

[37,38] Yes No No Yes Yes Yes

[39,40] Yes No Yes No Yes Yes

[43,47] Yes No Yes Yes No Yes

[44,46] Yes Yes No Yes No No

[45] Yes No No No Yes No

Proposed
approach Yes Yes Yes Yes Yes Yes

It should be emphasized that there are, also, other references which solved the problem of optimal
management, but their proposed approaches are similar to those presented in the table.

3. The Structure of the Decision Support Platform

Four interdependent modules associated with the steps used in an efficient management process
are integrated into the platform, see Figure 4.
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The platform has applicability in the process of monitoring, control, and optimization of energy
consumption, respectively cost reduction; it has the following features associated with efficient energy
management: description and characterization of the SME through the characteristics of energy
consumption by categories of industrial consumers, regardless of the field of activity of SMEs; the
establishment of the correlations between energy consumptions, respectively consumption patterns;
profiling and forecasting of energy consumption; and optimal production scheduling for flattening the
energy consumption profile.

The platform allows the SME to manage the development of technological processes. Thus, the
platform ensures the continuity of the technological processes, helping the SMEs to save money for
useless updates. On the other hand, because the industrial processes are never static, the platform was
built also to be adaptable. If the SMEs will adopt modern technologies and develop new processes
to maintain their activity, the integration will be done easily in the database of the platform for new
equipment and installations. Not least, the platform offers exclusive solutions, namely, what works for
one SME may not work for the other.

Artificial intelligence-based techniques were proposed inside each module of the platform to
understand the evolution and trend of energy consumption and identify solutions which minimize
the impact of the energy bills: The data management module is based on the data mining technique that
extracts the technical details on energy consumptions used to develop production scheduling strategies;
The profiling module integrates an original approach based on clustering techniques to determine the
typical energy consumption profiles assigned to different activities; The forecasting module contains a
new approach that uses an expert system to forecast the total energy consumption at the SME level; and
The production scheduling module includes a novel approach based on the combinatorial optimization for
daily consumption programming and determining the optimal solutions regarding the flattening of
daily energy consumption profile with the benefits on the cost of energy bills.

All modules use procedures that allow the interaction between them, ensuring the communication
of information and the synchronization of executions, to assist the Decision-Maker in the identification
of the optimal solutions associated with an efficient management process. Details on each module are
presented in the following subsections.

3.1. The Database

The database contains files with energy consumptions, costs from energy bills, equipment and
installations associated with the technological flows from the SME, and economic indicators.

The working modules (consumption and cost analysis module, profiling module, forecasting
module, and production scheduling module) of the platform will upload the data sequences stored in
the files with a matrix structure.

If the SME has a smart meter with the data communication unit, then the energy consumption
file includes fields associated with the calendar data (year, month, day from the month, and day from
the week), representing the first four columns, and the energy consumptions (the following columns).
The indices from 1 (January) to 12 (December) identify the months and from 1 (Monday) to 7 (Sunday)
for the day from the week. Depending on the sampling step, m, (a quarter-hour, half-hour, and hour),
the number of columns associated with the energy consumption can be 96, 48, and 24. All these data
are accessed by all working modules from the matrix DW, having the size (NW × (4+m)), where NW
represents the number of records identified through days and m = {24, 48, 96}. A sequence from the
energy consumption file, where m = 24, is presented in Figure 5.
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The file has a different structure when the SME has a classic meter installed, containing only the
calendar data and the daily energy consumption (which it reads at the end of working schedule the
operating staff), such that the matrix DW has the size (NW × 5).

The file energy costs include records associated with the calendar data (year and month) and
the energy costs introduced in the database from the monthly bills. These costs are assigned to the
monthly energy consumptions resulted from the aggregation of daily energy consumptions associated
with the billed month. The same indices from 1 (January) to 12 (December) identify the months. All
these data are accessed by the working modules from the matrix DC, having the size (NC × 3), where
NC represents the number of records identified through months.

The file with the technical characteristics comprises the fields regarding the name of equipment or
installations, rated power, and the number of working times. The number of fields for the working times
will result after analysis of all operating regimes corresponding to each equipment and installation
based on some detailed measurements, using the sampling steps with as small as possible size (1 or 5
s) to identify the working times with high accuracy. After this step, this file can be completed, and the
data are accessed from the matrix DE, having the size (NE × R), where NE represents the number of
records identified through equipment and installations associated with the activities of technological
flows and R is the number of columns which can be different from one SME to another. The first two
columns refer to equipment or installations and their rated power. The number of the next columns
will result after the classification in categories of the working times associated with the operating
regimes of equipment or installations.

The file with the economic indicators comprises the fields regarding the turnover, production
value, personnel costs, and total purchases with goods and services. All these data are accessed from
the matrix DI, having the size (NI × 4), where NI represents the number of records identified through
mouths. This file can be optional inside the platform.

3.2. The Consumption and Cost Analysis Module

Decision-making implies the need to know the activities within the technological flow of an SME.
The role of this module is to translate the user’s queries into an optimized framework so that the
Decision-Maker obtains the information about the energy consumptions over the requested period
(year, month, week, and day), the energy costs, and evolution of the economic factors.

The analysis can be done on years, months, or days, choosing an analysed period. A period
between 2 months (e.g., January and February) or a single month, for one or more years, can be used in
the monthly analysis. The days (all, working, or weekend) from the same month, but different years or
different months from the same year, can be selected to be used in the daily analysis. The data are
uploaded from the energy consumption file.

The module presents the results through the graphical representations of the variables (energy
consumption, energy cost, or economic indicators) or the statistical parameters calculated over the
analysed period.

The statistical parameters refer to:

• The mean represents a synthesis expression in a single representative level of everything essential,
typical, and objective in its occurrence, manifestation, and development of the analysed variable.

Xmean =

n∑
i=1

xi

n
(1)

where: Xmean—mean of the analysed variable from the selected period, uploaded from the matrices
DW, DC, DE, and DI; xi—value i of the analysed variable, uploaded from the matrices DW, DC,
DE, and DI; n—the number of records (rows) associated with the selected period.
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• The standard deviation represents the most common parameter used to analyse the variation of a
data set. The data with high homogeneity have a small value of the standard deviation.

σ =

√√√√ n∑
i=1

(xi −Xmean)
2

n
(2)

• The median is the value that divides the data set of the analysed variable (sorted in ascending or
descending order) into two equal parts. If the series has an odd number of terms, then:

Xmedian = x n+1
2

(3)

If the series has an even number of terms, then:

Xmedian =
x n

2
+ x n

2 +1

2
(4)

• Quintiles are position indicators that divide the data set into more parts with equal values. In the
module, the quintiles are calculated as:

x 1
4
= Q1; x 2

4
= Q2 = Xmedian; x 3

4
= Q3; x 4

4
= Q4 (5)

where Q1, Q2, Q3, and Q4 are quintiles and divide the data set into four equal parts n/4.

The Decision-Maker will analyse the characteristics of the first quintile with the lowest energy
consumption and the fourth quintile with the highest energy consumption.

3.3. The Profiling Module

3.3.1. Working Assumptions

The module contains an original clustering-based method to estimate the typical energy
consumption profiles. Different sampling steps (a quarter-hour, half-hour, or hour), which lead
to 96, 48, or 24 values of energy consumption, depending on the setting of the smart meter installed
to each SME, can characterize the daily energy consumption profiles. The assumption related to the
approximation of hourly consumption was adopted in the profiling process for energy consumption [52].
According to this assumption, the energy consumption characteristics are unknown, but the TECPs can
be used. This situation is encountered at the small consumers from the category of micro, small, and
medium-sized enterprises, which absorbs a maximum power up to 100 kW. The shape of these profiles
is also influenced by season, the category of equipment or installations, and the activity type [52].
However, a high number of energy consumption profiles can create complex issues in the identification
of the consumption patterns.

The proposed method can arrange the energy consumption profiles in representative groups
(consumption patterns), based on certain similarities. A typical energy consumption profile (TECP) will
correspond to each consumption pattern, such that each SME can have one or more TECPs, depending
on the activity type (e.g., small, medium, and high).

3.3.2. Clustering-Based Method in Profiling Process

Clustering represents a special process to group the data recorded in the matrix DW on the columns
associated with the energy consumptions given by the sampling step (24, 48, or 96), represented by
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p daily profiles introduced as vectors Wixm, i = 1, . . . , p, m = {24, 48, 96}. If all energy consumption
profiles from matrix DW are considered, then p = NW.

[W]NWxm =


W1

W2

. . .
Wp

 =


w1,1 w1,2 . . . w1,m
w2,1 w2,2 · · · w2,m

· · · · · · · · · · · ·

wp,1 wp,2 · · · wp,m

 (6)

The vectors associated with the energy consumption profiles Wi, i = 1, . . . , p, m = {24, 48, 96}, are
merged into different clusters, according to the distance calculated between each of them. Finally,
one or more clusters (also called groups, patterns, models, classes, or categories) will be obtained in
function by the spatial location of the characteristics of vectors Wi, i = 1, . . . , p. The characteristics
of vectors will be closer to the common centre of the cluster they belong, compared to centres of
other clusters.

The stages of the clustering process are shown in Figure 6.
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Extract the energy consumptions from matrix DW: It refers to values the energy consumption from
the columns of matrix DW subject to the clustering process and recorded in the vectors Wi, i = 1, . . . , p.

Data preprocessing: Due to various random factors, the energy consumption profiles can contain
abnormal, deviation, unrepresentative, noisy, strange, anomalous, or missing data. It is very important
to detect and repair or eliminate the anomalous or abnormal values before the use of the energy
consumption profile in the profiling process. A statistic-based data mining technique is applied to
solve these problems [53].

Data normalization: The normalization process uses the hourly values of energy consumption from
each vector Wi, i = 1, . . . , p, a suitable normalizing factor represented by the average consumption,
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the maximum value of consumption, or the total energy consumption over the analysed period. This
process is mandatory because all data must be brought in the range [0, 1] in the clustering process.

wnorm
i, j =

wi, j∑
i

wi, j
; i = 1, . . . , p; j = 1, . . . , m, m = {24, 48, 96} (7)

where wnorm
i, j —normalized value of the energy consumption j from the record i, wij—the energy

consumption j from the record i, and
∑
i

wi j—the energy consumption over the analysed period,

identical with working schedule.
The clustering process: The clustering process can be carried out in several ways, depending on the

methods chosen by the Decision-Maker. Inside of each method, a distance is chosen to determine the
similarity between vectors Wi, i = 1, . . . , p, associated with the energy consumption profiles. Many
measurement systems use different distances in the clustering process, but from them, the Euclidean
distance is the most used. Thus, the distance, in the case of two vectors Wr and Ws, is calculated with
the relation:

d(Wnorm
r , Wnorm

s ) =

√
(Wnorm

r −Wnorm
s )(Wnorm

r −Wnorm
s )t, r , s (8)

All clustering methods should lead, in principle, to representative clusters, indifferently by the
input data. There are cases when these clusters could not be obtained. Using another method represent
an alternative to obtain better results than previous cases to identify a solution. The quality of the
results can be the best when the separation of the elements leads to the well-defined clusters or less
good when a membership degree to one of the clusters is associated.

Extraction of TECPs: A TECP will be assigned to each cluster, calculated as the mean of normalized
energy consumptions associated with each profile.

w j,k =

Nk∑
l=1

wnorm
l, j

Nk
; j = 1, . . . , m, m = {24, 48, 96} , k = 1, . . . , Ck (9)

where Ck is the number of clusters resulted from the clustering process; w j,k represents the mean
normalized value j of the energy consumption associated with the TECP corresponding to the cluster k,
k = 1, . . . , Ck; l is the index of the energy consumption profiles, from the matrix W, associated with the
cluster k in the clustering process; and Nk is the number of the energy consumption profiles associated
with the cluster k in the clustering process.

The representativeness of the mean can be evaluated based on the variation coefficient:

ν j,k =
σ j,k

w j,k
· 100 (%); j = 1, . . . , m, m = {24, 48, 96} , k = 1, . . . , Ck (10)

σ j,k =

√√√√√√√ Nk∑
l=1

(wnorm
l, j −w j,k)

Nk
; j = 1, . . . , m, m = {24, 48, 96} , k = 1, . . . , Ck (11)

where υj,k is the variation coefficient which indicated the confidence degree in the mean and σj,k
represents the standard deviation for the normalized energy consumption j associated with the TECP
corresponding to the cluster k.

A value very close to 0 of υj,k leads to a high confidence degree in the mean, which means that the
clusters are very representative and homogenous.
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3.4. Forecasting Consumption Module

At the level of industrial consumers, mainly SMEs, energy consumption forecasting provides the
primary information in decision-making regarding the optimal planning of activities associated with
the technological flows. Thus, energy consumption forecasting must use historical data recorded in
the long periods and processed appropriately. If the number of records is small, then the estimation
errors can be high and can lead to additional operating or investment costs. On the other hand,
energy consumption forecasting plays an important role in the development of economic strategies
for SMEs. The decision-making on the different periods (short, medium, or long), related to the
planning and development of the industrial processes, requires a good knowledge of the energy
consumptions from each activity and technological flow. The technical parameters of each equipment
or installations should be known, and continuous monitoring represents the way to understand all
energy consumption characteristics [54,55].

The proposed method in this module uses an expert system that considers aggregation rules
for the energy consumption of equipment and installations for each activity associated with the
technological flow.

If for the SMEs, following the detailed analysis of the technological processes, the technical
characteristics, the operating periods, the number of operating cycles associated with each equipment
or installation were identified, then an aggregation-based forecasting method based on an expert
system (ES) can be developed to estimate the daily energy consumption. Figure 7 presents the flow
chart of the proposed method. In figure, the following notations were used: the index e, for equipment
and installation (e = 1, . . . , na

e), na
e , for the total number of equipment and installations associated with

the activity a, and na, for the total number of activities.
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An ES is a powerful tool used in the proposed method, having the following main components:
database, knowledge base, and inference rules. It can identify the solutions to the difficult problem
regarding the energy consumptions of the equipment and installations in various operating regimes
that require the extensive experience of a Decision-Maker.

The last two components (knowledge base and inference rules) try to model the Decision Makers’
experience to establish the set of admissible solutions. The framework of an expert system is shown in
Figure 8 [55].Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 37 
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Human–machine interface (HMI) performs communication. The explanation of reasoning’s
module performs, as the main function, the necessity to justify and explain the stages regarding the
reasoning of the expert system. The demonstration of the necessity inside the ES can be done in the
initial phase (development), confirming the correctness of acquiring and using knowledge, and in the
final phase, quantifying the importance and the result of the taken actions. The database is used to
build inference rules. The inference engine determines which inference rules are fulfilled and taken
over in the order of priorities. A code, written in the form of rules, will convert the knowledge base to
solve the problem.

Two matrices are the basis of the expert system. The first matrix, Equipment and Installations’
Matrix (EIM), contains the equipment and installations’ characteristics, initialized with the input
data corresponding to the scheduled activities from the next days. The rated power, working times,
according to the type of daily activity (e.g., small, medium, and high) and the absorbed power in
the steady-state regime, for each equipment or installation, represent the elements in this matrix.
The second matrix, Decision-Making Matrix (DMM), has a high importance in decision-making.
The information about the operating modes (on/off), using 1 or 0, the operating cycles, and the working
times (reduced, normal, and long), identified through the numbers 1, 2, and 3, for each equipment or
installation introduced in matrix EIM, are recorded in this matrix.

Based on the information contained in the two matrices, the rules of the expert systems with the
logical structure

If (<equipment or installation e is on> and <working time is reduced> and <number of cycles is nc>)
then <forecasted consumption is Wf>,

are applied to each equipment and installation associated with each activity.
In the final stage, the total energy consumption for the next day will be obtained using the

aggregation of the forecasted consumptions of each equipment and installation e, e = 1, . . . , na
e ,

associated with each activity a, a = 1, . . . , na.
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3.5. Production Scheduling Module

The minimization of costs with energy bills and flattening of the consumption profile and the
optimal scheduling of activities associated with the technological flows, through the reallocating of
the equipment or installations in other hours, can be done if appropriate strategies are developed.
Because these objectives represent the main challenges facing the SMEs today, optimum scheduling of
the activities associated with the technological flows represents a direction vector oriented towards
increasing energy efficiency. The production schedule can lead to positive effects on energy conservation,
improving the technical and economic performance of the SMEs, and enhancing competitiveness,
respectively [56].

3.5.1. Mathematical Model

Considering the above aspects, a mathematical model, and the combinatorial optimization method
to obtain the optimal scheduling frameworks of activities associated with the technological flows
through modification of working time sequence corresponding to the programmable equipment or
installations, is developed. The combinatorial optimization method is based on a fast heuristic search
in the large admissible sets to obtain the optimal solution, represented by the time intervals in which
the programmable equipment will work. The proposed method represents a useful decision-making
tool in the choice of energy suppliers with the best offer of the energy cost and the identification of
energy efficiency solutions.

The objective is the flattening of the energy consumption profile through the identification of
the optimal solutions for the production scheduling of the SMEs, whatever may be the industrial
activity branch.

The method considers the energy amount consumed by the equipment and installations which
perform a certain activity inside a technological flow, from the moment they start working until their
stopping after the associated task has been accomplished. Another aspect refers to the identification of
the equipment and programmable installations. Those programmable installations and equipment,
with high energy consumption, can be moved to work in the hourly periods with a small energy tariff
or the reduced energy consumption without affecting the technological flow and having a minimum
influence on the performance.

The flattening of the energy consumption profile is done for the work period when the activity
is very intensive, moving the programmable equipment and installations in the hourly period with
reduced activity. The mathematical expression of the objective function is [56]:

min
TH∑

h=1

cW,h ·

∣∣∣∣∣∣∣∣
na∑

a=1

na
e∑

e=1

w
f ,a,e,h
−

CT

T

∣∣∣∣∣∣∣∣ (12)

where

CT =

na∑
a=1

Cd,a =

na∑
a=1

na
e∑

e=1

cW,h ·w f ,a,e,h, f = 1, . . . , np (13)

cW,h—the energy cost at hour h, h = 1, . . . , TH; T—analysis duration, usually is represented by the
work schedule; wf,a,e,h—the energy consumption of equipment or installation e necessary to execute the
activity a and obtaining the final product f ; np—the total number of final products; na—the necessary
activities to obtain the final product f ; and na

e—the number of equipment and installations used for the
activity a to be carried out.

Due to the complexity of the industrial processes, the following technical constraints must
be considered:
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• the allocation of the equipment or installations to a technological flow to perform a task:

X f ,a,e,h =

{
0 i f k does not work
1 i f k works

;

h = 1, . . . , TH, e = 1, 2, . . . , na
e , f = 1, 2, . . . np, a = 1, 2, . . . na

(14)

where Xf,a,e,h represents a decision variable for the allocation of the equipment or installations.
Only if Xf,a,e,h = 1, then the equipment or installation e performs the activity a, to obtain the final
product f, at the hour h.

• the working time of equipment or installation

TStart
f ,a,e − TStop

f ,a,e ≥ T f ,a,e; e = 1, 2 . . . , na
e , f = 1, 2, . . . np, a = 1, 2, . . . na (15)

where TStart
f ,a,e,h and TStop

f ,a,e,h—the start and stop hours, respectively, between which the equipment or
installation e works to carry out the activity a, to obtain the final product f and Tf,a,e—the working
time of the equipment or installation e.

• Phase sequence is considered because the activities associated with a technological flow for an
equipment or installation e, to obtain the product f, should be finished before to start the next
activities to process the product (f + 1) from another technological flow. This constraint takes into
account that for any equipment and installation:

TStop
( f+1),a,e

− TStop
f ,a,e ≥ T f ,a,e; e = 1, 2 . . . , na

e , f = 1, 2, . . . np, a = 1, 2, . . . na (16)

Energy consumption balance between the total energy consumptions wf,a,e,h of all equipment and
installations e associated with the activities a, to obtain the products f, at the hour h, and the total
energy consumption recorded by the general meter:

WT,h =

na∑
a=1

na
e∑

e=1

w f ,a,e,h; h = 1, . . . , TH, e = 1, 2 . . . , na
e , f = 1, 2, . . . np, a = 1, 2, . . . na (17)

3.5.2. The Steps of the Proposed Algorithm

The algorithm considers the following steps to obtain the proposed objective represented by the
flattening of the energy consumption profile.

• Step 1. Determine the working characteristics of equipment, installations, and systems
The records from the measurement database represents the base to determine the operating
characteristics associated with the working time multiplied by the hourly energy consumption for
each equipment, installation, and system. If two equipment are dependent and work together, the
aggregate characteristic cumulates the working times.

• Step 2. Initialization of the input data matrix

In the input data matrix (IDM) having the size (ne × 8), where the total number of rows indicates
all equipment and installations e, e = 1, . . . , na

e , associated with all activities a, a = 1, . . . , na, and
the columns refers to the name of the equipment or installation, the characteristics relating to
the operation mode (on or off), the working cycles, the working time, type (programmable or
nonprogrammable), the dependency to work together with other equipment to obtain the final
product f, and the start and stop working hours of the equipment, information are introduced.

• Step 3. Optimization Process

Combinatorial optimization was implemented to obtain the optimal solution regarding the
production scheduling, which leads to flattening of the energy consumption profile.
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4. Case Study

The testing of the platform, developed in MATLAB, was done by its implementation at an
industrial consumer from the category of microenterprises (5–10 employees) in the most active field of
SMEs (trade/repair of vehicles) from Romania [57].

4.1. Database

The database includes the monthly energy consumptions and costs identified from energy bills,
all equipment and installations associated with the technological flows from the SME, and those that
provide the comfort (lighting system, heating system, or cooling system). The information for the
analysed SME was available starting with 2018. A smart meter was installed at the beginning of
2019 in parallel with the settlement classic meter, to record and to communicate (wireless) the energy
consumption profiles towards the software platform to test the profiling module. Thus, the availability
of the profiles allowed calculation of the daily and monthly energy consumptions using an aggregation
function implemented in the database module.

Table A1 from Appendix A presents the energy consumption and cost from monthly energy bills in
the period 2018–2019 are presented in [57]. In addition, the daily energy consumptions, recorded in 2019
by the smart meter, are given in the attached Supplementary File. The technological processes contain
activities relating to the tinsmith, mechanical repairs, and car dyeing. The equipment, installations, and
systems associated with these activities, together with their rated powers (Pr), are presented in Table 3.

Table 3. The electrical equipment/installations/systems recorded in the database.

No. Equipment/Installation/System Pr (kW)

1 Dyeing installation 15.0
2 Air compressor system 11.0
3 Welding machine 6.20
4 Lighting system: tinsmithing department 1.20
5 Lighting system: repair department 0.75
6 Lighting system: dyeing installation 1.00
7 IT equipment—office 0.35
8 Other electric equipment 10.0
9 Vehicle lift 2.00
10 Gas boiler 12.0

Total installed power 59.5

4.2. The Consumption and Cost Analysis

The analysis can be done on years, months, or days, choosing an analysed duration. At the level
of 2018, the total energy consumption was by 26.09 MWh/year, and the total cost, 23,479 RON, with an
average value of 2.17 MWh/month and 1957 RON/month, respectively. A deeper analysis was done at
the level of months. The information on the dispersion of the data regarding the energy consumptions
was obtained based on a boxplot.

A boxplot represents a graph that indicates how the values are spread out. In Figure 9, the boxplot
of the monthly energy consumption from 2018 was shown. The analysis of the boxplots shows that
the median energy consumption for all months from 2018 is 1743.5 kWh. The minimum value is 1247
kWh recorded in August, and the maximum value is 5124 kW (February), plotted with “+” in the
figure. The months with higher values, over the quintile Q3 (represented with a blue horizontal line),
identified in the graph with the magenta colour and the outliers, like the month February with the red
colour, were analysed.
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Concerning to January, February, and March, the analysis of the weather conditions and the
performance of the electric heating system (in operation in 2018) has been indicated that the heating
system was inefficient. The data from 2019 showed that the energy consumption decreased in the three
months due to mainly the replacement of the electric heating system with a gas boiler, see Figure 10.
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The synthesis of the data at the level of 2019 highlighted a total energy consumption by
17.33 MWh/year, with 8.76 MWh/year less than in 2018, and the total cost, 15,594 RON, with an
average value of 1.44 MWh/month and 1300 RON/month, respectively. The analysis of the boxplot
showed that the median energy consumption for all months from 2018 is 1251.5 kWh, with 492 kWh
less than in 2018, see Figure 10. The minimum value is 981 kWh recorded in June, and the maximum
value is 2496 kW (February), plotted with “+” in the figure. Three months (February, March, and
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October) had the energy consumption over the quintile Q3, but these values were recorded mainly
due to an intensive activity. Even if February registered the maximum value, the energy consumption
decreased with 2628 kWh less than in 2018, which means that the new heating system is efficient.
Table 4 presents the comparative situation from both years.

Table 4. Comparison on the statistical results obtained from 2018 to 2019.

Variable
Mean
(kWh)

Standard
Deviation (kWh)

Confidence
Degree (%)

Quintile
Q1 (kWh)

Quintile
Q2 (kWh)

Quintile
Q3 (kWh)

Quintile
Q4 (kWh)

2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

Consumption 2274 1444 1142 493 50.2 34.1 1488 1112 1744 1252 2704 1632 5124 2496
Cost 2047 1300 1028 444 50.2 34.1 1303 1001 1569 1127 2433 1469 4612 2246

Besides the annual analysis, the daily energy consumptions from each month of the year 2019,
obtained from the aggregation of the hourly values from profiles recorded by the smart meter, were
investigated. Table 5 shows the statistical results.

Table 5. The statistical results obtained for the daily energy consumptions from each month of the
year 2019.

Month Mean
(kWh)

Standard
Deviation

(kWh)

Confidence
Degree (%)

Quintile
Q1 (kWh)

Quintile
Q2 (kWh)

Quintile
Q3 (kWh)

Quintile
Q4 (kWh)

January 77.7 29.5 38.0 56.8 77.0 95.8 145.0
February 124.8 22.4 17.9 109.0 127.5 145.0 157.0

March 107.7 19.6 18.2 96.0 110.0 122.0 141.0
April 58.6 18.6 31.7 49.0 51.0 70.0 97.0
May 50.9 8.4 16.5 46.0 50.0 57.0 68.0
June 49.1 13.2 26.9 40.5 47.5 60.5 72.0
July 57.0 13.3 23.3 45.0 56.0 63.0 83.0

August 50.1 7.1 14.3 44.0 49.5 56.0 63.0
September 58.5 10.7 18.3 50.5 56.0 67.5 78.0

October 54.7 13.2 24.2 47.5 57.0 63.5 76.0
November 77.7 8.1 10.4 72.0 79.0 84.0 90.0
December 69.2 10.4 15.0 68.0 72.5 75.0 80.0

The analysis of the results highlighted that the mean and median (represented by the quintile Q2)
have the values approximately equal in the case of most months, with a higher difference for April. In
addition, the confidence degree is high (between 10% and 20%) and moderate (between 20% and 30%)
in most months, which means that the daily energy consumptions have the values close. However,
there are two exceptions represented by January and April, where the confidence degree is weak.

All these analyses helped the Decision-Maker to understand the trend of the energy consumption
from each month, season, or year, comparing the records from different selected periods, such that
to develop the strategies, which to take into account by these characteristics, regarding the planning
of production.

4.3. The Profiling Process

The profiling process used the daily energy consumption profiles, recorded with the help of smart
meter during the year 2019. The sampling step has been set to a quarter-hour due to the dynamic of
activities associated with the technological flow. The database has records for 250 days without the
holidays and weekend days. These were normalized using daily energy consumption. To identify what
is the best method to be used in the clustering process, the module has used the testing function based
on the cophenetic correlation coefficient (CC). The Ward method, highlighted in red, led to the best
performances in the case of this database, for which CC is equal with 0.840, see Figure 11. The results
can be displayed if the Decision-Maker requests this information. The characteristics represented
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through the statistical variables (mean, standard deviation, and confidence degree in mean) of the
daily energy consumption for the clusters obtained with the Ward method are presented in Table 6.
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Table 6. The results of the profiling process.

Cluster Number of
Profiles

Mean
(kWh)

Standard
Deviation (kWh)

Confidence
Degree (%)

C1 14 99.4 3.8 3.8
C2 20 121.6 6.9 5.6
C3 85 55.6 5.3 9.5
C4 51 40.5 6.3 15.5
C5 71 75.9 6.6 8.7
C6 9 147.0 6.9 4.7

The profiles have been obtained based on the averaging process of the profiles assigned with
each cluster. Figure 12 presents the TECPs, and the hourly values are indicated in Table A2 from
Appendix A. Because the working schedule is 9 h (between 8:00 a.m. and 5:00 p.m.), the other values
from TECPs are 0.

The dyeing installation cannot continuously operate during the 9 h of the working schedule. It
can work with the two phases (dyeing and drying) at most two working cycles in a day if the vehicle is
completely dyed, requiring a longer time, or at most three complete working cycles, if only various
components of the vehicle are dyed. However, there are days when the other combinations between the
working cycles can be met or when the second phase is missing (drying is done naturally, at ambient
temperature, when it is over 20 ◦C, and the installation is no longer used for another dyeing phase).
These operating regimes influence the intensity of the activities, three categories being identified: Small
(the energy consumption is up to 75 kWh, clusters C3 and C4), medium (the energy consumption
is between 75 and 100 kWh, clusters C1 and C5), and high (the energy consumption is up to 100
kWh, clusters C2 and C6). Table 7 presents the measurement of the intensity for each month. This
information appears as a report for the decision-making, which can identify details on the activity
from each month.
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Table 7. The measurement of the intensity in each month, in (%).

Cluster JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

C1—medium 14 20 29 5 0 0 0 0 0 0 0 0
C2—high 10 40 48 0 0 0 0 0 0 0 0 0
C3—small 10 0 5 50 67 35 48 55 60 57 10 6
C4—small 19 0 0 20 29 50 30 45 15 26 0 6

C5—medium 43 5 14 25 5 15 22 0 25 17 90 89
C6—high 5 35 5 0 0 0 0 0 0 0 0 0

Intensity

Small 29 0 5 70 95 85 78 100 75 83 10 11
Medium 57 25 43 30 5 15 22 0 25 17 90 89

High 14 75 52 0 0 0 0 0 0 0 0 0
Total 100 100 100 100 100 100 100 100 100 100 100 100

It can be observed that a small intensity (over 70% of the days, in each month) has recorded in,
May, June, July, August, September, and October. In addition, the activity in January, November, and
December had moderate intensity (over 50% of the days, in each month), and in February and March
have recorded a high intensity (over 50% of the days, in each month). March is the month where
medium and high intensities are very close (43% and 57%, respectively).

4.4. The Energy Consumption Forecasting

To test the expert system-based method from the forecasting module, the working time and
operating characteristics of the equipment and installations were identified based on the analysis
of current and voltage measurements done for 1 month, in 2019, with the power analyser Chauvin
Arnoux, using a sampling step by 5 s.
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The measurement equipment was installed in the general electric panel on the main feeder and
secondary cables, which feeds each local electric panel. As an example, the consumption profile
assigned to a day from the analysed period, recorded on the main feeder, with the identification
of different equipment and installations on which it operated, is presented in Figure 13. The main
operations (tinsmith, mechanical repairs, and car dyeing), highlighted with red circles, associated with
the activities of the technological process can be identified inside the profile through the equipment
and installations (air compressor, welding machine, and dyeing installation with the dyeing and drying
phases), relieved with yellow colour. The working time depends on the following factors: the body
types (hatchback, sedan, MUV/SUV, coupe, convertible, wagon, van, or jeep), the thickness of sheet
metal, and the number of components which must be dyed.
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The analysis of working time corresponding to each equipment and installation led at the following
shares from the total energy consumption: 50.1% dyeing installation, 20.5% air compressor, 16.2%
lighting system, 7.2% other electric equipment (vehicle lift, welding machine, hammer drills, blowers,
etc.), and 5.9% reception office, see Figure 14.
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In the weekend periods, or when the equipment or installations did not operate, there is no
energy consumption.

In addition, all profiles led to the division of the energy consumptions in three categories (small,
medium, and high) considering the working time (reduced, normal, and long) for each equipment and
installation, depending on the factors listed above, see Table 8. The first eight positions of the table
correspond to the phases of dyeing installation, which have operating regimes with different values
of working times and energy consumptions according to the components (doors, tailgates, fenders,
bumpers, etc.) or the whole body of the car.

Table 8. The working time and energy consumption of each equipment and installation depending on
the intensity of activity.

No. Equipment and Installation Working time (Minutes/Hours) Energy Consumption (kWh)

Reduced Normal Long Small Medium High

1 Dyeing installation—dyeing phase/R1 90/1.5 120/2 150/2.5 18.75 25.00 31.25
2 Dyeing installation—dyeing phase/R2 90/1.5 120/2 150/2.5 17.25 23.00 28.75
3 Dyeing installation—dyeing phase/R3 42/0.7 60/1 72/1.2 8.75 12.50 15.00
4 Dyeing installation—dyeing phase/R4 42/0.7 60/1 72/1.2 8.05 11.50 13.80
5 Dyeing installation—dyeing phase/R5 42/0.7 60/1 72/1.2 9.94 14.20 17.04
6 Dyeing installation—drying phase/R1 36/0.6 45/0.75 54/0.9 6.72 8.40 10.08
7 Dyeing installation—drying phase/R2 36/0.6 45/0.75 54/0.9 6.3 7.87 9.45
8 Dyeing installation—drying phase/R3 36/0.6 45/0.75 54/0.9 7.5 9.375 11.25
9 Air compressor 51/0.85 66/1.1 81/1.35 8.84 11.44 14.04
11 Welding machine 6/0.1 18/0.3 30/0.5 0.27 0.81 1.35
12 Lighting system—tinsmith building 180/3 420/7 540/9 1.62 3.78 4.86
13 Lighting system—repair building 180/3 420/7 540/9 0.96 2.24 2.88
14 Lighting system—dyeing installation 60/1 120/2 180/3 1.10 2.20 3.30
15 Reception office 0/0 0/0 540/9 0.00 0.00 2.70
16 Various electric equipment 60/1 120/2 180/3 1.00 2.00 3.00
17 Vehicle elevator 1.2/0.02 3.6/0.06 6/0.1 0.04 0.12 0.20

This information helps the Decision-Maker to complete the equipment and installations matrix
(EIM) associated with the system expert-based aggregation method.

The Decision-Maker can complete the matrix taken into account the type of operations for each
programmed car in the next day. Thus, the information introduced in the matrix depends on the
intensity of activity (small, medium, and high) considering the working time (reduced, normal, and
long) and energy consumption associated with each equipment and installation and the number of
working cycles, if some operations can be repeated to various time intervals.

Figure 15 and Table 9 present the results obtained after testing of the method for a week (16–20
September, where the activity type and the percentage errors are specified. The errors were calculated
with the relation:

Error =

∣∣∣∣∣∣WR −W f

WR

∣∣∣∣∣∣ · 100, (%) (18)

where WR is the real energy consumption and Wf is the forecasted energy consumption.

Table 9. The obtained results using the proposed method.

Day Monday Tuesday Wednesday Thursday Friday
Total

Intensity Small Medium Small Small Small

Wf (kWh) 56.88 79.23 45.55 54.85 44.35 280.86
WR (kWh) 58.31 77.91 43.98 56.2 45.23 281.54
Error (%) 2.45 1.69 3.80 2.40 1.95 0.24
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It can be observed that the percentage errors are in the range [1.95, 3.80], and the mean absolute
percentage error calculated on the analysed period (a week) is 0.24%. These values can be considered
very satisfactory for the Decision-Maker in the situation in which the evolution of the activities
associated with the technological process is dynamic and uncertainties regarding the execution of
specific operations, such as tinsmith and mechanical repairs for each programmed car, can occur.
Details about the energy consumption forecasting for the day with the medium intensity of the
activity, highlighted with bold in Table 9, are presented in Table 10, where the grey cells belong to
the Decision-Making Matrix (DMM), and the signification of the rules associated with the expert
system being:

If (<Equipment or Installation k is On> and <working time is Reduced> and <operating cycles are Y>)
then (Energy consumption (Wf) is Z).

Table 10. The Decision Matrix and forecasted energy consumption for Tuesday.

No. Equipment or Installation Operating Modes Working Time Operating Cycles Wf (kWh)
1 Dyeing installation—dyeing operation/R1 On Reduced 2 37.5
2 Dyeing installation—drying operation/R1 On Reduced 2 13.44
3 Air compressor On Long 1 14.04
4 Welding machine On Reduced 1 0.27
5 Lighting system—tinsmithing department On Long 1 4.86
6 Lighting system—repair department On Long 1 2.88
7 Lighting system—dyeing installation On Reduced 1 1.1
8 Reception office On Long 1 2.7
9 Other electric equipment On Reduced 1 1

10 Vehicle elevator On Reduced 3 0.12
Total—forecasted energy consumption 77.91

The specific (for each equipment and installation) and total energy consumptions forecasted
for Tuesday are highlighted with bold. The results obtained for the other days are presented in
Tables A3–A6, Appendix A.
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4.5. Production Scheduling

The production scheduling for the next day is established by the Decision-Maker to flatten
the energy consumption profile. The combinatorial optimization is used to achieve this objective
considering the constraints presented in Section 3.5: the appropriate allocation of the equipment or
installations to each activity associated with a technological flow, the working time of each equipment
or installation, the phase sequences, and energy consumption balance.

The input data used in the optimization process are the following: the decision on the operating
mode (on or off, quantified by 1 or 0), working time (reduced, normal, or long), see Table 8, working
cycles (1, 2, or 3), the dependency between equipment, the start and stop working hours, and
technical characteristics, see Table 3, which characterize every equipment and installation associated to
each activity.

Table 11 presents the input data for the equipment and installations from Tuesday (presented
in Section 4.4). The activities programmed in this day required mechanical revisions for three cars,
dyeing and drying operations for various components of two cars, mechanical repairs for two cars
requiring welding and sheet metal straightening operations, and dyeing preparation for three cars.
The optimal solution, presented in Table 12 and Figure 16, has been accepted by the Decision-Maker to
ensure continuity of the technological flow.

Table 11. The input data matrix (IDM).

No. Equipment/Installation Operating
Mode Programmable Working

Time
Operating

Cycles Dependency Start
Hour

Stop
Hour

1
Dyeing

installation—dyeing
operation/R1

On Yes Reduced 2 3 8:00 17:00

2 Dyeing installation—drying
operation/R1 On Yes Reduced 2 1 8:00 17:00

3
Dyeing

installation—lighting
system

On No Reduced 1 2 8:00 17:00

4 Welding machine On Yes Reduced 1 0 8:00 17:00

5
Lighting

system—tinsmithing
department

On No Long 1 0 8:00 17:00

6 Lighting system—repair
department On No Long 1 0 8:00 17:00

7 Air compressor On No Long 1 0 8:00 17:00
8 Reception office On No Long 1 0 8:00 17:00
9 Other electric equipment On Yes Reduced 1 0 8:00 17:00

10 Vehicle elevator On Yes Reduced 3 0 8:00 17:00

Table 12. The optimal production scheduling for analysed day (Tuesday).

No. Equipment/Installation Start Hour Stop Hour

1 Reception office 8:00 17:00
2 Lighting system—tinsmithing department 8:00 17:00
3 Lighting system—repair department 8:00 17:00
4 Dyeing installation—dyeing operation/R1 8:00 9:30
5 Vehicle elevator 8:05 8:10
6 Air compressor 9:00 17:00
7 Vehicle elevator 9:00 9:05
8 Dyeing installation—drying operation/R1 9:30 10:20
9 Vehicle elevator 10:00 10:05

10 Welding machine 13:00 13:10
11 Lighting system—dyeing installation 13:00 14:00
12 Other electric equipment 13:00 14:00
13 Dyeing installation—dyeing operation/R1 14:00 15:30
14 Dyeing installation—drying operation/R1 15:30 16:20
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Table 10 presents the dependence between dyeing operation, drying operation, and the use of the
lighting system associated with the dyeing installation. The order inside of the dyeing installation
must be the following: use of lighting system to prepare the car inside, dyeing operation, and drying
operation. Usually, for the first use of the dyeing installation, preparing the car is done at the end
of the working schedule from the previous day. The dependency expresses the association with one
equipment or installation identified through the number of the row in the matrix IDM.

Due to the high energy consumption of dyeing installation and the smaller energy consumptions
of other equipment and installations, the flattening of the profile is not very obvious at first glance.
However, the analysis of the results presented in Figures 16 and 17 indicates a satisfactory decrease, with
2.95 kWh (16.23%) of the peak value (highlighted with red colour in Figure 17) from 18.17 kWh (recorded
at the hour 14) to 15.22 kWh (recorded at the hour 15), after application of the optimization process.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 26 of 37 

Table 10 presents the dependence between dyeing operation, drying operation, and the use of 
the lighting system associated with the dyeing installation. The order inside of the dyeing installation 
must be the following: use of lighting system to prepare the car inside, dyeing operation, and drying 
operation. Usually, for the first use of the dyeing installation, preparing the car is done at the end of 
the working schedule from the previous day. The dependency expresses the association with one 
equipment or installation identified through the number of the row in the matrix IDM.  

Due to the high energy consumption of dyeing installation and the smaller energy consumptions 
of other equipment and installations, the flattening of the profile is not very obvious at first glance. 
However, the analysis of the results presented in Figures 16 and 17 indicates a satisfactory decrease, 
with 2.95 kWh (16.23%) of the peak value (highlighted with red colour in Figure 17) from 18.17 kWh 
(recorded at the hour 14) to 15.22 kWh (recorded at the hour 15), after application of the optimization 
process. 

 
Figure 16. The real (blue) and optimal (red) hourly energy consumptions. 

 
Figure 17. The differences between the real and optimal hourly energy consumptions. 

In addition, the standard deviation of the energy consumption and the load factor can quantify 
the flattening of the energy consumption profile. Regarding the standard deviation, a decrease was 
recorded from 7.13 to 5.70 kWh. The load factor expresses a measure of the utilization rate, or 
efficiency of energy usage, being an indicator that quantifies how steady the energy consumption is 
over time. It represents the mean value of the energy consumption divided by the maximum energy 
consumption in a specified period (in our case, 1 day). The value of this indicator increased with 
21.4%, from 0.42 to 0.51. 
  

Figure 17. The differences between the real and optimal hourly energy consumptions.

In addition, the standard deviation of the energy consumption and the load factor can quantify
the flattening of the energy consumption profile. Regarding the standard deviation, a decrease was
recorded from 7.13 to 5.70 kWh. The load factor expresses a measure of the utilization rate, or efficiency
of energy usage, being an indicator that quantifies how steady the energy consumption is over time. It
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represents the mean value of the energy consumption divided by the maximum energy consumption in
a specified period (in our case, 1 day). The value of this indicator increased with 21.4%, from 0.42 to 0.51.

5. Conclusions and Future Work

Supporting SMEs and the promotion of energy efficiency measures are essential for economic
progress because, at the level of the European Union, the SMEs represent 98% of the total number
of businesses. Many SMEs have expressed in the last period their interest in the implementation of
measures to reduce energy consumption because the energy efficiency is not only a tool to save money
and resources but also a need for flexible adaptation to the own needs. The SMEs have needed to
implement this plan by software tools to monitor and control the consumption and to identify solutions
that allow the adoption of measures to increase energy efficiency.

This paper presents a new vision on the energy consumption management at the SMEs,
integrated into a decision support platform, with technical and economic benefits on increasing
energy efficiency. The proposed platform has four modules which include Artificial Intelligence
techniques (clustering-based unsupervised learning and expert systems) with characteristics that
differentiate it and offer more advantages compared to the other similar products or approaches which
treated the energy management at the SMEs: (i) The data management module is based on the data mining
techniques that extract the technical details on the energy consumptions and cost used to develop
production scheduling strategies. (ii) The profiling module uses an efficient profiling-based method
based on clustering techniques to determine the typical energy consumption profiles (TECPs) assigned
to different activity types necessary for establishing the type of tariffs that will lead to the reduction
of energy bills and optimally planning of the activities. (iii) The forecasting module has implemented
an original approach that uses an expert system based on the rules If-Then to forecast the energy
consumption of each installation and equipment. The total energy consumption at the SME level is
forecasted by aggregating all individual energy consumptions of the equipment and installations. (iv)
The production scheduling module allows the flattening of the energy consumption profiles, using a fast
searching algorithm to find the optimal solutions.

The platform can be successfully implemented, but with possible disadvantages (limitations)
in the use of the platform at the maximum potential by some SMEs. The first refers to the profiling
module, which can be used only if the SME has a smart meter with remote communication. The second
is associated with the expert system, where the rules must be developed by qualified staff in energy
management. The staff must know the technological processes, the operating regimes, and the
characteristics of each equipment and installation very well. The third is linked by the forecasting
module, where the same qualified staff must analyse the data from the current and measurements
to determine the working times and associated energy consumptions. However, as stated, these
three disadvantages are minimized by a qualified human resource, which can ensure efficient energy
management to the SMEs using all functions of the platform.

The proposed decision support platform was tested at a small enterprise from Romania with
the activity field of the repair of the vehicles. The obtained results demonstrate the ability of the
platform to offer the support to the Decision-Maker in solving or understanding the following issues:
the planning strategies of the SME based on the evolution of the energy consumption, the intensity of
activities through the TECPs, the energy consumption forecasting for different periods (day, week, or
month) depending on the scheduled activities, and the production scheduling such that the energy
consumption profile to be as flat as possible.

The authors work to develop the decision support platform’s functions, considering the
particularities of the activities carried out at other SMEs, especially at the forecasting module,
testing new methods which to consider the influence of the weather and economic factors, and at
the production scheduling module through improving the mathematical model and testing new
optimization algorithms.
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Another direction considered by the authors refers to develop a new mathematical model which
have the objective of the minimization of the energy cost considering the tariff differentiated by hourly
zones and durations of energy use. This new model will be integrated into the production scheduling
module, being useful for SMEs which have a schedule in three work shifts.

Additionally, the platform can support the implementation of the ISO 50001 standard through
developing a new module, which to establish a link between improving energy efficiency, quantified
through the results obtained using the other modules, and environmental impact reduction. Through
identification of differences between the full application of the requirements from the ISO 50001
standard and the real level of implementation, the platform could provide a compact perspective on
how energy management can be implemented in SMEs. In this context, the monitoring and control of
energy efficiency indicators at the SME level lead to saving energy amounts and, consequently, to the
reduction of greenhouse gas emissions, as the authors pointed in [58].

6. Patents

National Patent Application “Software Platform for Integrated Management and Control of
Electric Energy and Natural Gas Consumption in Order to Increase Energy Efficiency in Small and
Medium-Sized Enterprises”, Romania, 2018, RO132688A0.
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Nomenclature and Indices

a The index for activity
σ The standard deviation value for a data set
Error The forecasting error, in (%)

υj,k
The variation coefficient associated with the normalized energy consumption j from the
TECP corresponding to the cluster k

AMR Automatic meter reading
CC Cophenetic correlation coefficient
Ck The number of clusters
cW The energy cost at hour
DBM Databases management,
DMP Decision-making process
DC Matrix with energy costs
DE Matrix with technical characteristics of equipment and installations
DI Matrix with economic indicators
DMM Matrix used in decision-making process
DW Matrix with hourly energy consumptions
e The index for equipment an installation
EIM Matrix of equipment and installations’ characteristics
ES Expert system

http://www.mdpi.com/2076-3417/10/10/3505/s1
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EU European Union
f The index for the final product
GHG Greenhouse gas
h The index for hour
HMI Human-machine interface
i The index for daily profiles records
IDM The input data matrix
j The index for a normalized value
k The index for clusters
l The index for energy consumption profiles
RON The Romanian currency (1 EUR(€) ≈ 4.8 RON)
m The sampling step (24, 48, 96)
n The number of records (rows) associated with the selected period.
na The necessary activities to obtain the final product
NC, NI The number of records from matrices DC and DI identified through months
na

e The total number of equipment and installations associated with the activity a

NE
The number of records form matrix DE identified through equipment and installations
associated with the activities of technological flows

np The total number of final products
Nk The number of the energy consumption profiles associated with the cluster k
NW The number of records identified through days
p The number of daily energy consumption profiles
Pr The rated power of equipment or installations, in (kW)
PIEE Plan to improve energy efficiency
SMEs Small and medium enterprises
SM Smart meter
SOS Schedule and optimization steps
TECPs Typical energy consumption profiles
T Analysis duration (represented by the work schedule)
TH Maximum number of hours
TStart

f ,a,e,h The start hours when the equipment works for final product f, in activity a

TStop
f ,a,e,h The stop hours when the equipment works for final product f, in activity a

Tf,a,e
The working time of the equipment or installation e necessary to execute the activity a and
obtaining the final product f

W Matrix with daily energy consumption profiles
Wnorm Matrix with daily normalized energy consumption profiles
Wf The forecast energy consumption, in (kWh)
WR The real energy consumption, in (kWh)
Wr, Ws Vector with daily profiles
WT Energy consumption balance
w j,k The mean normalized value j from the TECP associated with cluster k
wnorm

i, j The normalized energy consumption on the column j of the record i from matrix Wnorm;
wi,j The energy consumption on the column j of the record i from matrix W;

wf,a,e,h
The energy consumption of equipment or installation e necessary to execute the activity a
and obtaining the final product f, at hour h

xi Value i of the analysed variable for a period
xQ1-xQ4 Quantiles

Xf,a,e,h
The decision variable for the allocation of the equipment or installation e necessary to
execute the activity a and obtaining the final product f, at hour h

Xmean Mean of the analysed variable for a period
Xmedian Median value for a data set
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Appendix A

Table A1. The energy consumptions and costs in period 2018–2019 for the analysed SME.

Year Month Energy Consumption (kWh) Energy Cost (RON)

2018 January 3079 2771.1
2018 February 5124 4611.6
2018 March 3243 2918.7
2018 April 2328 2095.2
2018 May 1901 1710.9
2018 June 1586 1427.4
2018 July 1452 1306.8
2018 August 1247 1122.3
2018 September 1257 1131.3
2018 October 1525 1372.5
2018 November 1902 1711.8
2018 December 1444 1299.6
2019 January 1631 1467.9
2019 February 2496 2246.4
2019 March 2312 2080.8
2019 April 1121 1008.9
2019 May 1068 961.2
2019 June 981 882.9
2019 July 1311 1179.9
2019 August 1102 991.8
2019 September 1170 1053
2019 October 1258 1132.2
2019 November 1632 1468.8
2019 December 1245 1120.5

Table A2. The typical energy consumption profiles, with a sampling size by quarter-hour, (kW/kWh).

Time TECP1 TECP2 TECP3 TECP4 TECP5 TECP6

8.00 0 0 0 0 0 0
8.15 0.013393 0.013546 0.00824 0.013743 0.025376 0.01486
8.30 0.020021 0.026507 0.044887 0.020557 0.011842 0.024762
8.45 0.010969 0.014523 0.066527 0.040442 0.014045 0.029301
9.00 0.012846 0.017007 0.068519 0.109211 0.016504 0.044817
9.15 0.013507 0.017882 0.065193 0.111 0.021013 0.045719
9.30 0.014613 0.019347 0.065672 0.111922 0.015827 0.045476
9.45 0.018536 0.024541 0.060686 0.094925 0.027276 0.045193

10.00 0.011187 0.014812 0.057842 0.073206 0.011177 0.033645
10.15 0.010126 0.013406 0.049854 0.02452 0.022393 0.02406
10.30 0.016103 0.066158 0.04727 0.027263 0.016385 0.034636
10.45 0.019867 0.081688 0.044046 0.022762 0.047602 0.043193
11.00 0.016438 0.077147 0.044217 0.027246 0.074112 0.047832
11.15 0.01608 0.076673 0.012813 0.028857 0.073863 0.041657
11.30 0.013209 0.066332 0.006438 0.01836 0.071153 0.035098
11.45 0.014794 0.063396 0.007748 0.010106 0.072508 0.03371
12.00 0.029751 0.027441 0.006127 0.014857 0.068217 0.029279
12.15 0.058908 0.013544 0.003259 0.010266 0.052588 0.027713
12.30 0.060449 0.015448 0.005241 0.012511 0.054677 0.029665
12.45 0.064205 0.024973 0.03567 0.02365 0.055576 0.040815
13.00 0.057353 0.035752 0.049937 0.03318 0.059907 0.047226
13.15 0.054069 0.027779 0.048676 0.016543 0.025673 0.034548
13.30 0.063544 0.029028 0.043144 0.015834 0.016856 0.033681
13.45 0.05829 0.023955 0.04559 0.015996 0.012796 0.031325
14.00 0.058978 0.020694 0.026417 0.020015 0.01208 0.027637
14.15 0.064176 0.019569 0.01603 0.020568 0.008919 0.025853
14.30 0.050953 0.014842 0.013367 0.01153 0.012401 0.020619
14.45 0.045234 0.018562 0.007353 0.017264 0.014335 0.020549
15.00 0.042431 0.018399 0.00761 0.015332 0.017352 0.020225
15.15 0.013158 0.022855 0.008893 0.01117 0.017748 0.014765
15.30 0.013661 0.038599 0.007585 0.012979 0.017039 0.017972
15.45 0.027921 0.027516 0.011979 0.008311 0.01638 0.018421
16.00 0.015231 0.028079 0.01317 0.005874 0.01638 0.015747
16.15 0.013393 0.013546 0.00824 0.013743 0.025376 0.01486
16.30 0.012846 0.012007 0.00619 0.010211 0.020504 0.009817
16.45 0.00846 0.010007 0.00319 0.008211 0.010504 0.007817
17.00 0.00546 0.003071 0.00119 0.006211 0.004504 0.003817
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Table A3. The Decision Matrix and forecasted energy consumption for Monday.

No. Equipment or Installation Operating Modes Working Time Operating Cycles Wf(kWh)

1 Dyeing installation—dyeing operation/R4 On Reduced 1 8.05
2 Dyeing installation—dyeing operation/R4 On Long 1 13.80
3 Dyeing installation—drying operation/R2 On Long 1 9.45
3 Air compressor On Reduced 1 8.84
4 Welding machine Off – – –
5 Lighting system—tinsmithing department On Long 1 4.86
6 Lighting system—repair department On Long 1 2.88
7 Lighting system—dyeing installation On Long 1 3.30
8 Reception office On Long 1 2.70
9 Other electric equipment On Long 1 3

10 Vehicle elevator Off – – –
Total—forecasted energy consumption 56.88

Table A4. The Decision Matrix and forecasted energy consumption for Wednesday.

No. Equipment or Installation Operating Modes Working Time Operating Cycles Wf (kWh)

1 Dyeing installation—dyeing operation/R4 On Long 1 13.80
2 Dyeing installation—drying operation/R1 On Normal 1 7.87
3 Air compressor On Normal 1 11.44
4 Welding machine Off – – –
5 Lighting system—tinsmithing department On Long 1 4.86
6 Lighting system—repair department On Long 1 2.88
7 Lighting system—dyeing installation On Reduced 1 1.10
8 Reception office On Long 1 2.70
9 Other electric equipment On Reduced 1 1.00

10 Vehicle elevator Off – – –
Total—forecasted energy consumption 45.65

Table A5. The Decision Matrix and forecasted energy consumption for Thursday.

No. Equipment or Installation Operating Modes Working Time Operating Cycles Wf (kWh)

1 Dyeing installation—dyeing operation/R4 On Normal 1 11.50
2 Dyeing installation—dyeing operation/R4 On Reduced 1 8.05
3 Dyeing installation—drying operation/R2 On Normal 1 7.87
3 Air compressor On Normal 1 11.44
4 Welding machine On Long 1 1.35
5 Lighting system—tinsmithing department On Long 1 4.86
6 Lighting system—repair department On Long 1 2.88
7 Lighting system—dyeing installation On Normal 1 2.20
8 Reception office On Long 1 2.70
9 Other electric equipment On Normal 1 2.00

10 Vehicle elevator Off – – –
Total—forecasted energy consumption 54.85

Table A6. The Decision Matrix and forecasted energy consumption for Friday.

No. Equipment or Installation Operating Modes Working Time Operating Cycles Wf (kWh)

1 Dyeing installation—dyeing operation/R4 On Normal 1 11.50
2 Dyeing installation—drying operation/R2 On Normal 1 7.87
3 Air compressor On Normal 1 11.44
4 Welding machine Off – – –
5 Lighting system—tinsmithing department On Long 1 4.86
6 Lighting system—repair hall On Long 1 2.88
7 Lighting system—dyeing department On Reduced 1 1.1
8 Reception office On Long 1 2.7
9 Other electric equipment On Normal 1 2.0

10 Vehicle elevator Off – – –
Total—forecasted energy consumption 44.35
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Electrical power has been the technological foundation of industrial societies for 
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Foreword 

This book discusses the recent developments in computational techniques and 
communication infrastructure that has led to the modernization of the smart grid. 

It is obvious that now the smart grid represents an evolved version of the elec-
trical grid, with improved monitoring and control capabilities, which continues to be 
improved in future implementations. 

So, this book discusses emerging computational technologies, such as cloud 
computing, blockchain, deep learning, machine learning, big-data analytics, etc. 
along with the emerging communication technologies, such as the 5G, internet of 
things (IoT), etc., encompassing several applications, such as electric vehicles, wide-
area monitoring systems, home automation, advanced metering infrastructure, etc., 
from the perspective of modernization of smart grid. 

This book is the first of its kind on smart grid’s upgrade to version 3.0, discussing 
the current status of emerging technologies and the utility of big data analytics, 
blockchain, cloud computing, deep learning IoT, etc., on the existing smart grid 
applications to infuse them with intelligence and make them proactive. 

Thus, the content of this book is interdisciplinary, involving knowledge of elec-
trical and electronics engineering, communication, signal processing, data anal-
ysis and artificial intelligence (machine learning, deep learning, etc.) and optimiza-
tion. Therefore, the content of this book is addressed to students and specialists 
(researchers and engineers) in electrical engineering, power systems, communi-
cation, data scientists, and for industry personnel to develop grid with proactive 
intelligence and the techniques used in its design. 

In conclusion, it is noteworthy that the content of the book chapters is presented 
gradually and theoretically in detail as necessary to understand the problems and

v
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effective techniques for implementing the smart grid with proactive intelligence, 
being highly recommended for study in education and research. 

May 2023 Prof. Dr. habil. Phatiphat Thounthong 
King Mongkut’s University 

of Technology North Bangkok 
Bangkok, Thailand



Preface 

The power grid has come a long way since its inception, evolving from a simple 
system for delivering electricity to a complex and intelligent network. Today, we stand 
at the cusp of a new era in power grid systems—Smart Grid 3.0. This edited book, 
titled Smart Grid 3.0: Computational and Communication Technologies, comprising 
of 15 chapters, explores the advancements in computational and communication 
technologies that have paved the way for this next phase of evolution in the power 
grid. 

The first chapter “Smart Grid 3.0: Grid with Proactive Intelligence” sets the stage 
by introducing the concept of Smart Grid 3.0, highlighting its key aspect of proac-
tive intelligence. This chapter emphasizes the importance of emerging technologies 
like artificial intelligence, the Internet of Things, blockchain, big data, 5G, edge 
computing, and cloud computing in equipping the power grid with proactive intel-
ligence. By gathering and analyzing real-time data, the grid can make informed 
decisions and take pre-emptive actions to optimize its performance. 

The second chapter “Blockchain for Energy Management: Smart Meters, Home 
Automation, and Electric Vehicles” delves into the application of blockchain tech-
nology in energy management, particularly in the context of smart meters, home 
automation, and electric vehicles. The chapter explores the decentralized architec-
ture of blockchain, its potential benefits in the energy sector, and how it can enable the 
creation of neighborhood microgrids and eliminate intermediaries between producers 
and consumers. 

In the third chapter “Engineering Applications of Blockchain Based Crowd-
sourcing Concept in Active Distribution Grids”, the focus shifts to the concept 
of crowdsourcing in active distribution grids. The chapter explores how crowd-
sourcing can help mitigate energy scarcity and promote the selling of energy produced 
by small-scale distributed energy sources. It discusses the potential benefits for 
prosumers, distribution network operators, and consumers, highlighting the need for a 
comprehensive methodology to ensure efficient and sustainable energy provisioning. 

The fourth chapter “Machine Learning-Based Approaches for Transmission Line 
Fault Detection Using Synchrophasor Measurements in a Smart Grid” addresses the

vii



viii Preface

crucial issue of fault detection in transmission lines using synchrophasor measure-
ments. The chapter highlights the role of machine learning-based approaches, such 
as K-Nearest Neighbour, Support Vector Machine, and Logistic Regression, in effec-
tively detecting and classifying faults. Real-time implementation of these algorithms 
on a physical laboratory transmission line is presented, showcasing their effectiveness 
in ensuring the reliability and stability of transmission lines. 

Power quality analysis takes the center stage in the fifth chapter “Data 
Mining-Based Approaches in the Power Quality Analysis”. The chapter discusses the 
challenges associated with maintaining high power quality in distribution networks 
and proposes the use of data mining techniques for power quality monitoring 
and analysis. By extracting relevant features from current and voltage measure-
ments, these techniques can identify areas with power quality issues and assist 
decision-makers in improving the performance of electric distribution networks. 

The sixth chapter “Machine Learning and Deep Learning Approaches for Energy 
Management in Smart Grid 3.0” focuses on the application of machine learning and 
deep learning approaches in energy management systems within smart grids. With 
the increasing complexity of energy systems, these techniques offer valuable tools for 
analyzing large amounts of data and optimizing energy usage. The chapter reviews 
various machine learning and deep learning algorithms, their critical applications, 
advantages, and disadvantages in the context of smart grids. 

The seventh chapter “Evolutionary Algorithms for Load Frequency Control 
of Renewable Microgrid” explores load frequency control (LFC) in renewable 
microgrids. The chapter discusses the challenges posed by heavy fluctuations in 
voltage and frequency in islanded multi-microgrid systems. It introduces evolu-
tionary algorithms such as Gravitational Search Algorithm, Particle Swarm Opti-
mization, Teaching Learning-based Optimization, and Grey Wolf Optimization for 
optimizing the parameters of PID controllers, enhancing the dynamic performance 
of microgrids. 

In the eighth chapter “Agents-Based Energy Scheduling of EVs and Smart Homes 
in Smart Grid”, the focus shifts to energy scheduling in smart grids, specifically for 
electric vehicles and smart homes. The chapter presents optimal energy scheduling 
techniques using agents-based approaches, enabling energy flow control and mini-
mizing electricity costs. It highlights the integration of renewable energy sources, 
energy storage systems, and EV charging points in smart homes, emphasizing the 
benefits of energy management and optimization techniques. 

In the ninth chapter “Advanced Control Functionalities of Smart Grids 
from Communication and Computational Perspectives”, the authors shed light on 
the sophisticated control schemes necessary to manage the complexity of Smart Grid 
3.0. This chapter emphasizes the increasing requirements for communication and 
computational capabilities as control strategies become more advanced. It provides 
an overview of the advanced control functionalities of key components such as trans-
mission and distribution systems, microgrids, distributed energy resources, and smart 
homes. 

The tenth chapter “Multistage PD-(1+PI) Controller Design for Frequency Control 
of a Microgrid Considering Demand Response Program”, addresses the crucial issue
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of load-frequency control in fully-renewable microgrids. The chapter presents a 
multistage controller design that combines Proportional Derivative (PD) and One 
+ Proportional Integral (1+PI) controllers to ensure system stability and respon-
siveness. Furthermore, it explores the integration of demand response programs 
to compensate for the uncertainties and nonlinear variables inherent in microgrid 
operations. 

The eleventh chapter is titled “Solid State Transformer: Topologies, Design and Its 
Applications in a Smart Grid”. The chapter highlights the significance of Solid State 
Transformers (SST) in enhancing the grid’s efficiency, monitoring, and control capa-
bilities. It discusses the design process of SSTs, including power electronic converters 
and medium or high-frequency transformer design. The chapter also explores the 
role of SSTs in the Energy Internet as Energy Routers, showcasing their potential in 
improving reliability and power density. 

The twelfth chapter “Emerging Communication Technologies for V2X: Standards 
and Protocols”, explores the integration of Electric Vehicles (EVs) into Intelligent 
Transportation Systems (ITS) and the Smart Grid. It examines the communication 
standards and protocols that enable EVs to interact wirelessly with the grid infrastruc-
ture and Road Side Units (RSUs). The chapter provides insights into existing commu-
nication protocols and emerging technologies, such as IEEE 802.11bd and New 
Radio (NR) V2X, designed to enhance reliability, low latency, and high throughput 
communications for autonomous vehicles and driving use cases. 

The growing importance of the Internet of Things (IoT) in smart homes and smart 
cities is the focus of the thirteenth chapter “Internet of Things for Smart Homes 
and Smart Cities”. Titled “Internet of Things for Smart Homes and Smart Cities,” 
the chapter explains the architecture and enabling technologies of IoT. It explores the 
application of IoT in smart home environments, covering protocols, communication 
mediums, and important IoT-based services. Additionally, it delves into the concept of 
smart cities, discussing architecture and popular services enabled by IoT technology. 

The fourteenth chapter “Advancements in DC Microgrids: Integrating Machine 
Learning and Communication Technologies for a Decentralized Future”, delves into 
the concept and components of DC microgrids. It explores different control strate-
gies used in microgrids and highlights the advancements in machine learning and 
communication technologies that further enhance their efficiency and reliability. The 
chapter provides valuable insights into the decentralized future of DC microgrids and 
their contribution to a sustainable power system. 

Lastly, the fifteenth chapter “Advanced Communication and Computational Tech-
nologies in a Sustainable Urban Context: Smart Grids, Smart Cities and Smart 
Health”, discusses the potential of modern communication and computational tech-
nologies in overcoming environmental and socio-economic challenges in cities and 
their potential applications in smart grids, smart cities, and smart health. The chapter 
emphasizes the need for a holistic approach to building sustainable and equitable 
cities, taking into account the environmental impacts beyond city boundaries. 

The book as a whole addresses the critical role of computational and commu-
nication technologies in shaping the future of the electricity grid. Each chapter
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provides unique insights into specific aspects of Smart Grid 3.0 and highlights the 
advancements, challenges, and opportunities presented by these technologies. 

The editors and authors of this book have brought together their expertise and 
research to create a comprehensive resource for researchers, professionals, and 
students interested in the field of smart grids and energy systems. The interdisci-
plinary nature of the topics covered ensures that readers will gain a well-rounded 
understanding of the subject matter. 

It is our hope that this book will serve as a valuable reference and guide for 
those seeking to navigate the complexities of Smart Grid 3.0. By exploring the 
advanced control functionalities, controller designs, communication protocols, and 
emerging technologies, readers will gain insights into the transformative potential of 
computational and communication technologies in creating a more sustainable and 
efficient energy future. 

We would like to express our sincere gratitude to all the contributors who have 
shared their knowledge and expertise in this book. Their dedication and efforts have 
made this publication possible. 

Lastly, we extend our appreciation to the readers for their interest in Smart Grid 
3.0 and their commitment to advancing the field. We hope that the insights and 
knowledge shared in this book will inspire further research and innovation in the 
pursuit of a smarter and more sustainable energy ecosystem. 

Bhubaneswar, India 
Pites, ti, Romania 

Bhargav Appasani 
Nicu Bizon
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Engineering Applications of Blockchain 
Based Crowdsourcing Concept in Active 
Distribution Grids 

Bogdan-Constantin Neagu, Gheorghe Grigoras, and Florina Scarlatache 

Abstract The future active distribution networks (ADNs) must ensure “smart” 
features like flexibility, accessibility, reliability, and high power quality for all 
consumers. Increased adoption of small-scale distributed energy sources (SSDES) 
helps decarbonise ADNs. In the present context, society must ensure the compre-
hensibility of the benefits stemming from smart electricity across the entirety of the 
population while concurrently ensuring that the provisioning process is achieved in an 
environmentally sustainable and efficient manner. Energy poverty is a lack of access 
to clean and affordable energy, resulting in soaring energy costs. The crowdsourcing 
concept, introduced by Surowiecki (The wisdom of crowds, Anchor, San Diego, CA, 
2005), can be used to mitigate energy scarcity. It can be a useful tool for allowing 
the crowd to do community service within a specific geographic region. According 
to Romania’s Energy Regulation National Agency’s Order No. 228, launched on 
December 28, 2018, the prosumers can sell the energy-produced SSDES on the free 
market. More automated trading strategies aim to improve the benefits of peers who 
trade electricity in local community markets. The main aim is to quantify the distor-
tion effects and introduce a stringent and comprehensive methodology integrating 
the distribution network operator (DNO), prosumers, and consumers. This chapter 
compare the ADNs cost saved by the households when prosumers move to increase 
their revenue, and the DNOs act to improve the benefits derived from an optimal 
network operation. 
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Abbreviations 

AND Active distribution networks 
SSDES Small-scale distributed energy sources 
DNO Distribution network operator 
PV Photovoltaic 
LV Low voltage 
SG Smart grids 
SM Smart meter 
P2P Peer-to-peer 
LMM Local microgrid market 
CES Crowdsourcing energy systems 
FCFS First come first serve 
MU Monetary unit 

1 Introduction 

The increasing demand for electricity, coupled with the constraints imposed by global 
warming and climate change, necessitates exploring and utilising novel renewable 
energy resources with environmentally-friendly attributes. A result of this aim is 
the increasing number of SSDES. These green sources may instantly operate as 
ADN users (prosumers) with energy self-production. Significantly, there has been a 
remarkable surge in the adoption of solar photovoltaic panels (PVs) in recent years, 
driven by incentives provided by the European Union (EU) communities, including 
Romania (refer to [1]). This development substantiates the aforementioned concept 
and transforms it into an undeniable business reality. The base of bidirectional energy 
flows rising from the transactive energy in the local communities, as well as the need 
to decrease the power loss, led to changes in the ADN in Low Voltage (LV) grids, 
leading in the direction of a higher active and cost-effective Smart Grids (SGs). 

Energy efficiency saves money and resources, representing a necessity for flex-
ible adaptation to users’ demands. Because electricity plays a fundamental role in 
modern lifestyles, users’ load characteristics must reflect the people’s lives at work 
and leisure. 

The volume of available information necessary for the operation, management, 
planning, and security of the ADNs has gradually increased with technological devel-
opment, requiring the introduction of the calculation technique and intelligent solu-
tions [2]. Even if the prosumers have high benefits, their behavior is intermittent, 
so the DNOs must consider a comprehensive ADN planning strategy. Furthermore, 
they should be able to bind to the grid and operate independently (autonomously). 
The ADNs, which were created for cities, incorporate local energy supply to meet 
the specific demand of the customers. Active consumers and prosumers are identified 
in the framework of recent paradigms of energy independence, energy policy, and
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distributive management. The ADN is viewed as a tool for constructing a coordinate 
system for SSDES fair integration, which will be an edifying challenge for DNOs 
that will require another operation plan. The prosumers make up the active cells 
of the ADNs, and each cell will supply installations to the DNO to maximize grid 
hosting power and execute SSRES in a successful and effective operating manner 
[3]. 

In our country, energy saving is improving as local suppliers (prosumers) with 
a rated capacity of up to 27 kilowatts create more electricity [4]. These funds are 
transferred to the supplier with whom a bilateral agreement has previously been 
negotiated [5]. 

Prosumer action must still be evaluated to store excess power during periods of 
low demand and transmit it when demand rises [6]. A recent report from the European 
Union’s Smart Grids Task Force [7] offers a specific mandate to develop a smart meter 
(SM) strategy to meet the needs of the emerging electricity market by adopting a 
flexible and adaptable measuring technology. As a result, the SM must ensure that 
useful information on the pattern of the prosumers’ generation is available [8]. 

The proliferation of SSDES changes the operating conditions and management 
requirements of the ADNs, which must now integrate new technologies and proce-
dures. The SG principle has been applied in Romania on various scales and measures 
in recent years, with most of the hardware being tested and accepted but in isolation. 

The presumption of a structure or unifying architecture of interfaces and protocols 
based on norms and standards is fundamental. As a result, a reference framework for 
data sharing between devices and ADNs must be specified, enabling the interaction 
of services, utilities, protocols, devices, and interfaces [9]. Figure 1 illustrates the 
transition from classical electricity grids to ADNs. 

Fig. 1 The transition from classical grids to ADNs
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The increasing number of prosumers with various distributed energy recourses 
promotes the P2P (peer-to-peer) electricity transaction in the SGs for less cost, more 
flexibility, lower carbon footprints, and higher reliability. Recent research on the 
prosumers’ behavior in electric distribution systems has increased in recent years. A 
distributed privacy-preserving P2P energy transaction approach has been proposed to 
minimize the overall objective of renewable generation curtailment penalty, adjust-
ment cost, and operation cost while satisfying linearized distribution network power 
flow, power line thermal, and voltage limit constraints. 

The integration of prosumers into ADNs has become a serious concern in Romania 
in the last 2 years, with the national government pushing this practice using bonuses 
[1]. Figure 2 shows the overall quantity of over 3500 prosumers connected to Roma-
nian DNOs’ LV-ADN. [10]. The behavior of prosumers becomes a critical issue for 
aggregators, suppliers, and DNOs. This legal system provides prosumers with several 
benefits [1], including the following Fig. 2. 

Law 184/2018 establishes a mechanism to encourage the share of renewables 
as a significant move forward in Romania’s legislation of prosumer status as the 
following:

• prosumers with self-generation electricity units with a rated capacity of a 
maximum of 27 kW per individual home, residential blocks, residential, commer-
cial, or industrial areas are covered by the scheme;

• electricity delivery operators must contact prosumers according to the regulatory 
authority’s relevant regulations;

• prosumers can sell electricity surplus to suppliers with whom they have agree-
ments at a price equivalent to the weighted medium price reported on the day-
ahead market the previous year; suppliers with whom prosumers have a deal must 
take over the energy at the latter’s order;

Fig. 2 The number of prosumers from each DSOs in Romania 
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• exemption from excise duties for prosumers for the volume of electricity produced 
from renewable sources for personal use and the surplus supply sold to suppliers;

• exemption of prosumers as individual citizens from the duty to purchase renewable 
certificates for electricity production and used for self-final use, beyond power 
plants technical losses, on an annual and quarterly basis;

• going to benefit from the service of regularization between the value of electricity 
delivered and the value of electricity used in the grid by electricity suppliers for 
which they have electricity supply deals. 

According to the legislation, energy suppliers having agreements with prosumers 
ask to buy power at the weighted mean day-ahead spot price from the preceding year. 
As a result, the retailer gains from not paying the distribution system tariff because the 
prosumer will sell their extra energy on the market. The trading mechanism provides 
a basic approach, limiting both sides’ options (consumers want to buy power at lower 
prices, and prosumers want to sell it). 

By not encouraging prosumers to set custom sale rates, it ignores disparities in 
generation costs and installed power. There is no opportunity to stimulate local gener-
ation. Consumers are unable to purchase power directly from prosumers, limiting 
their ability to trade with specific prosumers [11]. 

More automated trading strategies aim to improve the benefits of peers who trade 
electricity in the local market of microgrids (LMM). A comprehensive methodology 
considering the DNOs and stakeholders, which to quantify the highlighted distortion 
effects, is proposed in the chapter. The authors will compare the ADNs cost saved 
by the households when prosumers move to increase their revenue, and the DNOs 
act to improve the benefits derived from an optimal ADNs operation. 

2 Crowdsourcing Energy System 

Crowdsourcing, a term first proposed in 2005 by James Surowiecki [12], can be 
used to alleviate energy poverty [13]. Crowdsourcing [14] is a new development 
in which users’ ideas are combined with the mutual intelligence of the crowd [15]. 
To make these crowdsourced sensor cloud data accessible, developing a service-
based solution is critical. It can also be an important way for the crowd to have a 
service-sharing community within a metropolitan region by allowing them to use 
their smartphones [16]. In this crowdsourced service community, consumers can 
benefit from the services of their neighbours. Since the crowd (i.e., service providers) 
is mobile, providing crowdsourced applications to customers is constrained by their 
spatial and temporal proximity, i.e., all service providers and users must be in the same 
geographic area simultaneously. Selecting and composing services from such a vast 
number of constantly evolving crowdsourced sensor cloud services to meet users’ 
needs in real-time and dependent on spatiotemporal features is a major challenge. 
As a result, new spatial–temporal service collection and composition innovations
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are important approaches for using spatial–temporal crowdsourcing as a forum for 
service provisioning. 

A crowdsourced energy system (see Fig. 3) includes a plurality of distributed 
energy resources managed by crowdsources of the system, a power network to which 
the distributed energy resources are connected, and a system operator that manages 
energy trading transactions and energy delivery within the system. The system oper-
ator operating at least one computing device configured to obtain day-ahead peer-to-
peer energy trading transaction requests from crowdsources for energy to be deliv-
ered from the distributed energy resources, estimate day-ahead energy load and solar 
forecasts, determine optimal power flow for the delivery of energy, and schedule 
delivery of energy from the distributed energy resources across the power network 
based upon the energy trading transaction requests, the estimated forecasts, and the 
determined optimal power flow [17]. It may be useful for allowing the general public 
to do community service within a certain geographic region. 

Several billions of dollars have been spent on blockchain analysis in recent years to 
maximize its capacity and determine its appropriateness in various economic domains 
[1]. However, not all sectors can completely embrace blockchain technologies. 

The current technological opportunities must be analyzed in each particular case, 
along with the challenges that end-users are confronted with and how a modern 
open architecture could provide value to them. Fortunately, the electricity sector is 
an excellent nominee for blockchain-based advancement. It integrates a complex 
supply chain with need to increase transparency and improve data management. It

Fig. 3 A particular model for crowdsourcing energy system 
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also has a high-volume trade segment that will benefit from the immediate settlement. 
Blockchain’s clarity and immutability will inspire business and customer end-users. 

3 Blockchain Technology 

A blockchain represents a decentralized (distributed) register of the number of trans-
actions that occur in an ADN. This network is made up of nodes that are operated 
by different entities and use a cryptographic protocol to verify transactions. The 
protocol has an accuracy through which the data introduced in the register can’t be 
reversed or altered. It is unchangeable, stable, and clear. More than that, the differ-
ence of blockchain is represented by the distributed software ledger of trusted and 
verified transactions which is structured in blocks and maintained by network nodes, 
see Fig. 4. Blockchain platforms are fully decentralized and distributed to the level 
of ADN nodes, making them difficult to hack and exploit by malicious actors [18]. 

A defining feature of blockchain technology is the immutability of the data. In 
simple terms, once the data are recorded and validated by the entire network and 
can no longer be modified. It is possible because the data related to any transaction 
is dispersed through the AND and verified to prevent fraud. Many projects have 
been undertaken to consider the potential synergies between the blockchain and the 
power system. Blockchain technology has the potential to solve various problems 
in the electricity sector and lead to the achievement of energy consumption goals, 
including compensating for financing gaps in different initiatives [19]. The transition 
to smart grids involves accepting challenges that need to be known and finding the 
most effective means to overcome them. Blockchain-based network technologies will 
result in structural improvements that will necessitate the participation of logistics 
and service providers, equipment suppliers, policymakers, and, last but not least,

Fig. 4 The comparation between centralised and distributed ledger of transaction for blockchain 
technology 
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final users. The power market has a lot of promise for blockchain implementation 
due to more challenges [11, 20, 21]: 

Climate change and the need to incorporate clean energy sources have led to the 
advancement of technologies like PV panels and wind turbines, which are becoming 
more affordable. Their technical characteristics present opportunities to develop new 
actors represented by prosumers. Prosumers pose a threat to the existing configuration 
of electricity networks, posing technological problems for DNOs in maintaining 
energy balance. Nevertheless, electricity generation at the household level (typically 
with PV panels on the roof) represents a major potential for advancing blockchain 
technology-based architectures because it takes advantage of the distributed nature 
of electricity production and has a performance that no other paradigm can equal. 

The creation of technologies that make the transition to AND was depicted in 
Fig. 1. Communications and networking components, inverters, bidirectional smart 
meters, and energy storage are all examples of technologies that have been imple-
mented. As a result of this evolution, energy has become a more controllable, 
storable, and easily quantifiable substance. It is appropriate for trading across “smart” 
agreements. Local energy generation cooperatives founded by community residents 
oversee the development of energy communities. The ADN, which incorporates 
blockchain technology, maybe a workaround for providing the cleanest and cheapest 
electricity forms to the poorest customers and conserving resources by more respon-
sible use. They achieve these goals by creating unity programs to lower vulnerable 
members’ electricity bills and supplying them with resources and training on reducing 
consumption. They still use the profits from electricity generation to help poor and 
low-income families improve their living conditions. 

Introducing a blockchain-based prosumer network simplifies the design of 
exchange models, replacing intermediaries for electricity trading. There are many 
attempts to unlock the high potential that blockchain technology has in accelerating 
the transition to green energy. The immutability of data from the blockchain occurs 
due to the synergy of the three technologies: cryptographic keys, a distributed register, 
and a validation protocol. Records kept on a blockchain can be considered reliable, 
and the operator or aggregator cannot access them, see Fig. 5.

The transaction variables, such as sender, receiver, transaction value, and so on, 
are calculated in an ADN when a prosumer or an energy supplier and a prospec-
tive consumer agree to make an electricity transaction. Each transaction is secured 
and replicated through the entire network for data verification and storage on the 
local level. Each network member verifies, confirms, and saves the transaction data’s 
validity automatically. Thus, confidence is given by the network members who 
become witnesses and guarantors of each transaction. All information related to 
electricity transactions is mixed with identical information from all transactions in 
the network that takes place simultaneously to form a block. Subsequently, that block 
is added to a blockchain that brings together all the transactions ever made in the 
network publicly and transparently. Once added to the chain, the blocks and, implic-
itly all the transactions are no longer editable and become a detailed report of all the 
necessary elements to keep track of.
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Fig. 5 The transactive energy based on blockchain technology

Mathematical algorithms that assign a hash to each block verify its data. The 
hash is a collection of letters and numbers created from the related data from the 
transactions in a given block. The network periodically checks the hash value for 
each block in relation to the value of the previous block. In this way, it is impossible 
to any attempt to defraud data related to a transaction, as well as any attempt to cancel 
or reverse the transaction.
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4 Enhanced Prosumers Trading Approach 

4.1 Problem Formulation 

This section explains the mathematical model for selling surplus energy generated 
by SSDES (residential solar panels) between peers in the local ADN markets— 
prosumers (Pros) and consumers (Cons). When “prosumers” are thought of as energy 
producers that sell their excess energy, they will sell the surplus of generated energy 
(Wgp) if their consumptions (Woc) are less than their own generation. 

Blockchain technology begins to function after this limit is met. If the energy 
demand (Wd) volumes are greater than Wgp, the total prosumers offered energy 
(Wof ) is set by taking into account total produced power (Wg) by prosumers as seen 
in the flowchart: 

n∑

k=1 

W k, h o f  = 
n∑

k=1

(
Uk, h 

g · I k, h g

) − 
n∑

k=1 

W k, h oc (1) 

Ug and Ig for prosumer k, at hour h, is the operation voltage and current value. 
For the n lines, the total energy losses (ΔWT ) are calculated as: 
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where Rl is the resistance, I l are the current value for the i line, and Um·Im is the 
miscellaneous energy loss. 

After that, by subtracting the Eq. (2) from (1), the provided energy (Wof ) can be 
calculated as: 

n∑

i=1 

W i,h o f  = 
n∑

i=1

ΔW i,h gp − 
n∑

i=1

ΔW i,h oc − 
n∑

i=1

ΔW i,h T (3) 

Energy Smart Contracts (Peer-to-Peer—P2P), representing the “translation” or 
“transposition” in the code of a contract to automatically verify the fulfilment of 
certain conditions and to automatically execute actions when the conditions are 
determined between the parties, are reached and verified [12]. 

4.2 The Blockchain-Based Crowdsourcing Algorithm Design 
for P2P Energy Transactions 

A mathematical model is proposed for computing the hourly excess offered by 
prosumers to local consumers through Crowdsourcing Energy Systems. Table 1
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presents the pseudocode of the proposed approach. Also, Fig. 6 shows the flowchart 
of a blockchain-based prosumers energy trading system for peer-to-peer contracts. 
The total price for the Wof is determined through multiplication with the energy per 
unit price (PP2P), assured by negotiating process between Pros and Cons (from a 
local ADN) using P2P “smart” contracts. Following that, the Wof status for each 
available Pros is updated, and each Prs is alerted by the blockchain method depicted 
in Fig. 6. 

Consumers who have already signed a P2P deal tend to purchase electricity from 
the nearby Prs when Wd is higher than Wgp. When a vendor and a client plan to do

Table 1 The pseudocode of the proposed algorithm 

Step 1. Input data details: consumer load profile (C), prosumer generation (G), and presumer 
price (PR) 

Step 2. Initialize the acquisition quatities (A) and financial settlement (F) 

Step 3. Initialize the unsold surplus (us): us = 0 
Step 4. Start the P2P energy trading method based on blockchain texhnology using a AND 
crowdsourcing energy system, Fig. III.9.6 

4.1 for each hour: h = 1…24 

for each presumer: k = 1…np 

compute surplus: S (h, k): S (h, k) = G (h, k) − C (h, k) 
if S (h, k) > 0 

surplus = S (h, k); 
4.2 build a temporary consumer priority (proce, length): 

Distribute the surplus (srp): 

set initial consumer index: w = 0; 
while  srp > 0 or (w < nc)  

k = k + 1; 
if the consumer has a P2P contract: 

substract the available surplus from its trading offer; 

if the surplus exceeds the consumer contract quantity: 

update the remaining surpkus; 

the contract from consumer w is fulfilled; 

else 

the contract from consumer k is partially fulfilled and the surplus is depleted; 

update matrix by subtracting from the served consumer demand the fulfilled contract; 

update acquisition matrix A for hour h according to the served consumer k, serving 
prosumer ix an traded quantity 

4.3 Update line the consumer load profile 

4.4 Update the unsold surplus: us = us + srp; 
Step 5. Compute the hourly and total electricity sold by prosumers to each consumer and the 
electricity traded hourly and daily by all prosumers, using matrices A and F
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Fig. 6 The energy trading 
approach based on P2P 
contracts in the blockchain 
environment
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business together, they decide the factors, such as the receiver, sender, and transac-
tion size, among other aspects. When Cons update their demand ledger status, the 
blockchain module generates a Wd list based on the necessary amount of energy, 
Wr , in order to compare both the Wd and Wof lists in the system. In addition, all 
inferred Pros and Cons receive a note informing them of the transaction status. The 
Wof would be moved from the μG (Pros) to the Cons if they comply with the trans-
action status. P2P crypto can be used as a virtual payment method. Another function 
of blockchain in our algorithm is to determine if the remaining electricity surplus 
in the AND satisfies the Wd list or if there are no prosumers willing to sell elec-
tricity. In this case, the sales can’t be stored, so Cons would have to wait before sale 
deals become open. The Cons would then see advertisements for sale deals, and the 
blockchain system will sell power to customers based on the first come, first served 
(FCFS) concept. If Wof is greater than zero, or Wd from Cons persists, the algorithm 
begins. Finally, after the trade process is over, the Pros and Cons will be notified. 

Blockchain technology enables stable anonymous purchases based on the FCFS 
theorem, which states that prosumers or market administrators have no control over 
trading partners and that purchasing deals are met regardless of quantity or price, 
with only the trading system’s positioning moment taken into account. The algo-
rithm reproduces this approach at each trading interval by randomly allocating each 
customer and prosumer preferences. In addition, since each offer’s time index is 
special in the blockchain scheme, an embedded rule in the algorithm states that no 
two customers should have the same trading preferences. As a result, there is no need 
for a secondary requirement in this situation. Distributed algorithms have the poten-
tial to realize privacy-preserving P2P energy transactions since no party has direct 
access to all participants’ private information. Figure 7 indicates the transaction 
mechanism. 

A short comment must add regarding the proposed distributed algorithm-based 
information-exchanging, even if Step 4 from Table 1 has been treated extensively

Fig. 7 The translation of the energy trading method on blockchain technology 
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in [18]. It refers to the fact that access to private information is not allowed by 
eavesdroppers. Thus, only six transaction steps (A,…, F) are synthetically proposed, 
see Fig. 7. 

First, if someone requests a transaction (step A), this transaction is broadcasted 
to a P2P crowdsourcing energy system (CES), characterized by ADN peers. In the 
second step (B), the CES peers validate the transaction and the user’s status using 
the proposed FCFS algorithm. Step C applies blockchain technology when a verified 
transaction can involve cryptocurrency, smart contracts, records, or other transaction 
information. Once verified, the current transaction is combined with others to create 
a new information block for the ledger (Step D). The new blocks are added to the 
blockchain system (grey colour has been used in Fig. 6 to highlight it) in a permanent 
and unalterable way. The last step (F) is the complete confirmation of the transaction. 

5 Case Study 

The performance of the proposed distributed P2P energy transaction in the CES 
environment approach has been investigated through case studies in a 28-bus active 
distribution system belonging to a Romanian DNO (see Fig. 8), which provides 27 
single-phase residential users with 4-wire three-phase power line (NFA2X 50 OL-
AL + 3 × 70 mm2). The distance between the LV poles is between 36 and 42 m. 
The prosumers, seen on 6, 7, 15, 21, and 27 buses, want to sell their excess elec-
tricity to other ADN customers. The case study considers all consumers integrated 
into the local market, receiving electricity through smart P2P contracts from the 
prosumers. The consumption and generation profiles associated with the consumers 
and prosumers have been uploaded from the Smart Metering system [11].

The sampling step is by 1 h during a day. For considered prosumers, Table 2 shows 
the energy surplus available for trade in the considered interval. The transaction 
process would spread this surplus among customers or prosumers, as presented in 
the previous section.

Over the trading cycle, each prosumer’s energy price is assumed to be stable. The 
average fixed price for customers to purchase energy (monetary unit—MU/kWh) 
from a traditional market operator is 0.72 MU/kWh, including taxes. In other words, 
the fixed price at which prosumers will sell electricity back to the grid has been set 
at 0.196 MU/kWh for 2021 (0.251 for 2020) [22], whereas local prosumer sale rates 
have been set at [0.40, 0.55] MU/kWh. 

The study of Fig. 9 revealed that local generation accounts for 22.8% of usage 
between 06:00 and 18.00, with an hourly surplus that never exceeded demand in 
every selling cycle.

Via P2P contracts, prosumers sell all energy sums in the local ADN. Bus 1 is empty, 
and each prosumer cannot sell their excess energy, so it is sold on the market. The 
energy transaction considers the priority order as incentivising specific prosumers, 
based on the “close” tiers, technology, agreement, or social welfare enhancing in the 
crowdsourcing energy environment. The following study, applied in the case of an
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Fig. 8 The diagram of a real active distribution network

Table 2 Local generation (in kWh) and selling prices (in MU/kWh) 

Hour Prosumer Nodes 

6 7 15 21 27 

06 0.00 0.00 1.95 1.59 0.00 

07 0.00 0.26 1.59 1.81 0.00 

08 0.00 0.70 1.59 1.73 0.67 

09 0.74 1.06 2.23 1.75 1.44 

10 1.12 1.09 1.30 2.29 1.61 

11 1.89 1.40 2.78 2.04 1.66 

12 2.33 1.23 1.88 1.82 1.60 

13 2.29 1.41 2.83 0.69 1.51 

14 1.35 1.39 2.95 1.18 1.37 

15 1.18 1.05 1.55 2.03 1.11 

16 0.00 0.41 1.32 0.82 0.56 

17 0.00 0.00 1.06 0.00 0.00 

18 0.00 0.00 1.16 1.17 0.00 

Total 10.90 9.99 24.17 18.90 11.51 

Selling price 0.43 0.40 0.48 0.55 0.43
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Fig. 9 Local generation and consumption, in kWh

emerging country, highlights the advantages of the proposed energy trading algo-
rithm. The consumers’ money savings and increasing the market flexibility through 
“smart” contracts represent the main objectives of the algorithm. 

Because the P2P contracts are already signed between peers based on the FCFS 
blockchain principle, it must be mention that only participant from bus 28 do not 
receive the electricity surplus, with insignificant daily electricity consumption. 

Figure 10 shows the traded energy quantities from applying the proposed math-
ematical model. Moreover, Table 3 presents the daily electricity amounts from 
prosumers purchased by consumers. 

Fig. 10 The electricity achieved by the consumers in kWh



Engineering Applications of Blockchain Based Crowdsourcing Concept … 73

Table 3 The traded prosumers excess and prices (in MU/kWh) 

Bus The electricity excess, in kWh Total 
kWh 

P2P 
price 

Total cost/revenue 

P6 P7 P15 P21 P27 for Cons for Pros 

2 0.860 0.000 0.000 0.176 0.641 1.678 0.743 1.208 0.329 

3 0.000 1.154 2.962 1.394 1.599 7.109 3.338 5.118 1.393 

4 0.378 0.000 0.000 0.000 0.000 0.378 0.163 0.272 0.074 

5 0.000 0.000 0.181 0.749 0.559 1.489 0.739 1.072 0.292 

8 0.244 1.048 0.603 2.761 2.773 7.430 3.525 5.350 1.456 

9 0.000 0.002 2.046 0.773 1.106 3.927 1.884 2.827 0.770 

10 2.295 1.356 0.122 1.361 0.000 5.133 2.336 3.695 1.006 

11 1.845 0.745 1.130 0.620 0.000 4.340 1.975 3.125 0.851 

12 0.000 0.645 2.572 0.668 0.000 3.885 1.860 2.797 0.761 

13 0.150 0.056 0.000 0.000 0.000 0.206 0.087 0.148 0.040 

14 1.116 0.691 2.141 2.140 1.372 7.460 3.551 5.371 1.462 

16 1.917 1.632 1.634 3.631 0.000 8.814 4.259 6.346 1.728 

17 0.000 1.331 0.294 0.000 0.000 1.625 0.674 1.170 0.319 

18 0.000 0.263 1.144 0.000 0.000 1.407 0.654 1.013 0.276 

19 0.000 0.298 0.017 0.000 0.000 0.315 0.127 0.227 0.062 

20 0.000 0.000 1.100 1.722 0.000 2.822 1.475 2.032 0.553 

22 0.412 0.000 1.136 0.000 0.353 1.901 0.874 1.369 0.373 

23 0.000 0.410 3.090 0.000 0.000 3.500 1.647 2.520 0.686 

24 0.000 0.000 2.430 1.649 3.108 7.187 3.410 5.174 1.409 

25 0.742 0.368 1.242 1.260 0.000 3.612 1.755 2.601 0.708 

26 0.940 0.000 0.324 0.000 0.000 1.264 0.560 0.910 0.248 

The last columns correspond to the following indicators:

• the overall electricity bought by a customer;
• the tariff charged by consumers to prosumers for the surplus electricity achieved 

through the signed “smart” contracts;
• the imposed tariff that consumers could have paid to the ADN provider at 0.72 

MU per one kilowatt;
• finally, the regulated price paid by prosumers to the grid aggregator at 0.196 MU 

per one kilowatt. 

Figure 11 presents the prosumers’ financial benefits associated with the price paid 
for the consumers through the “smart” contracts and regulated price if the excess was 
deposited straight into the ADN. Consumers can also feel the effects of purchasing 
at a LMM. The variations between the standardized price, which customers must 
pay, and the P2P price used in the proposed algorithm, which is often smaller, are 
seen in Fig. 12.
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Fig. 11 The P2P and imposed tariff achieved by prosumers from LMM 

Fig. 12 The P2P and imposed tariff gained by the consumers 

6 Conclusions 

The use of a blockchain in the energy sector allows obtaining different advan-
tages: provision of the local clearing process to run to reconcile planned and actual 
consumptions, as recorded by consumers’ meters; reduction of transaction costs; 
local provision of ancillary services; local frequency and tension regulation; support 
of local production of electricity by renewable energy sources; provide a register 
of all energy transactions; tracing of green electricity. In the crowdsourcing energy 
systems, prosumers can sell the surplus to peers (both consumers and/or prosumers)
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at a lower tariff than the imposed price, which is higher than the sale price of their elec-
tricity surplus to the network. In crowdsourcing energy systems, prosumers can sell 
electricity to prosumers at a lower price than the regulated tariff, which is higher than 
the sale price of their electricity surplus to the network. Testing the proposed trading 
mechanism has been done for the case with prosumers SSDES. If there is a surplus, 
the blockchain-based P2P contract solutions have proven to be the most convenient 
considering both energy quantity and price. Prosumers would pump excess elec-
tricity into the local DNO in the physical ADN, and customers would draw power 
similarly based on the power flow rule. The findings show that the DNOs benefit 
from optimal energy flows between prosumers and high-power-demand users. The 
proposed research, on the other hand, only included 24 daily trading hours, although 
the process may be used longer. A successful transaction depends on the proposed 
steady-state, with the following factors: prosumers’ surplus and distance between 
users. 
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Abstract: Energy losses and bus voltage levels are key parameters in the operation of electricity
distribution networks (EDN), in traditional operating conditions or in modern microgrids with
renewable and distributed generation sources. Smart grids are set to bring hardware and software
tools to improve the operation of electrical networks, using state-of the art demand management at
home or system level and advanced network reconfiguration tools. However, for economic reasons,
many network operators will still have to resort to low-cost management solutions, such as bus
reactive power compensation using optimally placed capacitor banks. This paper approaches the
problem of power and energy loss minimization by optimal allocation of capacitor banks (CB) in
medium voltage (MV) EDN buses. A comparison is made between five metaheuristic algorithms used
for this purpose: the well-established Genetic Algorithm (GA); Particle Swarm Optimization (PSO);
and three newer metaheuristics, the Bat Optimization Algorithm (BOA), the Whale Optimization
Algorithm (WOA) and the Sperm-Whale Algorithm (SWA). The algorithms are tested on the IEEE
33-bus system and on a real 215-bus EDN from Romania. The newest SWA algorithm gives the best
results, for both test systems.

Keywords: electricity distribution networks; optimal capacitor allocation; Genetic Algorithm;
Particle Swarm Optimization; Bat Algorithm; Whale Algorithm; Sperm-Whale Algorithm

1. Introduction

Distribution Network Operators take into account the implementation of smart solutions to
improve both the voltage level in the subordinate networks and the power factor, with the aim to
maintain the balance between power generation and consumption while meeting the quality of supply
standards and regulations.

In this context, the use of capacitor banks is an easy solution to be implemented with technical and
economic benefits to the smart grid, maximizing the long-term return on investment as the network
develops. An intelligent control of capacitor banks leads to improved energy efficiency and voltage
level in the buses of distribution networks, resulting in an increase in the percentage of energy delivered
to consumers [1].

The advantages of integrating capacitor banks in the flexible smart grid communication and
control infrastructure are the increase of network energy efficiency and power quality improvement [2].
Thus, the technologies and modern techniques enable today the large-scale integration of capacitor
banks managed with smart control algorithms.

In the literature, many methods have been proposed to solve the Optimal Capacitor Banks
Allocation (OCBA) in distribution networks as a combinatorial optimization problem. These techniques
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can be grouped in four main categories: numerical [3]; analytical [4]; heuristic [5–7]; and artificial
intelligence, population based (Artificial Neural Networks, metaheuristics) [8,9]. An overview about
the metaheuristics used for the problem of capacitor banks allocation is made in the following,
highlighting their specific purpose. The OCBA solution for power losses or cost minimization is
obtained using a genetic algorithm in [10,11], a fuzzy technique in [12] and an artificial neural network
in [9]. Regarding the metaheuristics, a significant number of papers consider the joule loss minimization,
voltage bus improvement, and total cost minimization. Thus, in [13–15] a Multi-Objective Particle
Swarm Optimization (MOPSO) algorithm is proposed. For active power loss reduction using load flow
computation, the branch and bound method is generally preferred, for its reduced computation time.
For example, for the minimization of the total annual costs, the Crow Search Algorithm (CSA) is used
in [16,17], the Particle Swarm Optimization (PSO) and hybrid PSO algorithm are adapted in [18–21],
the Flower Pollination Algorithm (FPA) is preferred in [22,23], and an Improved Harmony Algorithm
is chosen in [24]. On the other hand, the OCBA problem based on active power minimization was
approached in [25,26] using the Bacterial Foraging Optimization Algorithm, the Intersect Mutation
Differential Evolution (IMDE) Algorithm in [27], the Artificial Bee Colony (ABC) in [5,28] and the Ant
Lion Optimization Algorithm in [29]. The improvement of the voltage profile carried out using the
Symbiotic Organisms Search Algorithm (SOSA) in [30]. Another paper proposes the JAYA optimization
algorithm [31] for power factor correction. For voltage profile improvement, the Oppositional
Cuckoo Optimization Algorithm (OCOA) was used in [32]. It must be mentioned that the authors’
previous approaches regarding the OCBA problem used several metaheuristic algorithms, such as
PSO, BOA, Fireworks Algorithm (FWA), and WOA [33].

A brief description of the papers that use metaheuristics in the CBA problem considering both
objective functions (OF) and constraints (C) is presented in Table 1. The considered objective functions
are: OF1, active power losses minimization; OF2, voltage profile improvement; OF3, voltage deviation
minimization; OF4, cost minimization; OF5—net savings maximization; OF6, voltage stability
improvement. The main constraints for the OCBA problem are a combination of the following:
C1, bus voltage allowable limits; C2, current flow limits on the branches; C3, bus reactive allowable
limits; C4, maximum stock of capacitors; C5, bus apparent power balance; C6, maximum number of
transformer tap changer steps; C7, the total reactive power injected should not exceed the total reactive
power demand; C8, power flow limits on the branches; and C9, bus power factor limits.

This paper is focused on a comparative study of several metaheuristic algorithms adapted for
solving the OCBA problem with the objective of energy loss minimization in MV distribution networks.
During the analysis, the well-known GA and PSO are tested against two newer metaheuristics that have
seen previous uses in power engineering applications, the BOA and WOA, and another recent but much
less used method, the SWA. The latter is shown to outperform all its predecessors, when tested on two
MV distribution networks with different characteristics: the smaller IEEE 33—bus test network [5,13,25]
and a larger 215—bus 20/0.4 kV distribution network from Romania. During the case study, the
algorithms use the same initial population and fitness function. Results are shown regarding active
power and energy losses and bus voltage levels, for which the best results are obtained with the SWA.
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Table 1. Literature review regarding the capacitor allocation problem based on artificial intelligence.

Objective
Function

Constraints
Test Network References

C1 C2 C3 C4 C5 C6 C7 C8 C9

OF1

X X - - - - - - - 38 bus—Roy–Billinton
Test System [8]

X - X - X X - - - IEEE 30, 57, 118 and 300
bus [10,27,29]

X - X - X - - - - IEEE 33 bus [13]

X X X X - - - - - IEEE 33 and 94 bus [14,15]

X X X - X X - - - IEEE 30 bus [21]

X X X - X - - - - IEEE 33 and 85 bus [25,28]

X X X X X - - - - IEEE 33 and 119 bus [5]

OF2
X - - - - - - - - IEEE 10, 23 and 34 bus [12]

X - X - X - - - - IEEE 22, 69, 85 and 141
bus [32]

OF3
X - X - X X - - - IEEE 30, 57, 118 and 300

bus [10,27]

X X X - X X - - - IEEE 30 bus [21]

OF4

X - X - - - X - X IEEE 10, 33 and 69 bus [16,17,22,
26]

X - X - - - - X - IEEE 10, 15 and 34 bus [19]

X - X - - - - - - IEEE 30 and 85 bus [20]

X - X - - - - - - IEEE 33, 34, 69 and 85
bus [23,27]

X - X - X - X - X IEEE 85 and 118 bus [24]

OF5
X - - - X - - - - IEEE 28-bus [11]

X - - - - - - - - IEEE 9-bus [30]

OF6

X - X - - X X - - IEEE 30 bus [18]

X - X - X X X - - IEEE 30, 57 and 118 bus [27]

X - X - X - - - - IEEE 30, 118 and 300
bus [29]
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2. Metaheuristic Algorithms

Metaheuristics are a special class of algorithms that can be used to solve search and optimization
problems. As described in [34], they are approximate, usually non-deterministic methods that aim to
search for solutions near the global optimum, exploring this space through a partly guided and partly
random search. While the main disadvantage of metaheuristics is the uncertainty of reaching the global
optimal solution, their advantages lie in not being problem-specific (allowing the flexibility of applying
the same solving principle to several types of problems) and having intuitive mathematical models,
borrowing concepts and approaches from the natural world, rather than from theoretical mathematical
models. This contributes to their accessibility for a wider range of users. Most modern metaheuristics are
population-based, starting from an initial group of solutions, called ‘population’, generated randomly,
and refining it in an iterative process, according to a set of specific steps, until a stopping criterion is
met. The performance of each individual from the population is assessed by computing its fitness
function. The basic block diagram of a population-based metaheuristic algorithm (PMA) is depicted in
Figure 1, where the steps common to all algorithms are represented with white boxes, and the part
specific to each algorithm, delimited by symbols (A) and (B) is presented in gray.

Figure 1. The basic flowchart of a population-based metaheuristic algorithm.

The initial parameters are partially common to all algorithms, such as population size N or
maximum number of iterations maxit, and partially specific to each algorithm, such as the mutation
rate rmut for the Genetic Algorithm (GA) or inertia value w for the Particle Swarm Optimization (PSO).
An individual from a population with N members, denoted in the following as

Xi = [x1, x2, . . . , xm], i = 1 . . .N (1)

is encoded as a vector with length m, and element types and values dictated by the problem that
needs to be solved. It usually represents an input parameter combination or a possible solution for the
problem, which must satisfy all the constraints of the optimization model. The fitness evaluation of each
population member requires the decoding of the information contained in the solution that it represents,
solving the problem and evaluating the results. The optimality degree of the solution is assessed with
the fitness function value associated to the respective population member. For a population with N
members, Xi, i = 1, ..., N, N fitness functions will be computed and ranked.

The (A) to (B) section from Figure 1 consists of several steps, which describe each specific
metaheuristic algorithm. While in the figures accompanying Sections 2.1–2.5 are presented all the
details specific to each algorithm, delimited by (A) to (B), Table 2 summarizes their main steps,
emphasizing their particularities.
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Table 2. The metaheuristic algorithms used in the paper for solving the OCBA problem.

Algorithm Main Steps

Genetic Algorithm (GA) Selection, crossover, mutation, using the entire
population

Particle Swarm Optimization (PSO)
Speed and position update, using the entire

population, and exploration followed by exploitation
of the search space

The Bat Optimization Algorithm (BOA)
Speed and position update, frequency adaptation,
and local search in each iteration, using the entire
population, exploration followed by exploitation

The Whale Optimization Algorithm (WOA)
Continuous choice between three search methods:
exploration, encircling, and spiral attack, using the

entire population

The Sperm Whale Algorithm (SWA)
Population divided in subgroups that perform the
search independently, using dominant crossover in

each subgroup

Among the various metaheuristic algorithms available in the literature, those from Table 2 were
chosen taking into account the following reasoning: the genetic algorithm and the particle swarm
optimization are the best known and widely used metaheuristics, with numerous applications in
power systems, which makes them a valid basis for comparison. The bat algorithm and the whale
optimization algorithm are newer algorithms, previously used by the authors in solving similar
optimization problems and shown to improve the quality of the results, compared with GA and
PSO [35,36]. On the other hand, the sperm whale algorithm is a novelty in solving optimization
problems in the power systems field. The results from the case study will show that the SWA
outperforms the previous algorithms, making it a viable new alternative for solving optimization
problems related to power systems applications.

The best-known PMAs are the genetic algorithm and the particle swarm optimization, which also
describe two fundamental search principles used by metaheuristic algorithms: the evolutionary and
performance-based patterns.

2.1. Genetic Algorithms

The Genetic Algorithm (GA), proposed in [37], is probably the best-known metaheuristic algorithm.
In the GA, population members are named ‘chromosomes’, and their elements are ‘genes’. The search
and optimization mechanisms use Darwinist natural evolution, based on perpetuation through genetic
material exchange and mutation inside a population of same-species individuals, across a significant
number of generations (iterations).

For finding new and improved solutions for an optimization problem, the GA relies on changing
the population by using in each iteration the three main genetic operators (Figure 2):

• Selection: From the existing population, whole individuals are selected based on their performance,
expressed by the fitness function. The better-adapted individuals are favored for surviving. In the
standard GA, the population size is constant. Thus, the lesser adapted individuals, which are
discarded, are replaced by clones of the survivors.

• Crossover: Pairs of parent chromosomes exchange a number of genes, the resulting offspring
having new characteristics, possibly resulting in better solutions for the problem.

• Mutation: Randomly generated variations on gene values, resulting in chromosomes with minor
structural changes, simulating genetic mutations of real living organisms.
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Optionally, an elitist procedure can also be incorporated in the GA, which ensures the preservation
of the best-found optimal solution and its fitness function across generations.

The literature offers a high variety of selection [38] and crossover [39] types, which together
with the user-chosen crossover and mutation rates provide significant customization possibilities,
making the GA a flexible problem-solving tool.

In this paper, the tournament selection method was used, which draws randomly p members
from the existing population, out of which retains the best q, according to their fitness function.
The procedure is repeated until a new population of size N is created.

The method of choice for the crossover operator was the uniform crossover, illustrated in Figure 3.
Two parents are randomly chosen from the population and, for each gene, a random number is
generated. The parents swap the genes only if the generated random number exceeds a customizable
threshold tr.

Figure 3. The uniform crossover.

2.2. Particle Swarm Optimization

On the other hand, the PSO algorithm [40] uses a different search method, based on variable
travel speeds and position shifting in the search space. Each individual (‘particle’) from the population
(‘swarm’) changes its speed in each iteration based on its current distance from two reference points:
The best solution found so far by the swarm leader and the best position ever achieved by the particle
itself. Compared with the GA, the PSO mechanism, presented in Figure 4, is very simple, requiring for
each particle j, j = 1, ..., N, only the computation of its new speed and position:

sp(it)j = w · sp
(it− 1)

j + 2 · rnd1 · (x
(it)
j,best − x(it)j,crt) + 2 · rnd2 · (leader(it) − x(it)j,crt) (2)

x j
(it+1) = x j

(it) + sp j
(it) (3)

followed by the update of each particle’s best position and the change of the leader position, if better
solutions are found. The particle speeds are initialized with low random values, which would not
influence the search direction.

Figure 4. The flowchart of a PSO iteration.

In Equations (2) and (3), spj
(it) and spj

(it − 1) are the speed of particle xj (j = 1 . . . N) in the previous (it
− 1) and current (it) iteration, rnd1 and rnd2 are random vectors, x j,best

(it) and x j,crt
(it) are the best personal
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and the current position of particle xj, leader(it) is the position of the leader in iteration it, and xj
(it) is

the position of particle x in the current iteration. The factor w from Equation (2) is an inertia term,
which decreases over the iteration count, larger initial values encouraging exploration, and smaller
final values enabling the exploitation or local search around the best-known optimal solution.

It should be noted that while the GA explores the search space using crossover to make random
changes of the information that is already present in the population, the mutation probability being
much smaller, PSO changes randomly the speed of each particle element, moving it in the direction of
the leader and personal best position.

The newer metaheuristic methods used in this paper, while sharing the natural inspiration of
GA and PSO, combine elements found in the two algorithms and increase the number of input
parameters and the complexity of their mathematical model in order to improve their optimization
performance. They are the Bat Optimization Algorithm (BOA), Whale Optimization Algorithm (WOA)
and Sperm-Whale Algorithm (SWA).

2.3. The Bat Optimization Algorithm

Bats hunt for prey using echolocation. In the initial search stage, they emit high amplitude/low
frequency ultrasound impulses, with low emission rate (10–20 imp/sec), decoding in real time the
reflected waves in order to identify the approximate position of the prey. When a potential target is
identified, the bat increases the pulse rate up to 200 imp/sec, and the pulse frequency, which enables
it to search accurately the space separating it from the prey, identifying the obstacles in its path and
precisely locating the victim and its movement pattern.

The bat optimization algorithm [41] uses the PSO principle of changing the speed and position
of the population members (here called ‘bats’), but the speed update formula is more elaborated,
considering the principle of raising the signal frequency and pulse rate as the bats are getting close to
the prey, i.e., to the optimal solution. The basic flowchart of a BOA iteration is depicted in Figure 5.

Figure 5. The flowchart of a BOA iteration.

The bats’ speeds are initialized in the same manner as in the PSO algorithm but are accompanied by
the initial signal amplitude, Aj, maximum pulse rate, rj,max and random pulse frequency fj ∈ [fmin, fmax],
j = 1, ..., N.

In each iteration it, every bat from the population performs three operations:

• Frequency update:
f j = fmin + rnd · ( fmax − fmin) (4)

• Speed update, with an equation inspired from (2):

sp(it)j = w · sp
(it− 1)

j + f j · rnd1 · (x
(it)
j,crt − x(it)j,best) (5)

• Position update, identical to the formulation from (3):

x j
(it+1) = x j

(it) + sp j
(it) (6)
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The BOA also includes a local search. The best individuals from the population are randomly
moved in the search space, with

x j
(it+1) = x j

(it+1) + pp ·A, j = 1 . . .M, M < N (7)

where A is the average bat amplitude for iteration it and pp ∈ [–1, 1].
The new bat positions computed with Equations (4) to (7) are accepted in the population with

random probability and only if the newly obtained position is better than the previous.
At the end of each iteration, if a bat improves its position, its signal amplitude is decreased:

A j
(it+1) = α ·A j

(it) (8)

and its pulse emission rate increases:

r j
(it+1) = r j

(it)
· (1− e−γ·it) (9)

where α ∈ (0, 1) and γ > 0.
This behavior, much like the inertia term for PSO, increases the probability of performing local

searches when the iteration count is nearing itmax.

2.4. The Whale Optimization Algorithm

The hunting behavior of humpback whales is the source of inspiration for the Whale Optimization
Algorithm (WOA). The whales hunt in groups, and when they find their prey, consisting of schools of
krill or small fish near the water surface, they attack it from below using two maneuvers: encircling
and spiraling.

The WOA uses a population of vector solutions (‘whales’), which are hunting for prey
independently, guiding their search by following a reference individual, usually their leader,
i.e., the whale closest to the problem solution (‘food’), according to its fitness function.

During the algorithm, whales use initially encircling, then spiral attack, in the same way PSO and
BOA use the broad exploration and the exploitation of the search space near the optimal solution.

In each iteration it, the encircling performed by each whale j from the population is described
by [42]:

x j
(it+1) = re f erence(it) −A ·D1 (10)

where
A = 2 · a · rnd1 − a (11)

D1 =
∣∣∣C · re f erence(it) − x(it)

∣∣∣, C = 2 · rnd2 (12)

The coefficient a from equation (11) is a scalar value decreasing during the iterative from a positive
value to 0. The (·) sign denotes the element-by-element multiplying of vectors, and | |, an absolute value.

For the extreme values of a = 0 and a = 1, equations (10) to (12) show that position xj
(it+1) will

always lie between xj
(it) and reference(it), thus moving any whale towards the reference solution used

to guide the population. If values larger than 1 are given to a, factor A from (11) will also increase,
moving the wales beyond the target and exploring a possibly uncharted portion of the search space.

If the reference position is reference(it) = leader(it), the leader from the current iteration, when A
decreases, whales get closer to the leader, encircling the prey or the optimal solution. If another whale
is used as reference, reference(it) = random(x(it)), the search will shift towards its path, simulating the
exploration of the sea in search for food performed by real whales.

The spiral attack phase is described by an equation that combines oscillatory and exponentially
variating components:

x j
(it+1) = D2 · eb·l

· cos(2 ·π · l) + leader(it) (13)
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with
D2 =

∣∣∣leader(it) − x j
(it)

∣∣∣ (14)

In equation (13), b is a constant, and l is a random value from the [–1, 1] interval [42].
The initially large, then gradually decreasing values of a, so that first |A| > 1, then |A| < 1, |A|→ 0,

first move the whales away from the leader in exploration, then encourage encircling, followed by
spiral attack. If p denotes a random number, the general equation for changing the position of a whale
follows as:

x(it+1)
j =

 re f erence(it) −A ·D1, if p ≥ 0.5

D2 · ebl
· cos(2 ·π · l) + leader(it) if p < 0.5

(15)

The flowchart of a WOA iteration is presented in Figure 6.

Figure 6. The flowchart of a WOA iteration.

WOA has two specific parameters that can be tuned for better performance: coefficient a from
Equation (11) and constant b from (13).

2.5. The Sperm-Whale Algorithm

The search used by the SWA mimics the hunting behavior of sperm whales, which live alone
or in small groups at the bottom of the sea and must come to the surface to hunt and breathe [43].
In each iteration, the population of the SWA is split into smaller search groups consisting in uniformly
distributed better and worse adapted members (‘sperm whales’). Consequently, the search for the
optimal solution occurs independently in each group. First, the sperm whales change their position
from the bottom of the sea to the surface. This step is simulated only for the worst adapted member of
the group, for which the opposite position is computed. The positions of the leader and of the worst
individual in a group g, leader(g,it) and worst(g,it), are used to compute an in-between distance dist(g,it):

dist(g,it) = worst(g,it) + w · leader(g,it) (16)

The reflex position of worst(g,it) is then computed with Equation (17).

re f lex(g,it) = worst(g,it) + 2 · (dist(g,it)
−worst(g,it)) = 2 · dist(g,it)

−worst(g,it) (17)

The newly computed individual reflex(g,it) will replace worst(g,it) only if its fitness function is better.
At the beginning of the iterative process, when the inertia w from Equation (16) is large, the individual
will search beyond leader(g,it) (exploration phase, Figure 7a). As w decreases, the search will focus
between worst(g,it) and leader(g,it), exploiting the search space around the known optimal solution
(Figure 7b).
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Figure 7. Reflex search in the SWA algorithm: (a) exploration, (b) exploitation.

In the second stage, a Good Gang is formed within the group, gathering the best gg individuals
ranked according to their fitness function. Every Good Gang member performs several local searches
in which its elements k are displaced randomly, within a small radius r:

x j,k = ±r · x j,k, j = 1 . . . gg (18)

The original Good Gang members are replaced only if better sperm-whale positions are found
during the local search.

Finally, the best Good Gang member from the group (the dominant sperm-whale) performs genetic
crossover with all other group individuals. One of the two resulting children is chosen randomly to
replace the worst of the two parents.

At the end of the iteration, the groups are reunited in the final population, which will repeat
the search process until the stopping criterion of the algorithm is met. The basic flowchart of a SWA
iteration is presented in Figure 8.

Figure 8. The flowchart of a SWA iteration.

The SWA offers several tuning options for the user. The population size, number of search groups
within the population, the inertia w and its decrement, the Good Gang size and number of local
searches for its members, the local search radius r, and the crossover method can be adjusted for
better performance.

3. The Implementation of the Optimal Reactive Compensation for Loss Minimization Problem

The five metaheuristic algorithms presented in the previous chapter were run in an implementation
of the Optimal Capacitor Banks Allocation (OCBA) problem for active energy loss minimization. The
approach used in this paper is stated as follows: Find the optimal buses in an EDN where capacitor
banks (CB) should be installed and the amount of reactive load compensation in each bus, with the
objective of operating the EDN with minimal active power and energy losses for the interval of a typical
day. For an EDN with NN buses (nodes) and NB branches, the mathematical expression of the objective
function of the OCBA problem was defined as:

∆P[%] =
24∑

h=1

∆Ph/

 24∑
h=1

NN∑
bus=1

Pb,h+
24∑

h=1

∆Ph

 ∗ 100 = min (19)
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The mathematical model of the fitness function considered the following constraints:
Cr1. The available CB stock cannot be exceeded:

NN∑
bus=1

NCBbus ≤ stockCB (20)

Cr2. The compensation level in each bus cannot exceed the reactive bus load (avoid reversed
reactive power flows):

NCBbus · qCB ≤ Qbus, bus = 1 . . .NN (21)

Cr3. Branch current flows after compensation cannot exceed the branch rated current:

Ibr <= Imax,br, br = 1 . . .NB (22)

Cr4. Bus voltages after compensation cannot exceed the maximum allowed value:

Ubus <= Umax,bus, bus = 1 . . .NN (23)

In Equations (19) to (22), ∆P[%] is the percent active power loss in the EDN over 24 h, ∆Ph is the
active power loss in the EDN at hour h, NCBbus is the number of CBs installed in a generic bus; qCB is
the reactive power rating of a CB, Qbus is the reactive load of a generic bus, stockCB is the CB stock; Ibr is
the current flow on a generic branch br, Imax,br is the rated current of branch br, Ubus is the voltage of
a generic bus after compensation, and Umax,bus is the maximum bus voltage allowed in a generic bus.

All the algorithms tested in the case study used the same solution encoding for their population
members. They were generated as vectors of the type described by Equation (1), with integer
numbers and length equal to the number of buses in which compensation was possible in the network.
The significance of the value of a generic element represented the number of CBs placed in the bus to
which it was designated. All the algorithms started in the first iteration with the same population,
generated randomly but considering constraint Cr2 of maximum allowed number of CBs in each bus
and Cr1, the maximum CB stock (Figure 9).

Figure 9. The encoding of the solutions used by the OCBA problem.

The fitness of the optimal solutions was assessed in all the algorithms using the objective function
(19), which also considered the constraints from Equations (20) to (23). The methodology employed for
calculating the fitness of each solution is described in Figure 10.

Figure 10. Fitness computation and solution validation for the OCBA problem.

By applying any of the equations (2) to (18) or by genetic crossover and mutation, the changes
undergone by population members can result in their invalidation because of

• Non-integer values, leading to invalid number of CBs installed in a bus;
• Values exceeding the interval [0, NCBbus] allowed by the constraint Cr2;
• Violation of constraint Cr1, by exceeding the available CB stock;
• Solutions otherwise valid but which lead to the violation of the constraints Cr3 or Cr4.
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Thus, every newly generated population member, for each algorithm, must pass through
a validation procedure before being allowed in the population created for the next iteration.

If constraint Cr1 is not satisfied, the solution is always discarded as unfeasible. If the constraint
Cr2 is not fulfilled, the solution is modified by setting the unfeasible values to the nearest allowed
value, using for each element xj from Figures 1 and 9 the following correction:

x j =

{
0, if x j = 0

NCB j, otherwise
(24)

For each population member, the active power losses used in equation (19) are computed with the
Newton–Raphson load flow (LF) algorithm, which is slower, but generally considered more accurate
than the branch-and-bound methods preferred in the analysis of distribution networks. The LF
algorithm also provides the results required for checking the constraints Cr3 and Cr4, bus voltage
and branch current flow limits. Prior to computing the LF, the compensation solution is simulated
subtracting from the bus reactive loads the CB injection for each compensated bus, according to the
population member/solution being tested.

4. Results

The OCBA problem was solved using the metaheuristics presented in Section 2, with the aim of
comparing the performance of the newer algorithm designs, BOA, WOA, and SWA against the two
well established methods, GA and PSO. For comparison purposes, all the algorithms had a common
representation for the members of the population, illustrated in Figure 9, and the same fitness function,
active power and energy loss minimization, computed with Equation (19) and subjected to the
constraints given by Equations (20) to (23), Section 3. The initial parameters used for the algorithms
are presented in Table 3.

Since for all algorithms there was no improvement for the optimal solution beyond generation
350, the graphical representations of the results will be limited to the first 360 generations.

Two test networks were used to validate the comparison: the smaller sized IEEE 33-bus MV radial
voltage distribution system (Figure 11) and a larger 215-bus MV EDN from a residential area of a major
city from Romania (Figure 12).

Synthetic data regarding the physical characteristics for the IEEE 33-bus system is given in
Table 4. The system does not include MV/LV transformer data; thus, the active power losses
computed by the algorithms do not include transformer losses. The extended data regarding branch
characteristics (connecting buses, type line or transformer, electrical parameters resistance and reactance,
maximum branch current) is provided in Appendix A, Table A1. For the active and reactive bus loads,
the study uses a custom representation consisting of daily 24-h profiles, described below.

For this particular test system, the literature provides only a set of instantaneous active and
reactive bus loads. In this paper, these values were used as reference, in conjunction with a set of
typical load profiles (TLP) provided in the Supplementary Materials attached to the paper, to create
24-h profiles. The TLPs considered several types of loads, residential, industrial, and their distribution
in the network is summarized in Table 5.
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Table 3. The initial parameters used for the metaheuristic algorithms.

Common Parameters for All the Algorithms:

Population size: 40, Number of generations: 500

GA

Selection method: tournament—keep best 2 from a random draw of 4
Crossover method: uniform at threshold 0.5

Mutation: random
Crossover and mutation rates: 0.9/0.1

PSO

Inertia: 0.9 decreasing to 0.4, linear descent

BOA

Initial amplitude: 1
Initial pulse emission rate: 0.3

Amplitude attenuation rate: 0.7
Pulse emission increase rate: 0.3

Pulse frequency domain: [–0.9, 1.2]
Number of bats used for local search: dynamic. If a randomly generated number is greater than the bat’s pulse

emission rate, the bat is selected for local search in the current iteration.

WOA

Coefficient a: decreasing from 3 to 0, linear descent
Coefficient l: random

Coefficient b: 1

SWA

Number of search groups: 4
Good Gang size: half of the search group size, rounded to the nearest integer

Number of searches performed by each Good Gang member: 10
Local search radius: 1

Crossover type: uniform

Figure 11. The IEEE 33-bus test system.
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Figure 12. The residential 215-bus EDN.

Table 4. The physical characteristics of the IEEE 33-bus system.

Number of Buses Transformer Rated
Power/Number Feeder Type

Feeder
Cross-Section

(mm2)
Total Length(km)

12.66 kV: 33 None Unknown(1) Unknown(1) Unknown(1)

(1) Only the total resistance and reactance is known for each branch

Table 5. The TLP categories used for the IEEE 33 -bus system and their bus distribution.

TLP Category Bus

Residential 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14, 15, 16, 17, 18
Industry 2, 3, 19, 20, 21, 22, 23, 24, 25

Commercial 26, 27, 28, 29, 30, 31, 32, 33

The second test system used in the case study is a much larger EDN, consisting of 135 MV buses
to which 80 loads are connected through MV/LV transformers. For simplicity, the transformers are
omitted in Figure 12, together with the corresponding 80 bus numbers for the transformer LV busbars
(from 136 to 215). A summary of the transformer rated power, together with the feeder and bus general
information, is given in Table 6. The electrical parameters of the branches are given in Appendix A,
Table A2. For this network, the bus loads were also modelled as 24-h daily profiles, being measured by
the smart metering infrastructure installed by the local distribution utility for a typical working day.
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Table 6. The physical characteristics of the 215-bus EDN.

Number of Buses Transformer Rated
Power/Number Feeder Type

Feeder
Cross-Section

(mm2)
Total Length (km)

20 kV: 135 (1–135)
0.4 kV: 80 (136–215)

63 kVA: 33; 100
kVA: 14

160 kVA: 15, 250
kVA: 15

400 kVA: 3

Cable
3 × 95
3 × 120
3 × 150

2.5
84.45

3.2

Because a 24-h voltage profile was not available for the 215-bus network, the voltage reference for
the slack bus was recommended by the distribution utility at the value of 1.06 pu. For the IEEE 33-bus
system, the setpoint was 1 pu (nominal voltage). The slack bus for both networks is bus 1, and all the
other buses are modeled as PQ (consumer) buses.

4.1. Results for the IEEE 33-Bus System

The first step of the study was the choice of the maximum CB stock used for optimization. For this
purpose, the load profile of the network for 24 h, given in Figure 13, was analyzed. Since the purpose
was to test the performance of each algorithm, the CB stock was set at 70 × 7.5 kVar units, which would
ensure a maximum of 525 kVar of VAR compensation, about half of the minimal value of the reactive
load, occurring at night hours. In this way, the number of possible CB allocation variants is maximized,
while reducing the investment cost.

Figure 13. The active and reactive load profiles of the IEEE 33-bus test system—hourly values.

The GA, PSO, BOA, WOA, and SWA were run using this CB stock, the initial parameters from
Table 3, and the same initial population. The solution identified by each algorithm, compared with the
reference case (no reactive power compensation), and their corresponding fitness functions (percent
losses) are presented in Table 7. The first line of Table 7 also presents the maximum number of CBs
that can be allocated in each bus, computed according to the minimal reactive power load, so that
constraint Cr2 would be always fulfilled. The same results are displayed graphically in Figure 14. In
Figure 15, the parallel evolution of the fitness function of each algorithm over the first 350 generations
is presented, on a typical run, emphasizing the fact that the SWA and BOA obtain the solutions
corresponding to the lowest loss values, followed by the PSO, GA, and BAT.
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Table 7. The OCBA solutions found by the metaheuristic algorithms for the IEEE 33-bus system.

Bus 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CB
limit 3 2 4 0 0 6 3 1 4 0 6 4 4 0 0 0 14

Reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GA 1 1 1 0 0 1 1 1 2 0 5 1 2 0 0 0 13
PSO 0 0 0 0 0 4 0 1 0 0 0 4 4 0 0 0 14
BAT 0 2 4 0 0 3 1 1 1 0 6 4 3 0 0 0 2

WOA 0 0 0 0 0 0 0 1 0 0 1 4 4 0 0 0 14
SWA 0 0 0 0 0 0 0 0 0 0 4 4 4 0 0 0 14

Bus 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 CB Used Fitness

CB
limit 6 1 17 2 3 7 5 0 0 0 3 39 4 5 0 143 N/A

Reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.482
GA 1 1 1 1 1 1 1 0 0 0 1 27 4 2 0 70 4.982
PSO 0 1 0 0 0 0 0 0 0 0 3 39 0 0 0 70 4.947
BAT 0 1 0 1 3 7 2 0 0 0 2 24 2 1 0 70 5.038

WOA 0 1 0 0 0 0 0 0 0 0 0 39 1 5 0 70 4.939
SWA 0 0 0 0 0 0 0 0 0 0 0 35 4 5 0 70 4.934
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Figure 14. The number of CBs allocated in the buses of the IEEE 33-bus system by each algorithm.

Figure 15. The fitness of the optimal solution found by the metaheuristic algorithms after 360 iterations,
for the IEEE 33-bus system.

The results from Table 7 and Figure 14 show that the best fitness function values are obtained
when maximum compensation is applied at buses 18 (feeder end), 29–32 (feeder end), and 12–14,
while for other buses with compensation potential, such as 21–25, where the reactive load is high,
no capacitor banks are allocated. All the algorithms use the entire CB stock available, with differences
in the buses chosen for compensation and number of CBs allocated to each bus.

The results regarding the active power losses, for each hour and algorithm, compared with the
reference case are plotted in Figure 16 and presented in Table 8. Table 9 gives the loss reduction
in percent, against the reference case, for which the total values are represented in Figure 17. The
loss reduction ranges between 6.55% and 16.78%, depending on the algorithm and network load.
The improvement is higher in off-peak hours, and the best results are obtained with SWA (8.17%
to 16.78%), with a global value of 10.51% over 24 h. PSO, WOA, and SWA are the closest to the
optimal solution.
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Figure 16. Hourly active power losses in the IEEE 33-bus system, for each algorithm.

Table 8. Hourly and total active power losses in the IEEE 33-bus system, in kW, for each algorithm.

Hour Ref. BAT GA PSO WOA SWA

h01 140.04 122.53 120.22 118.98 118.74 118.51
h02 128.61 111.53 109.32 108.14 107.93 107.70
h03 122.58 105.89 103.74 102.65 102.45 102.22
h04 119.17 102.76 100.65 99.59 99.39 99.17
h05 118.50 102.35 100.31 99.31 99.13 98.90
h06 128.54 112.25 110.25 109.23 109.04 108.82
h07 205.62 184.05 181.30 179.43 178.99 178.75
h08 314.56 287.82 284.37 281.89 281.25 280.98
h09 374.57 345.89 342.50 340.05 339.35 339.12
h10 448.92 416.40 412.92 410.21 409.41 409.15
h11 462.22 427.75 424.10 421.26 420.40 420.17
h12 404.06 373.11 370.05 367.81 367.11 366.87
h13 408.02 377.17 373.94 371.64 370.97 370.72
h14 364.61 335.05 331.31 328.94 328.27 328.03
h15 324.39 296.90 293.33 291.25 290.70 290.45
h16 277.75 254.32 251.42 250.06 249.70 249.46
h17 298.98 275.44 272.52 271.10 270.71 270.50
h18 421.48 391.95 388.02 385.68 385.03 384.78
h19 466.73 436.14 431.94 429.53 428.93 428.60
h20 458.26 427.14 422.83 420.32 419.70 419.36
h21 329.63 302.53 298.48 295.98 295.44 295.03
h22 273.68 248.43 244.68 242.37 241.88 241.51
h23 187.07 167.53 164.73 163.25 162.98 162.67
h24 139.61 123.09 120.90 119.80 119.60 119.37
total 6917.59 6328.03 6253.83 6208.47 6197.11 6190.86
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Table 9. Hourly and total power loss reduction in the IEEE 33-bus system, in %, for each algorithm.

Hour BAT GA PSO WOA SWA

h01 12.50 14.15 15.03 15.21 15.37
h02 13.28 15.00 15.91 16.08 16.26
h03 13.62 15.37 16.26 16.42 16.61
h04 13.77 15.54 16.43 16.60 16.78
h05 13.62 15.35 16.19 16.35 16.54
h06 12.67 14.22 15.02 15.17 15.34
h07 10.49 11.83 12.74 12.95 13.06
h08 8.50 9.60 10.39 10.59 10.67
h09 7.66 8.56 9.22 9.40 9.47
h10 7.24 8.02 8.62 8.80 8.86
h11 7.46 8.25 8.86 9.05 9.10
h12 7.66 8.42 8.97 9.15 9.20
h13 7.56 8.35 8.92 9.08 9.14
h14 8.11 9.13 9.78 9.97 10.03
h15 8.47 9.57 10.21 10.38 10.46
h16 8.44 9.48 9.97 10.10 10.18
h17 7.87 8.85 9.32 9.46 9.53
h18 7.00 7.94 8.49 8.65 8.71
h19 6.55 7.46 7.97 8.10 8.17
h20 6.79 7.73 8.28 8.41 8.49
h21 8.22 9.45 10.21 10.37 10.50
h22 9.23 10.60 11.44 11.62 11.76
h23 10.45 11.94 12.73 12.88 13.04
h24 11.83 13.40 14.19 14.33 14.49
total 8.52 9.60 10.25 10.42 10.51

Figure 17. The total active power loss reduction in the IEEE 33-bus system, in kW, for each algorithm.

Compared with the reference case, the best compensation solution found by the SWA leads
to a loss reduction of 726.73 kW for the analyzed day, which, if it is extrapolated for a year, amounts
to 265.26 MW loss saving. The difference between SWA and the second best result, given by WOA,
is of 6.25 kW per day or 2.28 MW for an entire year. As Figure 16 shows, SWA achieves these savings
mainly during two hours, at 19.00 and 24.00.

Reactive power compensation with capacitor banks is mainly used in EDN for voltage profile
improvement, where specific networks configurations and load patterns lead to high voltage drops
along the feeders. In the case of the IEEE 33-bus system, the nominal voltage setting for the slack bus
and the load profiles from Appendix A lead, in the reference case without compensation, to the voltage
profile described by Figure 18.
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Figure 18. The bus voltages in the IEEE 33-bus system without compensation, for each hour from the
analyzed day.

The values show voltage drops that exceed the lower limit of –10% prescribed by the Romanian
standards, in several buses located near the end of the main two supply paths, ending in buses 18 and
33. For bus 18, the voltage has the minimum value of 0.858 pu, at hours 19.00 and 20.00, while for bus
33, the minimum voltage is 0.882 pu, at hour 10.00.

The improvement of the voltages obtained hourly with each algorithm is depicted in Figure 19
for bus 18 and in Figure 20 for bus 33. The percent improvements over the reference values (no
compensation) are given in Tables 10 and 11, respectively. Again, the SWA gives the best results,
with the maximum voltage improvement. The minimum reference voltage value of 0.858 pu in bus
18 (hour 10.00) is raised by 1.65%, to 0.872 pu. However, the voltages remain below the 0.9 pu minimum
allowed limit, for 10 h from the 24-h analysis interval. Better voltage regulation can be possible using
a larger CB stock or raising the voltage in the reference bus, by changing the HV/MV transformer tap
position from the substation at bus 1.

Figure 19. Voltage improvement after compensation for bus 18, the IEEE 33-bus system.
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Figure 20. Voltage improvement after compensation for bus 33, the IEEE 33-bus system.

Table 10. Hourly reference voltage values for bus 18 and percent improvements after compensation,
the IEEE 33-bus test system.

Hour
Voltage, pu Improvement, %

Ref. BAT GA PSO WOA SWA

h01 0.914 0.82 1.26 1.38 1.38 1.42
h02 0.919 0.81 1.25 1.37 1.37 1.41
h03 0.921 0.80 1.24 1.36 1.36 1.40
h04 0.922 0.80 1.23 1.36 1.36 1.40
h05 0.922 0.80 1.23 1.36 1.36 1.40
h06 0.919 0.80 1.24 1.36 1.36 1.40
h07 0.905 0.84 1.29 1.42 1.42 1.46
h08 0.888 0.88 1.35 1.48 1.48 1.53
h09 0.886 0.88 1.36 1.49 1.49 1.54
h10 0.879 0.90 1.38 1.52 1.52 1.56
h11 0.878 0.91 1.39 1.53 1.53 1.57
h12 0.882 0.89 1.37 1.50 1.50 1.55
h13 0.882 0.89 1.37 1.51 1.51 1.55
h14 0.885 0.89 1.36 1.50 1.50 1.54
h15 0.890 0.88 1.35 1.48 1.48 1.52
h16 0.895 0.86 1.32 1.45 1.45 1.50
h17 0.892 0.86 1.33 1.46 1.46 1.51
h18 0.870 0.92 1.41 1.55 1.55 1.60
h19 0.858 0.95 1.45 1.60 1.60 1.65
h20 0.858 0.95 1.45 1.60 1.60 1.65
h21 0.869 0.92 1.42 1.55 1.56 1.60
h22 0.882 0.89 1.37 1.51 1.51 1.55
h23 0.898 0.85 1.31 1.44 1.44 1.48
h24 0.913 0.82 1.26 1.38 1.39 1.43

minimum
value, pu 0.858

max. improvement, % 0.95 1.45 1.60 1.60 1.65
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Table 11. Hourly reference voltage values for bus 33 and percent improvements after compensation,
the IEEE 33-bus test system.

Hour
Voltage, pu Improvement, %

Reference BAT GA PSO WOA SWA

h01 0.935 0.78 0.91 1.02 1.10 1.11
h02 0.937 0.77 0.90 1.01 1.09 1.10
h03 0.939 0.77 0.90 1.01 1.09 1.10
h04 0.939 0.77 0.90 1.01 1.09 1.10
h05 0.940 0.77 0.90 1.01 1.08 1.10
h06 0.938 0.77 0.90 1.01 1.09 1.10
h07 0.915 0.82 0.96 1.08 1.16 1.17
h08 0.896 0.86 1.01 1.14 1.22 1.24
h09 0.890 0.88 1.02 1.15 1.24 1.25
h10 0.882 0.90 1.05 1.18 1.27 1.28
h11 0.883 0.90 1.05 1.18 1.27 1.28
h12 0.895 0.87 1.01 1.14 1.23 1.24
h13 0.895 0.87 1.01 1.14 1.23 1.24
h14 0.899 0.86 1.00 1.13 1.22 1.23
h15 0.908 0.84 0.98 1.10 1.19 1.20
h16 0.921 0.81 0.94 1.06 1.14 1.15
h17 0.916 0.82 0.96 1.07 1.16 1.17
h18 0.894 0.87 1.02 1.14 1.23 1.24
h19 0.890 0.88 1.03 1.15 1.24 1.26
h20 0.890 0.88 1.03 1.15 1.24 1.26
h21 0.900 0.85 1.00 1.12 1.21 1.22
h22 0.908 0.84 0.98 1.10 1.19 1.20
h23 0.927 0.79 0.93 1.04 1.12 1.14
h24 0.937 0.77 0.90 1.01 1.09 1.11

minimum
value, p.u. 0.882

max. improvement, % 0.90 1.05 1.18 1.27 1.28

The voltage improvements are smaller for bus 33, with a maximum of 1.28% with the SWA,
but with three algorithms (SWA, PSO and WOA), the voltage levels are raised after compensation
above the maximum –10% deviation allowed by the regulations during 7 h (8.00, 9.00, 12.00, 13.00,
18.00, 19.00, and 20.00), only two hours remaining below this threshold (10.00 and 11.00), as it can be
seen in Figure 20.

4.2. Results for the 215-Bus Distribution Network

In this case, the CB stock used for compensation was chosen using the 24-h load profile of
the network from Figure 21. In comparison with the IEEE 33-bus system, the minimum off-peak
reactive load is reduced, while the number of buses available for compensation increases significantly,
allowing a higher number of possible solutions. Thus, the CB stock was set at 90 units of 7.5 kVar each,
providing a maximum of 675 kVar of reactive power. As the solutions from Figure 22 and Table 12
show, all the algorithms use the entire stock, with different bus allocation. The SWA provides the
best solution (6.19% active power losses), followed by the PSO (6.21%). In Table 12, since the VAR
compensation is performed at the LV side of the substation transformers, the bus numbers are given
for both the MV buses denoted in Figure 12, and for their corresponding LV transformer busbars.
In Figure 22, only the LV bus numbers are used, for better readability. Figure 23 presents the evolution
of the fitness function of each metaheuristic algorithm over the first 360 generations, on a typical run.
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Figure 21. The active and reactive load profiles of the 215-bus network—hourly values.

Figure 22. The number of CBs allocated in the buses of the 215-bus network by each algorithm:
(a)—buses 136-175, (b)—buses 176-215.

For this network, as Figure 22 shows, the best two solutions (SWA, PSO) are mainly differentiated
by the CB allocation at buses 151, LV side (28, MV side); 153 (31); 155 (34); 156 (35); and 157 (36),
located at the beginning of the network, and having significant reactive power loads. This behavior is
triggered by the use of the 90 CB stock, which is close to the maximum possible number of CBs that
can be allocated for compensation, 107, and because of the sufficient stock, most of the buses can use
the maximum possible CB allocation.

The comparison between the hourly active power losses computed by the Newton–Raphson
algorithm for the reference case (no compensation) and the losses determined for each best
compensation solution found by the metaheuristic algorithms is presented in Table 13 and Figure 24.
Furthermore, Table 14 gives the percent reduction in losses obtained using the compensation solutions,
while Figure 25 allows for an overview of the total losses obtained in each case, based on the values
computed in Table 13.
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Table 12. The OCBA solutions found by the metaheuristic algorithms for the 215-bus network.

MV Bus 2 3 5 6 7 10 11 13 15 17 19 21 23 24 26 28 29 31 32 34 35

LV Bus 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

bus limit 0 5 3 0 1 1 0 2 2 3 1 3 0 0 0 4 1 2 1 2 4
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GA 0 3 2 0 1 1 0 1 1 3 1 1 0 0 0 4 1 2 1 1 3
PSO 0 5 0 0 1 1 0 1 2 3 1 0 0 0 0 4 1 1 1 2 0
BAT 0 0 3 0 1 1 0 1 2 0 1 3 0 0 0 4 1 1 1 2 4

WOA 0 2 3 0 1 1 0 2 2 1 1 1 0 0 0 2 1 1 1 2 4
SWA 0 5 0 0 0 1 0 0 2 3 1 0 0 0 0 3 1 2 0 1 0

MV Bus 36 38 39 40 41 42 43 45 46 49 51 53 55 57 58 61 63 64 65 68 70

LV Bus 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

bus limit 2 1 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GA 1 1 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1
PSO 1 1 0 1 0 1 0 5 0 1 0 0 2 1 1 2 0 1 1 1 1
BAT 1 1 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1

WOA 1 1 0 1 0 1 0 5 0 1 0 1 1 1 1 2 0 1 1 1 1
SWA 2 0 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1

MV Bus 71 72 74 76 77 79 81 83 85 87 90 91 92 94 96 97 99 102 103 105 107

LV Bus 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

bus limit 1 1 1 0 1 2 0 3 1 2 1 3 1 1 0 1 0 0 0 4 0
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GA 1 1 1 0 1 2 0 2 1 2 1 3 1 1 0 1 0 0 0 3 0
PSO 1 1 1 0 1 2 0 3 1 2 1 3 1 1 0 1 0 0 0 4 0
BAT 1 1 1 0 1 1 0 1 1 1 1 3 1 1 0 1 0 0 0 3 0

WOA 1 1 1 0 1 1 0 1 1 1 1 3 1 1 0 1 0 0 0 4 0
SWA 1 1 1 0 1 2 0 3 1 2 1 3 1 1 0 1 0 0 0 4 0

MV Bus 109 111 112 115 117 118 119 121 122 123 124 126 128 130 132 133 135

LV Bus 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 CB
Used Fitness

bus limit 1 3 1 1 1 0 0 2 0 1 4 0 2 2 4 1 3 107
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.8578

GA 1 2 1 1 1 0 0 2 0 1 4 0 1 2 4 1 0 90 6.2385
PSO 1 3 1 1 1 0 0 2 0 1 4 0 0 2 4 1 3 90 6.2050
BAT 1 3 1 1 1 0 0 1 0 1 4 0 2 2 4 1 3 90 6.2278

WOA 1 3 1 1 1 0 0 2 0 1 4 0 2 2 4 1 3 90 6.2175
SWA 1 3 1 1 1 0 0 2 0 1 4 0 2 2 4 1 3 90 6.1910
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Figure 23. The fitness of the optimal solution found by the metaheuristic algorithms after 360 iterations,
for the 215-bus network.

Table 13. Hourly and total active power losses in the 215-bus network, in kW, for each algorithm.

Hour Ref. BAT GA PSO WOA SWA

h01 67.331 55.673 55.609 55.539 55.583 55.305
h02 56.182 45.636 45.575 45.517 45.541 45.319
h03 53.214 43.113 43.053 43.000 43.016 42.817
h04 58.190 47.878 47.818 47.762 47.782 47.572
h05 90.377 77.534 77.467 77.382 77.446 77.109
h06 147.228 131.143 131.068 130.941 131.065 130.562
h07 245.758 223.025 223.059 222.583 222.867 222.029
h08 290.292 262.257 262.479 261.527 261.962 260.864
h09 303.227 270.552 271.077 269.405 270.026 268.696
h10 296.025 261.012 261.713 259.595 260.336 258.874
h11 354.181 312.943 313.922 311.078 312.050 310.247
h12 363.306 320.607 321.658 318.606 319.647 317.753
h13 352.690 310.099 311.147 308.090 309.134 307.242
h14 350.992 308.310 309.373 306.281 307.332 305.437
h15 394.674 349.439 350.570 347.313 348.428 346.400
h16 393.582 349.764 350.799 347.811 348.843 346.908
h17 505.757 458.845 459.845 456.827 457.938 455.824
h18 741.209 680.993 682.464 678.467 679.882 677.100
h19 892.805 825.937 827.555 823.210 824.773 821.637
h20 795.742 736.564 737.748 734.379 735.670 732.945
h21 672.197 623.613 624.385 621.999 622.971 620.808
h22 304.238 280.233 280.128 279.887 280.171 279.245
h23 194.076 175.399 175.315 175.153 175.327 174.688
h24 122.607 107.163 107.100 106.949 107.055 106.594
total 8045.88 7257.73 7270.93 7229.30 7244.84 7211.97
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Figure 24. Hourly active power losses in the IEEE 33-bus system, for each algorithm.

Table 14. Hourly and total power loss reduction in the 215-bus network, in %, for each algorithm.

Hour BAT GA PSO WOA SWA

h01 17.31 17.41 17.51 17.45 17.86
h02 18.77 18.88 18.98 18.94 19.33
h03 18.98 19.09 19.19 19.16 19.54
h04 17.72 17.82 17.92 17.89 18.25
h05 14.21 14.28 14.38 14.31 14.68
h06 10.92 10.98 11.06 10.98 11.32
h07 9.25 9.24 9.43 9.31 9.66
h08 9.66 9.58 9.91 9.76 10.14
h09 10.78 10.60 11.15 10.95 11.39
h10 11.83 11.59 12.31 12.06 12.55
h11 11.64 11.37 12.17 11.90 12.40
h12 11.75 11.46 12.30 12.02 12.54
h13 12.08 11.78 12.65 12.35 12.89
h14 12.16 11.86 12.74 12.44 12.98
h15 11.46 11.17 12.00 11.72 12.23
h16 11.13 10.87 11.63 11.37 11.86
h17 9.28 9.08 9.67 9.45 9.87
h18 8.12 7.93 8.46 8.27 8.65
h19 7.49 7.31 7.80 7.62 7.97
h20 7.44 7.29 7.71 7.55 7.89
h21 7.23 7.11 7.47 7.32 7.64
h22 7.89 7.92 8.00 7.91 8.22
h23 9.62 9.67 9.75 9.66 9.99
h24 12.60 12.65 12.77 12.68 13.06
total 9.80 9.63 10.15 9.96 10.36

Figure 25. The total active power loss reduction in the 215-bus network, in kW, for each algorithm.

The best CB allocation solution, obtained with the SWA, achieves a loss reduction of 833.91 kW or
10.36% for the entire network, in 24 h, which amounts to 304.38 MW in an entire year. The next best
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solution, found with the PSO algorithm, achieves only 816.58 kW (10.15%). The difference between the
two solutions is of 17.33 kW in the analyzed day, or 6.32 MW in a year. The improvement over the IEEE
33-bus system regarding the loss reduction can be attributed to the presence of the MV/LV transformers.

The bus voltage levels for all 24 h and buses from the 215-bus network are presented in Figure 26.
The length of the main feeder and the bus loadings lead to low voltage levels at the last buses on the
main supply path, with values below the 0.9 pu limit at the LV side. At the MV side, the voltages are
inside the allowed range, varying from 1.060 pu in the slack bus to 0.940 pu.

Figure 26. The bus voltages in the 215-bus network without compensation, for each hour from the
analyzed day.

Figures 27 and 28 depict the effect of VAR compensation on the voltages at bus 135 (MV) and 215
(LV). By allocating the available CB stock according to the solutions found by the five metaheuristic
algorithms, the bus voltages increase with maximum 1.36%, as shown in Table 15 for bus 215 (LV).
This increase is not sufficient for raising the lowest voltage values above the desired limit of 0.9 pu.
Since the CB stock is near the maximum allowed reactive load compensation which fulfills constraint
Cr2 specified by the optimization model, an alternative solution is to change the MV/LV transformer
tap settings in the affected buses.

Figure 27. Voltage improvement after compensation for bus 135, medium voltage, the 215-bus network.
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Figure 28. Voltage improvement after compensation for bus 215, low voltage, the 215-bus network.

Table 15. Hourly reference voltage values for bus 215 and percent improvements after compensation,
the 215-bus network.

Hour
Voltage, pu Improvement, %

Ref. BAT GA PSO WOA SWA

h01 1.019 0.86 0.36 0.86 0.87 0.88
h02 1.022 0.85 0.35 0.86 0.86 0.87
h03 1.022 0.85 0.35 0.86 0.86 0.87
h04 1.021 0.86 0.35 0.86 0.86 0.87
h05 1.014 0.87 0.36 0.87 0.88 0.89
h06 1.004 0.89 0.37 0.89 0.90 0.91
h07 0.983 0.94 0.39 0.94 0.95 0.96
h08 0.965 0.99 0.41 0.99 0.99 1.01
h09 0.948 1.04 0.43 1.04 1.04 1.06
h10 0.940 1.06 0.45 1.07 1.07 1.09
h11 0.922 1.12 0.47 1.13 1.13 1.15
h12 0.917 1.14 0.48 1.15 1.15 1.16
h13 0.918 1.14 0.48 1.14 1.15 1.16
h14 0.918 1.14 0.48 1.14 1.15 1.16
h15 0.911 1.16 0.49 1.17 1.17 1.18
h16 0.916 1.14 0.48 1.15 1.15 1.17
h17 0.905 1.17 0.49 1.18 1.18 1.20
h18 0.876 1.28 0.54 1.28 1.29 1.30
h19 0.863 1.33 0.57 1.33 1.34 1.36
h20 0.884 1.24 0.53 1.25 1.25 1.27
h21 0.903 1.17 0.50 1.17 1.18 1.19
h22 0.985 0.93 0.39 0.94 0.94 0.95
h23 0.998 0.90 0.38 0.91 0.91 0.92
h24 1.008 0.88 0.37 0.89 0.89 0.90

minimum
value, pu 0.863

max. improvement, % 1.33 0.57 1.33 1.34 1.36

5. Discussions and Conclusions

The reactive power flow in the active electricity distribution networks has an important influence
on the bus voltage level and the active power losses. Therefore, in order to control the reactive power
absorbed by consumers, their consumption must be characterized by a power factor approximately
equal to the neutral value (0.9 in Romania). Optimal allocation of reactive sources in the electricity
distribution networks is made for power losses reduction, power factor correction and/or voltage
profile improvement.

The optimization model considered in the paper has as main objective the optimal allocation
of capacitor banks (CBs) in the medium voltage networks to minimize the power/energy losses,
taking into account the technical restrictions imposed by the available CB stock, the compensation
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level in each bus, branch current flows, and bus voltages. This is very useful for distribution network
operators that install now large amounts of capacitor banks (CB) in the distribution networks. In order
to optimize the location of these CBs, the used test networks (the IEEE 33-bus system and a real 215-bus
EDN from Romania) were modelled considering the MV lines, the MV/LV transformers from the
electric distribution substations, where available, and the MV and LV buses. The different algorithms
(Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Optimization Algorithm (BOA),
Whale Optimization Algorithm (WOA) and Sperm-Whale Algorithm (SWA)) were tested to see which
would be the best to solve the problem of capacitor bank allocation. The study, made using the IEEE
33-bus system, highlighted the fact that the SWA leads to the best results compared to the other
algorithms. Compared with the reference case, the best compensation solution found by the SWA leads
to a loss reduction of 726.73 kW for the analyzed day, which, if it is extrapolated for a year, amounts to
265.26 MW loss saving. The difference between SWA and the second best result, given by WOA, is of
6.25 kW per day or 2.28 MW for an entire year. In the case of the voltage level, an improvement was
observed on the entire electricity distribution network, in all nodes, also obtained with the help of
SWA. The minimum reference voltage value in bus 18 (the farthest node), at hour 10.00, was increased
by 1.65%.

Moreover, the algorithms were tested in a real electricity distribution network (215-bus EDN)
from Romania. The best CB allocation solution, obtained again with the SWA, achieves a loss reduction
of 833.91 kW or 10.36% for the entire network, in 24 h, which amounts to 304.38 MW in an entire year.
The next best solution, found with the PSO algorithm, achieves only 816.58 kW (10.15%). The difference
between the two solutions is of 17.33 kW in the analyzed day, or 6.32 MW in a year. The solutions
found led to an increase of the voltage in the farthest node (215) with maximum 1.36%.

Based on the obtained results, it can be affirmed that the use of capacitor banks is an easy solution
to be implemented with technical and economic benefits to the electricity distribution networks that
maximizes long-term return on investment as the network develops. An intelligent control of capacitor
banks leads to improved energy efficiency and voltage level in the buses of electricity distribution
networks, resulting in an increase in the percentage of energy delivered to consumers. Amongst the
tested algorithms, the SWA finds the best compensation solutions, which can lead to significant
additional loss savings and shorter investment recovery times.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/22/4239/
s1, file IEEE33_load_data.xls, active and reactive load profiles for the IEEE-33bus test system, and file
EDN215_load_data.xls, active and reactive load profiles for the 215-bus distribution network.
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Appendix A

Table A1. Branch parameters for the IEEE 33-bus system.

Bus 1 Bus 2 Imax, A Type1 Resistance, Ω Reactance, Ω

1 2 420 1 0.092 0.047
2 3 420 1 0.493 0.251
3 4 420 1 0.366 0.186
4 5 420 1 0.381 0.194
5 6 420 1 0.819 0.707
6 7 420 1 0.187 0.619
7 8 420 1 0.711 0.235
8 9 420 1 1.03 0.74

http://www.mdpi.com/1996-1073/12/22/4239/s1
http://www.mdpi.com/1996-1073/12/22/4239/s1
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Table A1. Cont.

Bus 1 Bus 2 Imax, A Type1 Resistance, Ω Reactance, Ω

9 10 420 1 1.044 0.74
10 11 420 1 0.197 0.065
11 12 420 1 0.374 0.124
12 13 420 1 1.468 1.155
13 14 420 1 0.542 0.713
14 15 420 1 0.591 0.526
15 16 420 1 0.746 0.545
16 17 420 1 1.289 1.721
17 18 420 1 0.732 0.574
19 20 420 1 1.504 1.356
2 19 420 1 0.164 0.157
20 21 420 1 0.41 0.478
21 22 420 1 0.709 0.937
23 24 420 1 0.898 0.709
24 25 420 1 0.896 0.701
26 27 420 1 0.284 0.145
27 28 420 1 1.059 0.934
28 29 420 1 0.804 0.701
29 30 420 1 0.508 0.259
3 23 420 1 0.451 0.308
30 31 420 1 0.975 0.963
31 32 420 1 0.311 0.362
32 33 420 1 0.341 0.53
6 26 420 1 0.203 0.103

1 Branch type can be 1—line; 2—transformer.

Table A2. Branch parameters for the 215-bus distribution network.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

1 2 235 1 0.80625 0.314159
2 3 315 1 0.1051 0.061104
2 4 295 1 0.7701 0.358142
4 5 295 1 0.00154 0.000716
4 6 295 1 0.30804 0.143257
6 7 295 1 0.021306 0.009909
7 8 295 1 0.021306 0.009909
8 9 295 1 0.272102 0.126543
8 29 295 1 0.056474 0.026264
9 10 295 1 0.02567 0.011938
9 11 295 1 0.213061 0.099086
11 12 295 1 0.115515 0.053721
101 102 295 1 0.141185 0.065659
101 103 295 1 0.02567 0.011938
104 105 295 1 0.02567 0.011938
104 106 295 1 0.361947 0.168327
106 107 295 1 0.02567 0.011938
106 108 295 1 0.2567 0.119381
108 109 295 1 0.05134 0.023876
108 110 295 1 0.467194 0.217273
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

110 111 295 1 0.115515 0.053721
110 113 295 1 0.12835 0.05969
12 13 295 1 0.07701 0.035814
12 14 295 1 0.019253 0.008954
111 112 295 1 0.041072 0.019101
113 114 295 1 0.2567 0.119381
113 125 295 1 0.07701 0.035814
114 115 295 1 0.173273 0.080582
114 116 295 1 0.035938 0.016713
116 117 295 1 0.369648 0.171908
116 119 295 1 0.07701 0.035814
117 118 295 1 0.202793 0.094311
119 120 295 1 0.562173 0.261443
120 121 295 1 0.15402 0.071628
120 122 295 1 0.110381 0.051334
122 123 295 1 0.187391 0.087148
123 124 295 1 0.187391 0.087148
125 126 295 1 0.038505 0.017907
125 127 295 1 0.169422 0.078791
127 128 295 1 0.02567 0.011938
127 129 295 1 0.064175 0.029845
129 130 295 1 0.20536 0.095504
129 131 295 1 0.361947 0.168327
14 15 295 1 0.097546 0.045365
14 22 295 1 0.035938 0.016713
131 132 295 1 0.120649 0.056109
131 133 295 1 0.17969 0.083566
131 134 295 1 0.2567 0.119381
134 135 295 1 0.033371 0.015519
15 16 295 1 0.15402 0.071628
16 17 295 1 0.15402 0.071628
16 18 295 1 0.019253 0.008954
18 19 295 1 0.17969 0.083566
18 20 295 1 0.019253 0.008954
20 21 295 1 0.02567 0.011938
22 23 295 1 0.351679 0.163551
22 24 295 1 0.248999 0.115799
24 25 295 1 0.23103 0.107442
25 26 295 1 0.071876 0.033427
25 27 295 1 0.392751 0.182652
27 28 295 1 0.10268 0.047752
29 30 295 1 0.038505 0.017907
30 31 295 1 0.071876 0.033427
30 37 295 1 0.056474 0.026264
31 32 295 1 0.123216 0.057303
32 33 295 1 0.087278 0.040589
33 34 295 1 0.192525 0.089535
33 35 295 1 0.071876 0.033427
35 36 295 1 0.351679 0.163551
37 38 295 1 0.10268 0.047752
37 40 295 1 0.318308 0.148032
39 38 309 1 0.46244 0.268858
40 41 295 1 0.41072 0.191009
40 43 295 1 0.403019 0.187427
42 41 295 1 0.12835 0.05969
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

43 44 295 1 0.084711 0.039396
44 45 295 1 0.33371 0.155195
44 47 295 1 0.189958 0.088342
45 46 295 1 0.02567 0.011938
47 48 295 1 0.238731 0.111024
47 56 295 1 0.338844 0.157582
48 49 295 1 0.17969 0.083566
48 50 295 1 0.238731 0.111024
50 51 295 1 0.288788 0.134303
50 52 295 1 0.040045 0.018623
52 53 295 1 0.07701 0.035814
52 54 295 1 0.10268 0.047752
54 55 295 1 0.23103 0.107442
56 57 295 1 0.05134 0.023876
56 59 295 1 0.659719 0.306808
57 58 295 1 0.10268 0.047752
59 60 295 1 0.043639 0.020295
59 66 295 1 0.084711 0.039396
60 61 295 1 0.02567 0.011938
60 62 295 1 0.074443 0.03462
62 63 295 1 0.441524 0.205335
62 64 295 1 0.028237 0.013132
64 65 295 1 0.17969 0.083566
66 67 295 1 0.17969 0.083566
66 73 295 1 0.467194 0.217273
67 68 295 1 0.10268 0.047752
67 69 295 1 0.120649 0.056109
69 70 295 1 0.02567 0.011938
69 71 295 1 0.210494 0.097892
71 72 295 1 0.02567 0.011938
73 74 295 1 0.02567 0.011938
73 75 295 1 0.467194 0.217273
75 76 295 1 0.64175 0.298451
75 78 295 1 0.021306 0.009909
76 77 295 1 0.30804 0.143257
78 79 295 1 0.15402 0.071628
78 80 295 1 0.084711 0.039396
80 81 295 1 0.02567 0.011938
80 82 295 1 0.12835 0.05969
82 83 295 1 0.10268 0.047752
82 84 295 1 0.189958 0.088342
84 85 295 1 0.23103 0.107442
84 86 295 1 0.2567 0.119381
86 87 295 1 0.05134 0.023876
86 88 295 1 0.5134 0.238761
88 89 295 1 0.07701 0.035814
88 92 295 1 0.084711 0.039396
89 90 295 1 0.02567 0.011938
89 91 295 1 0.02567 0.011938
92 93 295 1 0.5134 0.238761
93 94 295 1 0.02567 0.011938
93 95 295 1 0.084711 0.039396
95 96 295 1 0.07701 0.035814
95 98 295 1 0.12835 0.05969
96 97 295 1 0.053907 0.02507
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

98 99 295 1 0.084711 0.039396
98 100 295 1 0.064175 0.029845
100 101 295 1 0.07701 0.035814
100 104 295 1 0.12835 0.05969

2 136 1000 2 0.06 0.082
3 137 1000 2 0.011 0.037
5 138 1000 2 0.011 0.037
6 139 1000 2 0.011 0.037
7 140 1000 2 0.011 0.037
10 141 1000 2 0.019 0.036
11 142 1000 2 0.06 0.082

102 195 1000 2 0.04 0.05
103 196 1000 2 0.06 0.082
105 197 1000 2 0.011 0.037
107 198 1000 2 0.06 0.082
109 199 1000 2 0.011 0.037
111 200 1000 2 0.006 0.023
112 201 1000 2 0.011 0.037
115 202 1000 2 0.06 0.082
117 203 1000 2 0.06 0.082
118 204 1000 2 0.06 0.082
119 205 1000 2 0.06 0.082
13 143 1000 2 0.019 0.036

121 206 1000 2 0.011 0.037
122 207 1000 2 0.06 0.082
123 208 1000 2 0.06 0.082
124 209 1000 2 0.019 0.036
126 210 1000 2 0.06 0.082
128 211 1000 2 0.019 0.036
130 212 1000 2 0.019 0.036
132 213 1000 2 0.006 0.023
133 214 1000 2 0.06 0.082
135 215 1000 2 0.019 0.036
15 144 1000 2 0.06 0.082
17 145 1000 2 0.04 0.05
19 146 1000 2 0.06 0.082
21 147 1000 2 0.011 0.037
23 148 1000 2 0.06 0.082
24 149 1000 2 0.06 0.082
26 150 1000 2 0.06 0.082
28 151 1000 2 0.019 0.036
29 152 1000 2 0.06 0.082
31 153 1000 2 0.04 0.05
32 154 1000 2 0.019 0.036
34 155 1000 2 0.019 0.036
35 156 1000 2 0.011 0.037
36 157 1000 2 0.04 0.05
38 158 1000 2 0.011 0.037
39 159 1000 2 0.019 0.036
40 160 1000 2 0.019 0.036
41 161 1000 2 0.04 0.05
42 162 1000 2 0.06 0.082
43 163 1000 2 0.019 0.036
45 164 1000 2 0.006 0.023
46 165 1000 2 0.06 0.082
49 166 1000 2 0.06 0.082
51 167 1000 2 0.06 0.082



Energies 2019, 12, 4239 34 of 36

Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

53 168 1000 2 0.04 0.05
55 169 1000 2 0.04 0.05
57 170 1000 2 0.019 0.036
58 171 1000 2 0.06 0.082
61 172 1000 2 0.011 0.037
63 173 1000 2 0.06 0.082
64 174 1000 2 0.06 0.082
65 175 1000 2 0.06 0.082
68 176 1000 2 0.06 0.082
70 177 1000 2 0.04 0.05
71 178 1000 2 0.06 0.082
72 179 1000 2 0.06 0.082
74 180 1000 2 0.06 0.082
76 181 1000 2 0.06 0.082
77 182 1000 2 0.04 0.05
79 183 1000 2 0.04 0.05
81 184 1000 2 0.06 0.082
83 185 1000 2 0.04 0.05
85 186 1000 2 0.04 0.05
87 187 1000 2 0.011 0.037
90 188 1000 2 0.011 0.037
91 189 1000 2 0.011 0.037
92 190 1000 2 0.06 0.082
94 191 1000 2 0.04 0.05
96 192 1000 2 0.019 0.036
97 193 1000 2 0.04 0.05
99 194 1000 2 0.019 0.036
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Abstract: In the electric distribution systems, the “Smart Grid” concept is implemented to encourage
energy savings and integration of the innovative technologies, helping the distribution network
operators (DNOs) in choosing the investment plans which lead to the optimal operation of the
networks and increasing the energy efficiency. In this context, a new phase load balancing algorithm
was proposed to be implemented in the low voltage distribution networks with hybrid structures of
the consumption points (switchable and non-switchable consumers). It can work in both operation
modes (real-time and off-line), uploading information from different databases of the DNO which
contain: The consumers’ characteristics, the real loads of the consumers integrated into the smart
metering system (SMS), and the typical load profiles for the consumers non-integrated in the SMS.
The algorithm was tested in a real network, having a hybrid structure of the consumption points,
on a by 24-h interval. The obtained results were analyzed and compared with other algorithms
from the heuristic (minimum count of loads adjustment algorithm) and the metaheuristic (particle
swarm optimization and genetic algorithms) categories. The best performances were provided by the
proposed algorithm, such that the unbalance coefficient had the smallest value (1.0017). The phase
load balancing led to the following technical effects: decrease of the average current in the neutral
conductor and the energy losses with 94%, respectively 61.75%, and increase of the minimum value
of the phase voltage at the farthest pillar with 7.14%, compared to the unbalanced case.

Keywords: phase load balancing; smart meters; dynamic optimization; real-time implementation;
low voltage electric distribution networks

1. Introduction

The three-phase electric distribution networks (EDN) are designed and built to operate in
symmetrical and balanced regimes on all phases with all elements (lines, transformers, and not
least the distributed generation sources) having identical electrical parameters. In these regimes,
the symmetrical current and voltage systems in each node of the system have equal values of the
magnitudes of the voltage and currents on each phase, with a phase shift by 120 degrees. But, an ideal
system of the currents and voltages is practically impossible to be met in the real operation conditions
of the EDN because of the emergence of imbalances created mainly by the constructive conditions of
some network elements (lines and transformers) or the supply of the single-phase (1-P) consumers.
Thus, the operating regimes become asymmetric (unbalanced), the symmetry loss of the voltage and
current systems [1].
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The main causes of the imbalances in an EDN can be grouped into the following categories [2]:

• Constructive imbalances. These appear because of the spatial arrangement of the phase conductors,
at the electrical lines, and the arrangement of the windings on the three columns of the ferromagnetic
core, at the power transformers.

• Functional imbalances. These are created by 1-P consumers. They are connected between two
phases or between a phase and the neutral point. Many of them are represented by domestic
and tertiary consumers supplied from the low-voltage (LV) network, with small values of the
absorbed power (up to 100 kVA). Also, there are 1-P industrial consumers. They have high
absorbed powers being connected to electric medium voltage (MV) networks. The representative
1-P industrial consumers are the following: the welding installations, with absorbed powers
between 100 kVA and 3 MVA, the 1-P arc furnaces, and the electric stations that supply power the
railway traction network).

The current unbalances causes many issues at all voltage levels of the electric distribution
networks [3]. The issues caused by current unbalance and the effects on the voltage unbalance are
presented in Figure 1, adapted after [3].
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It can be observed that the current and voltage unbalances cannot be separately treated. In this
context, the voltage unbalances could cause current unbalances, with economic and technical losses for
both partners (consumers and DNO). Concerning the attenuation measures, the current unbalances
can be easier solved by the DNO. The main advantage of current balancing refers to the minimization
of the current flow in the neutral conductor with benefits on the decrease of the total losses in the
EDN [1].

Several phase load balancing (PLB) mechanisms are found in the literature. The PLB problem was
solved in [4] using the branch and bound algorithm. The aforementioned approach uses real data of
customer power demand in different periods to minimize the value of unbalance factor and find the
optimal three-phase load balance in an EDN. The PLB approach used in [5] considers the reallocation
of the customers to reduce the unbalance level in the EDN. Other approaches use different automatic
three-phase load balancing devices [6–8]. The solutions for the PLB model were obtained using various
techniques and technical measures: Hierarchical Petri nets [9], LV the feeder reconfiguration [10,11],
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or switching the consumers on the three phases [12–14]. The PLB problem was solved with particular
metaheuristic algorithms in [15–17]. A PLB mechanism was proposed in [18] to be used at the MV/LV
power transformer level. A particular approach, based on the optimal placement of a decentralized
and autonomous battery storage system, was developed in [19,20]. A different formulation of the PLB
optimization problem is presented in [21] which follows the implementation of a commutation system,
with two-phase thyristor parallel contactor structure, or based on the power-line communication (PLC)
and supervisory control and data acquisition (SCADA) technologies in [22,23], and not based on smart
meters [24,25]. Another category of the published papers [26–28] regards the PLB problem at the
active distribution networks (smart grids) level, using heuristic or metaheuristic methods. Moreover,
an automatic phase load balancing device [29], a shunt passive compensator [30], or a controlled active
filter [31] were proposed. Also, a controller was proposed in [31] to switch the connected 1-P loads
from one phase to another based on an algorithm with a minimum count of loads adjustment.

To highlight the originality of the proposed algorithm, a brief description of the literature is
presented in Table 1, based on four main characteristics: The network type, the location of PLB
operation, the used algorithm, and the operation mode. Other papers from the literature indeed solve
the PLB problem, but they coincide with those presented in Table 1. The objective functions refer to the
minimization of unbalance factor at the pillar level or supply point (electric distribution substation).

Table 1. A comparative state-of-the-art between proposed method and the literature.

Number of
Reference

Type of Network Location of PLB
Type of

Algorithm

Operation Mode

Real Fictive
(Test)

Pillar (P)/
Consumer (C)

Supply
Point Real-Time Off-Line

[4,27] Yes Yes No Yes Heuristic No Yes
[5,17,28] Yes No No Yes Metaheuristic No Yes
[6,21,24] No Yes No No Experimental No Yes
[7,8,26] No Yes No Yes Heuristic No Yes
[9,10] Yes No No Yes Heuristic No Yes
[12,13] No Yes Yes No Metaheuristic No Yes
[14,29] No Yes Yes No Experimental Yes No
[15,16] No Yes No Yes Metaheuristic No Yes
[18,32] No No No Yes Heuristic No Yes
[19,20] Yes No Yes No Heuristic No Yes

[23] No Yes No No Heuristic Yes No
[30,31] No Yes Yes Yes Metaheuristic No Yes

Proposed approach Yes No Yes Yes Heuristic Yes Yes

Regardless of the algorithm used and the locations (networks) proposed for the PLB process, each
consumer should have a smart phase load balancing system (SPLBS) integrated in the SMS, containing
a smart meter and an automatic phase load balancing device (APBD) [27], see Figure 2.Mathematics 2020, 8, x FOR PEER REVIEW 4 of 28 
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Currently, the technical solution developed by the producers is available to be implemented by
the DNOs in the EDN with a high unbalanced degree [33,34]. The solution will be introduced by the
DNOs only on basis of a feasibility analysis to justify the investment.

The system contains the following main components: data concentrators, smart phase load
balancing systems (SPLBS) placed to the consumers integrated into the SMS, and communication lines.
The real-time data communication occurs through power line communication (PLC) wiring from the
SPLBS to data concentrators and through various communication channels from the data concentrators
to a central database. The use of open standard communication protocols plays a very important role
in connecting SPLBS to the data concentrators. Such an approach avoids the massive investment in
equipment that is not interoperable and cannot log or generate errors in the data transmission when
purchased from different suppliers [35].

The analysis should identify in each stage the associated cost to implement the PLB. The main
stages refer to the identification of a feasible technology, the planning of assembly at consumers,
the commissioning of the system, the integration in the SMS, testing the communication with data
concentrator from the supply point, and the maintenance plan [27].

Compared to the approaches from the literature, the proposed algorithm has the following
advantages:

• It can be implemented in the EDNs with hybrid structures of the consumption points (switchable
and non-switchable 1-P consumers). The three-phase (3-P) consumers, having identical loadings
on the three phases, are not considered in the algorithm, belonging to the non-switchable
consumers’ category.

• It can work in both operation modes (real-time and off-line), uploading information from
different databases of the DNO. The consumers’ characteristics (connecting pillar, allocated phase,
consumption sector and class, integration in the SMS, identification number of the meter) are
extracted based on the identification number of the supply point. The value of consumption and
operating status of phase load balancing device (PLBD) are uploaded from the database of the
SMS if the meter is integrated, or from the typical load profiles (TLPs) database if the consumer
has a standard energy meter (non-integrated in the SMS).

• The convergence is rapid because of the fast recognition of the EDN topology with the help of a
structure vectors-based algorithm. The optimal solutions for PLB are found at the level of each
pillar such that the global solution obtained for the level of the supply point will be also optimal.

The paper has a structure organized as follows: Section 2 details the stages of the proposed PLB
algorithm, accompanied by the implementation procedure. Section 3 presents the results obtained in
the case of a real EDN belonging a DNO from the north-eastern of Romania and a comparison with
other three algorithms to demonstrate the accuracy of the proposed algorithm. Section 4 highlights the
conclusions and the future works.

2. The Proposed PLB Algorithm

The proposed algorithm can be implemented at the level of data concentrator from the supply
point (electric distribution substation) to work in the real-time mode or to the decision-making central
level (DMCL) of DNO for the off-line work mode helping to identify the EDNs with a high unbalanced
degree and to determine the optimal solutions to decrease it. The real-time implementation in the soft
architecture of the data concentrator from the supply point (SP) involves the installation of a SPLBS at
the level of each consumer, as indicated in Figure 2. Also, the algorithm can be implemented in the
EDN with standard and smart meters.

The PLB algorithm has the following steps:
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Step 1. Identification of topology for the EDN.

The topology is identified using a two structure vectors-based algorithm [36]. The algorithm
leads to the systematization of the topology, grouping the branches into vicinity levels relative to
the supply point (the electric distribution substation). For an EDN with 9 nodes and 8 branches,
the branches are grouped in three vicinity levels, starting from the supply point (SP): Level 1—1 branch
(B2); Level 2—2 branches (B3 and B4), and Level 3—5 branches (B5, B6, B7, B8, and B9), see Figure 3.
The recognition of each branch is based on the input and end nodes (pillars), being numbered relative
to the end node. The input and end nodes of branches are recorded in the vectors Bi and Be considered
as input data of the algorithm.
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Considering these aspects, the topology of the EDN can be described using two integer vectors,
TV1 and TV2. The vector TV1 contains the number of branches from each vicinity level and the vector
TV2 includes all branches in the order of the vicinity levels. The elements of vectors TV1 and TV2 are
presented in Table 2.

Table 2. The elements of topology vectors.

TV1 L1 L2 L3

TV2 B1 B2, B3 B5, B6, B7, B8, B9

Step 2. Upload the input data sequence

The algorithm uploads from the database of the DNO a data sequence that is stored in the input
vectors. This input data sequence is formed from the following fields, see Figure 4:

• Supply point: Each electric distribution substation has an identification number that allows the
algorithm to allocate correct data from the database to all consumers supplied from this point.

• Connecting pillar: The connecting pillar is recorded in the database to identify the position of each
consumer in the network. Also, this information is very important in the calculus of a steady-state
regime to evaluate the performance of the PLB measure through reducing the power/energy losses
and improving the voltage level at the consumers. The vector associated with this field is noted
with CP, having the size (NC × 1), where NC represents the total number of consumers from
the EDN.

• Branching Phase: Each 1-P consumer is allocated by the DNO at one of the phases ph = {a, b, c},
and the 3-P consumers are connected at all three phases ph = {a, b, c}. The records regarding this
information are found in the vector PB with the size (NC × 1).
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• Consumption Sector. The information is used to assign the consumer to the following consumption
sectors: domestic, non-domestic, commercial, and industrial. The records for this information
have the identification numbers from 1 to 4: 1 (domestic), 2 (non-domestic), 3 (commercial), and 4
(industrial) included in the vector CS with the size (NC × 1).

• Consumption class. More consumption classes are allocated to each consumption sector by the
DNO. As an example, a Romanian DNO has a classification in five consumption classes for
consumers from the domestic sector [36]: < 400 kWh (first class), range [400 kWh, 1250 kWh]
(second class), range [1250 kWh, 2500 kWh] (third class), range [2500 kWh, 3500 kWh] (the fourth
class), and range [2500 kWh, 3500 kWh] (the fifth class). This information is loaded in the vector
CC, having the size (NC × 1).

• Integration in SMS. Currently, not all consumers from the LV distribution networks are integrated
into the smart metering system. In this case, the value 1 (if it is integrated) and 0 (otherwise) will
be recorded in the database. If the meter is integrated into the SMS, it can communicate to the
central system information about the currents or active and reactive powers, which will record
them in the database (see Figure 5).
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If the consumer has a PLBD, then the central system will communicate both its operating status
and connection phase. Thus, it will be classified by the algorithm in the category of switchable
consumers, recording the value 1 in the database. Otherwise, even if the consumer integrated into the
SMS and PLBD is faulty (value is 0), or has a standard meter, it cannot be allocated on other phase
and will be classified in the set of non-switchable consumers, recording the value 0 in the database.
The algorithm will record these values in the vectors INT (for integration mode) and BS (for the PBLD
status), having the size (NC × 1). Also, for the non-switchable consumers because of the missing data
from the consumption point, the algorithm will use the hourly values from the typical load profiles
(TLPs) allocated in function by Consumption Sector (vector CS) and Consumption class (vector CC).

Concerning the TLPs, these are defined by the DNO to all consumers which are not integrated
in the SMS and are determined for each consumption sector (domestic, non-domestic, commercial,
and industrial) having common characteristics regarding the consumption classes, days (weekend
or working), and seasons (springer, summer, autumn, or winter). Finally, each consumer will have
an assigned TLP, depending on the above characteristics. The profiling process to obtain the TLPs is
presented in [36].

Even if these TLPs are known, the DNOs cannot implement the proposed algorithm in those
networks with a high number of non-integrated consumers into the SMS. Within the proposed
algorithm, they belong to the category of non-switchable consumers, so that the number of switching
solutions will be limited. As the number of non-switchable consumers decreases, the number of
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switching options increases, leading to a solution very close to the optimal solution (in the ideal case,
it is equal with 1.00).

The values of the hourly loads for all consumers are recorded in the matrix IC, with the size (NC ×H).

• Serial number. Each consumer is recognized in the database through the serial number of meter
installed (smart or standard). The information is recorded in the vector SN, having the size (NC × 1).

Step 3. The PLB procedure

The PLB procedure is characterized by a dynamic process which follows the minimization of
unbalance degree (as close to 1) at the level of each pillar by allocation to other phases (e.g., phase a
on phases b or c) of the switchable consumers (with SPLBS installed). The procedure is based on the
decomposition and coordination of the complex distribution networks. Decomposition considers the
division of the distribution network into groups of pillars and to carry out optimization on the pillar
level to obtain a minimum unbalance coefficient. At the level of each pillar will be determined the
optimal solution considering all combinations between the allocations of the switchable consumers
on the phases. The optimal solutions at the level of each pillar are obtained by coordination of the
switchable consumers, such that the global optimal solution, represented by the unbalance coefficient
at the level of the supply point, will be obtained. In other words, if the balancing solutions are optimal
at the level of each pillar, then the global solution at the level of the supply point is also optimal.

To evaluate if an EDN is in an unbalanced regime, an unbalance coefficient is calculated. There
are formulas proposed by the IEEE (The Institute of Electrical and Electronics Engineers) and NEMA
(The National Equipment Manufacturer’s Association) standards [37] for the voltage unbalance. But,
there is no widespread agreement for the current unbalance. Thus, the negative and positive sequence
components of the current can be used to evaluate the current unbalance [3]. This approach requires
the decomposition of the current system into instantaneous positive, negative, and zero sequence
components using phasor representation, which is not always possible. Easy evaluation of current
unbalance in a node (pillar) of the EDN can be made based on an unbalance coefficient calculated
based on the effective values of phase currents [27]. The value of this coefficient must be less than 1.1,
agreed by the DNOs.

UC =
1
3
·

( Ia

Iaverage

)2

+

(
Ib

Iaverage

)2

+

(
Ic

Iaverage

)2 (1)

where: UC—the unbalance coefficient; Ia, Ib, Ic—the currents on the phases a, b, and c; Iaverage—the
average value of the phase currents.

The mechanism of the proposed algorithm is explained for a particular case with 2 pillars and
5 consumers, see Figure 6. For the switchable consumers, the initial phase has a yellow color, the optimal
phase has a red color, and the phase of non-switchable consumers has a blue color. The optimal phase is
the initial phase when the yellow color is missing. It can be observed that one consumer (3) belongs to
the non-switchable consumer category, and only two consumers (2 and 5), after applying the algorithm,
switched from the phases {a, a} to the phases {c, b}. Consumers 1, 4, and 6 maintained the allocations
on the phases {b, c, a}.

The analysis of the obtained results highlighted that a final value of UC very close by 1 (1.006) can
be reached starting from an initial high value (1.636), switching only 2 consumers on other phases.
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Figure 6. The mechanism of proposed algorithm and the obtained results.

The minimization of unbalance coefficient (UC), at each hour h = 1, . . . , H, and each pillar
p = 1, . . . , Np represents the objective of the PLB problem:

min(UC(p),h) , p = 1, . . . , Np; h = 1, . . . , H (2)

where:

UC(p),h =
1
3
·


 I(p),ha

I(p),haverage


2

+

 I(p),hb

I(p),haverage


2

+

 I(p),hc

I(p),haverage


2
 (3)

I(p),haverage =
1
3

(
I(p),ha + I(p),hb + I(p),hc

)
(4)

I(p),ha = I(p),ha,ns + I(p),ha,s + I(d),ha ; p = 1, . . . , Np; p , d (5)

I(p),hb = I(p),hb,ns + I(p),hb,s + I(d),hb ; p = 1, . . . , Np; p , d (6)

I(p),hc = I(p),hc,ns + I(p),hc,s + I(d),hc ; p = 1, . . . , Np; p , d (7)

I(p),ha,ns =


N(p),h

a,ns∑
j=1

I(p),ha,ns, j

 (8)

I(p),hb,ns =


N(p),h

b,ns∑
k=1

I(p),hb,ns,k

 (9)

I(p),ha,ns =


N(p),h

c,ns∑
l=1

I(p),hc,ns,l

 (10)

I(p),ha,s =


N(p),h

a,s∑
m=1

I(p),ha,s,m

 (11)

I(p),hb,s =


N(p),h

b,ns∑
n=1

I(p),hb,s,n

 (12)

I(p),hc,s =


N(p),h

c,ns∑
o=1

I(p),hc,s,o

 (13)
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N(p)
C,ns = N(p),h

a,ns + N(p),h
b,ns + N(p),h

c,ns (14)

N(p)
C,s = N(p),h

a,s + N(p),h
b,s + N(p),h

c,s (15)

N(p),h
C = N(p),h

C,ns + N(p),h
C,s (16)

where: UC(p),h—the unbalance coefficient calculated at the pillar p and hour h; Ia
(p),h, Ib

(p),h, Ic
(p),h—the

currents on the phases a, b, and c, at the pillar p and hour h; Iaverage
(p),h—the average value of the phase

currents, at the pillar p and hour h; Ia,ns
(p),h, Ib,ns

(p),h, Ic,ns
(p),h—the total current of the non-switchable

consumers on the phases a, b, and c, at the pillar p and hour h; Ia,s
(p),h, Ib,s

(p),h, Ic,s
(p),h—the total current

of the switchable consumers on the phases a, b, and c, at the pillar p and hour h; Ia,s
(d),h, Ib,s

(d),h,
Ic,s

(d),h—the currents on the phases a, b, and c, at the pillar d (located downstream by pillar p), and hour
h; Ia,ns,j

(p),h—the current of the non-switchable consumer j connected on the phase a, at the pillar p,
and hour h; Ib,ns,k

(p),h—the current of the non-switchable consumer k connected on the phase b, at the
pillar p, and hour h; Ic,ns,l

(p),h—the current of the non-switchable consumer l connected on the phase c,
at the pillar p, and hour h; Ia,s,m

(p),h – the current of the switchable consumer m connected on the phase
a, at the pillar p, and hour h; Ib,s,n

(p),h—the current of the switchable consumer n connected on the phase
b, at the pillar p, and hour h; Ic,s,o

(p),h—the current of the switchable consumer o connected on the phase
c, at the pillar p, and hour h; Na,ns

(p),h, Nb,ns
(p),h, Nc,ns

(p),h—the number of the non-switchable consumers
connected on the phases a, b, and c, at the pillar p, and hour h; Na,s

(p),h, Nb,s
(p),h, Nc,s

(p),h—the number of
the switchable consumers connected on the phases a, b, and c, at the pillar p, and hour h; NC,ns

(p),h—the
total number of the non-switchable consumers connected at the pillar p, and hour h; NC,s

(p),h—the total
number of the switchable consumers connected at the pillar p, and hour h; NC

(p),h—the total number
of the consumers connected at the pillar p, and hour h; Np—the total number of the pillars; H—the
analyzed time period.

The implementation procedure of the mathematical model (2)–(16) is presented in Figure 7a,b,
and the details are given in Table 3.

Table 3. The implementation procedure of the proposed phase load balancing (PLB) algorithm.

Steps of PLB Algorithm Based on the Smart Meter Data

Step 1. Identification of the topology for the EDN based on the vectors TV1 and TV2, built with the vectors Bi
and Be which contain the input and end nodes (pillars) assigned each branch.

Step 2. Upload the input data sequence from the database of the DNO corresponding to the SP of EDN: Store
the information in the vectors: CP, BP, CS, CC, INT, BS, and SN.

Determine the number of consumers supplied: NC = length (SN);
Initialize the matrices IC ∈ R*(Nc×H), Ia, Ib, and Ic ∈ R* (Np×H), and UC∈ R*(Np×H)

for each hour h, h = 1 . . . H
Set initial consumer index: i = 0;
while i ≤ Nc

Increase consumer index: i = i + 1;
if INT (i, h) = 1

if BS (i, h) = 1
Update IC (i, h) with the value recorded on the line SN(i) and column h of
the consumption matrix loaded from the SMS;

else
Send a warning message to the central system on the failure/missing
communication of PLBD to be repaired as soon as possible;
Update IC (i, h) with the assigned value from the TLP depending the
records from the vectors CS (i) and CC (i), day (weekend or working),
and season (springer, summer, autumn, or winter);

else
Update IC (i, h) with the assigned value from the TLP depending the
records from the vectors CS (i) and CC (i), day (weekend or working), and
season (springer, summer, autumn, or winter);
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Table 3. Cont.

Steps of PLB Algorithm Based on the Smart Meter Data

Step 3. The PLB sequence at the level of each pillar:
Set initial pillar index: p = Np;
while (p ≥ 1) and (p ≤ Np)

Initialize the vector index;
Find the index corresponding to pillar p in vector CP, and store in vector index;
Determine the number of consumers connected at the pillar p: np = length (index);
Initialize the sums of phase currents corresponding to:
switchable consumers: Ias = 0, Ibs = 0, Ics = 0;
non-switchable consumers: Ians = 0, Ibns = 0, Icns = 0;
all consumers: Iap = 0, Ibp = 0, Icp = 0;
Set initial consumer index: j = 0;
while j ≤ np

Increase consumer index: j = j + 1;
if (INT(index (j)) = 0) and (BP (index (j)) = {a})

Update sum of current to non-switchable consumers on the phase a:
Ians = Ians + IC (index (j));
if BP (index (j)) = {b})

Update sum of current to non-switchable consumers on the phase b:
Ibns = Ibns + IC (index(j));

else
Update sum of current to non-switchable consumers on the phase c:
Icns = Icns + IC (index (j));

if (INT(index (j)) = 1) and (BS (index (j)) = 0)
Changing the category of consumer j from switchable in
non-switchable;
if (BP (index (j)) = {a})

Update sum of current to non-switchable consumers on the phase a:
Ians = Ians + IC (index (j));
if BP (index (j)) = {b})

Update sum of current to non-switchable consumers on
the phase b: Ibns = Ibns + IC (index (j));

else
Update sum of current to non-switchable consumers on
the phase c: Icns = Icns + IC (index (j));

if (INT(index (j)) = 1) and (BS (index (j)) = 1)
Assigning the consumer j on each of the three phases:
case Combination 1 – allocation of the consumer j on the phase a

Compute the fictive sum of phase currents to switchable consumers:
Iasf1 = Ias + IC (index (j)); Ibsf1 = Ibs; Icsf1 = Ics;
Compute the fictive sum of the phase currents to all consumers:
Iapf1 = Ians + Iasf1; Ibpf1= Ibns + Ibsf1; Icpf1 = Icns + Icsf1;
Compute the average value of the phase currents, Iaverage1 (rel. (3))
Compute the UC1 (rel. (2));

case Combination 2 – allocation of the consumer j on the phase b
Compute the fictive sum of phase currents to switchable consumers:
Iasf2 = Ias; Ibsf2 = Ibs + IC (index (j)); Icsf2 = Ics;
Compute the fictive sum of the phase currents to all consumers:
Iapf2 = Ians + Iasf2; Ibpf2 = Ibns + Ibsf2; Icpf2 = Icns + Icsf2;
Compute the average value of the phase currents, Iaverage2, (rel. (3));
Compute the UC2 (rel. (2));
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Table 3. Cont.

Steps of PLB Algorithm Based on the Smart Meter Data

case Combination 3 – allocation of the consumer j on the phase c
Compute the fictive sum of phase current to switchable consumers:
Iasf3 = Ias; Ibsf3 = Ibs; Icsf3 = Ics + IC (index (j));
Compute the fictive sum of the phase currents of all consumers:
Iapf3 = Ians + Iasf3; Ibpf3 = Ibns + Ibsf3; Icpf3 = Icns + Icsf3;
Compute the average value of the phase currents, Iaverage3 (rel. (3));
Compute the UC3 (rel. (2));

Determine the minimum value of UC: min (UC1, UC2, UC3);
Store the number of combination with UCmin, COmin, corresponding to
one of the three phase:
if COmin = 1

Update in the vector PB the phase a: PB (index (j)) = {a};
Update the sum of phase currents to switchable consumers:
Ias = Iasf1; Ibs = Ibsf1; Ics = Icsf1;
Update the sum of phase currents to all consumers:
Iap = Iapf1; Ibp = Ibpf1; Icp = Icpf1;
if COmin = 2

Update in the vector PB the phase b: PB(index (j)) = {b};
Update the sum of phase currents to switchable consumers:
Ias = Ias2; Ibs = Ibsf2; Ics = Icsf2;
Update the sum of phase currents to all consumers:
Iap = Iapf2; Ibp = Ibpf2; Icp = Icpf2;

else
Update in the vector PB the phase c: PB(index (j)) = {c};
Update the sum of phase currents to switchable consumers:

Ias = Ias3; Ibs = Ibsf3; Ics = Icsf3;
Update the sum of phase currents to all consumers:

Iap = Iapf3; Ibp = Ibpf3; Icp = Icpf3;
Update the value of unbalanced coefficient UC (p, h) = UCmin;
Update the value of phase currents Ia (p, h) = Iap, Ib (p, h) = Ibp, and Ic (p, h) = Icp;
Decrease pillar index: p = p − 1;
According with the new allocations from vector PB the central system emits the
instructions at each PLBD;

Increase hour index: h = h + 1;
Print results: UC, Ia, Ib, Ic.
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3. Case Study

The proposed PLB algorithm was tested in the case of a real LV EDN from a rural area, located
in northeastern Romania. The structure of the network is presented in Figure 8. The structure of the
network is presented in Figure 8. This network was chosen because of the very complex structure
(88 pillars, a total length of 3.52 km, and many lateral branches) and the high number of consumers
(163 consumers). Generally, the LV distribution networks have an average length by 1.2 km, with
approximately 30 pillars, and an average number of consumers by 60 consumers [38,39]. The values
of the characteristics (length, poles, and consumers) of the considered network are about three times
higher than the average values. The EDN is supplied from a point (SP), through a power transformer
20/0.4 kV. The numbering of pillars is real, given by the DNO from this distribution area, beginning
with Pillar 8. The distance between two successive pillars is 0.04 km, stipulated in Romanian technical
normative [40]. The technical characteristics of the branches are presented in Table 4, where r0 and x0

represent the specific resistance and reactance. If the reactance is not known, an estimation technique
can be used [41].
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Table 4. The technical characteristics of the branches.

Branch Type
Conductor

Cross-Section of
Phase Conductors

[mm2]

Cross-Section of
Neutral Conductor

[mm2]

Length
[km]

r0
[Ω/km]

x0
[Ω/km]

SP-11 Classic 50 50 0.160 0.61 0.298
11–15 Classic 50 50 0.160 0.61 0.298
11–95 Classic 50 50 1.960 0.61 0.298
15–27 Classic 35 35 0.480 0.871 0.055
15–39 Classic 35 35 0.480 0.871 0.055
37–46 Classic 25 25 0.280 1.235 0.319

Total
50 50 2.280 0.61 0.298
35 35 0.960 0.871 0.055
25 25 0.280 1.235 0.319

Total 3.520

From the database of the DNO, the information about the characteristics of the consumers from
this EDN based on the identification number of the SP was uploaded. The format of the input
data was presented in Section 2, see Figure 4. The characteristics of the consumers are presented
synthetically in Table 5. Detailed information regarding the connected pillars, the branching phase,
and the consumption sector are given in Table A1 from Appendix A.

Table 5. Synthesis on the characteristics of the consumers from the analyzed EDN.

Consumer’ Type Initial Phase Consumption SECTOR

1-P 3-P a b c abc I II III IV

161 2 42 72 47 2 161 2 - -

It can be observed that the vast majority of consumers (98.8%) have a 1-P branching with the
following initial allocation: 25.8% on phase a, 44.2% on phase b, and 28.8% on phase c. Only 1.2% of
the consumers have 3-P branching. Regarding the consumption sector, 98.8% of the consumers belong
to the domestic sector, and only 1.2% are from the non-domestic sector.

From all consumers, 114 1-P consumers, representing 70.8%, are integrated into the SMS with
the possibility to have PLBD installed. They will be considered from the switchable consumers’
category in our algorithm. The algorithm imports for each consumer i, i = 1, . . . , Nc, according to
the serial number of meter recorded in the vector SN, the hourly load from the database of SMS for
the analyzed period H. In our case study, the period H corresponds to a winter working day with
hourly records h, h = 1, . . . , 24, see the supplementary file which contains the active and reactive power
profiles. The other 47 1-P consumers are considered as non-switchable consumers due to the standard
meters, non-integrated in the SMS. For these consumers, the algorithm uses TLPs according to the
information stored in the vectors CS, associated with the consumption sector, and CC, associated with
the consumption class.

The phase currents (Ia, Ib and Ic) and neutral current (I0) in the SP (on the 0.4 kV side) were
determined considering all load profiles, using the calculations of steady-state regime, see Table 6 and
Figure 9). The used algorithm is an improved version of the forward/backward sweep-based algorithm,
developed in [36], to calculate the steady-state regimes to three-phase LV distribution networks in the
balanced and unbalanced regime.
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Table 6. The currents in the conductors of the first branch, SP-Pillar 8, initial case.

Hour Ia [A] Ib [A] Ic [A] I0 [A] UC

1 14.77 48.71 19.47 31.84 1.29
2 14.01 46.55 18.64 30.49 1.30
3 13.24 43.81 17.73 28.58 1.29
4 13.36 44.40 17.45 29.20 1.30
5 13.55 43.94 17.99 28.43 1.28
6 12.38 36.47 16.98 22.15 1.23
7 16.73 41.58 19.49 23.59 1.18
8 19.53 45.17 20.93 24.97 1.17
9 19.69 49.91 21.88 29.18 1.20

10 18.05 53.57 21.70 33.83 1.26
11 19.21 61.57 23.16 40.52 1.30
12 17.44 58.17 20.53 39.28 1.33
13 17.94 61.76 21.40 42.20 1.35
14 17.87 60.11 22.35 40.18 1.32
15 17.91 61.07 22.21 41.18 1.33
16 15.99 54.16 21.22 35.84 1.31
17 18.38 61.07 22.53 40.77 1.32
18 21.55 66.87 25.80 43.34 1.29
19 21.31 59.27 25.14 36.19 1.23
20 21.27 51.86 23.77 29.41 1.18
21 25.66 58.78 27.08 32.43 1.17
22 27.69 68.53 31.57 39.04 1.19
23 24.83 69.17 30.67 41.72 1.22
24 17.12 53.18 23.17 33.45 1.26
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The analysis of the obtained results highlights a high difference between the phase currents and
an important current in the neutral conductor (exceeds the current on the phases a and b), which leads
to an unbalanced degree beyond the threshold (1.1) imposed by the DNO. The UC is in the range
[1.17, 1.35], having an average value of 1.26.

Also, the current unbalance leads to higher power/energy losses because of current flows in the
neutral conductor and a significant voltage unbalance, as shown in Table 7 and Figure 10. The losses in
the neutral conductor represent an important percent (37%) of the total energy losses such that the PLB
measure must be implemented.
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Table 7. The energy losses calculated in the initial case, [kWh].

Hour
Main Conductors Branching Conductors

Total
a b c Neutral a b c Neutral

1 0.03 0.54 0.11 0.43 0.003 0.014 0.001 0.011 1.14
2 0.03 0.49 0.10 0.39 0.003 0.013 0.001 0.011 1.04
3 0.02 0.43 0.09 0.35 0.002 0.011 0.001 0.009 0.92
4 0.02 0.44 0.09 0.35 0.002 0.012 0.001 0.010 0.93
5 0.02 0.44 0.09 0.35 0.002 0.011 0.001 0.010 0.93
6 0.02 0.31 0.08 0.25 0.002 0.006 0.001 0.006 0.67
7 0.04 0.41 0.11 0.32 0.005 0.007 0.001 0.008 0.90
8 0.05 0.50 0.12 0.38 0.007 0.009 0.001 0.011 1.08
9 0.05 0.59 0.14 0.46 0.007 0.012 0.001 0.013 1.27
10 0.04 0.66 0.13 0.52 0.005 0.017 0.001 0.015 1.40
11 0.05 0.87 0.15 0.68 0.006 0.025 0.001 0.021 1.81
12 0.04 0.77 0.12 0.60 0.005 0.025 0.001 0.020 1.58
13 0.04 0.86 0.13 0.68 0.005 0.029 0.001 0.023 1.77
14 0.04 0.82 0.14 0.65 0.005 0.025 0.001 0.020 1.71
15 0.04 0.85 0.14 0.67 0.005 0.026 0.001 0.021 1.76
16 0.04 0.67 0.13 0.53 0.004 0.019 0.001 0.015 1.40
17 0.05 0.85 0.15 0.67 0.005 0.026 0.001 0.021 1.76
18 0.06 1.04 0.19 0.82 0.007 0.028 0.002 0.024 2.17
19 0.06 0.84 0.18 0.66 0.007 0.017 0.002 0.017 1.78
20 0.06 0.66 0.16 0.51 0.007 0.011 0.001 0.013 1.43
21 0.09 0.87 0.21 0.68 0.012 0.014 0.002 0.018 1.89
22 0.10 1.18 0.29 0.93 0.012 0.019 0.002 0.022 2.55
23 0.08 1.17 0.27 0.93 0.009 0.021 0.002 0.021 2.51
24 0.04 0.66 0.15 0.53 0.004 0.014 0.001 0.012 1.42

Total 1.13 16.93 3.48 13.34 0.130 0.408 0.028 0.370 35.81
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After the application of the proposed algorithm at each hour h = 1, . . . , 24, the current unbalance
was significantly reduced, see Table 8. The average value of UC decreased at 1.0017. It can be observed
that the current in the neutral conductor decreased with 94%, from the average value of 34.08 A at
2.07 A. This aspect is highlighted in Figure 11. The effects are felt at the level of power/energy losses,
see Table 9, and the voltage quality, see Figure 12.
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Table 8. The currents in the conductors of the first branch, SP-Pillar 8, the proposed algorithm.

Hour Ia [A] Ib [A] Ic [A] I0 [A] UC

1 27.56 27.50 27.82 0.30 1.0000
2 26.25 26.53 26.37 0.24 1.0000
3 24.88 25.03 24.82 0.19 1.0000
4 25.29 24.88 24.99 0.36 1.0000
5 25.22 25.01 25.21 0.21 1.0000
6 21.47 22.69 21.65 1.14 1.0006
7 24.77 24.68 28.31 3.58 1.0042
8 31.90 26.76 26.93 5.06 1.0070
9 28.83 29.06 33.54 4.59 1.0050

10 30.66 30.78 31.81 1.10 1.0003
11 34.76 34.55 34.53 0.22 1.0000
12 32.61 31.65 31.78 0.91 1.0002
13 33.25 34.50 33.23 1.26 1.0003
14 33.91 33.04 33.29 0.77 1.0001
15 33.49 34.20 33.40 0.76 1.0001
16 30.88 30.23 30.18 0.68 1.0001
17 33.72 34.38 33.77 0.64 1.0001
18 38.43 37.96 37.71 0.63 1.0001
19 37.69 34.07 33.87 3.72 1.0025
20 30.67 30.70 35.48 4.79 1.0049
21 34.87 41.56 35.03 6.61 1.0070
22 40.63 46.86 40.21 6.46 1.0051
23 39.94 40.25 44.37 4.29 1.0024
24 31.96 30.73 30.71 1.24 1.0004
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The results were compared with other algorithms to emphasize the accuracy of the smart meter
data-based proposed algorithm (SMD): from heuristic (the minimum count of loads adjustment (MCLA)
algorithm [32]) and metaheuristic (particle swarm optimization (PSO) algorithm [28] and genetic
algorithm (AG) [17]) categories. The computational times needed to obtain the solution are presented
in Table 10 for each algorithm. The algorithms with a Matlab implementation were run on a computer
Intel Core i5, 3.10 GHz, 4GB RAM, WIN 10 64-bit operating system.
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Table 9. The energy losses calculated with the data obtained using the proposed algorithm, [kWh].

Hour
Main Conductors Branching Conductors

Total
a b c Neutral a b c Neutral

1 0.12 0.13 0.14 0.01 0.00 0.01 0.01 0.01 0.43
2 0.11 0.13 0.12 0.01 0.00 0.01 0.01 0.01 0.39
3 0.10 0.12 0.10 0.01 0.00 0.01 0.00 0.01 0.35
4 0.12 0.10 0.10 0.01 0.01 0.01 0.00 0.01 0.35
5 0.11 0.11 0.10 0.01 0.01 0.00 0.00 0.01 0.35
6 0.08 0.08 0.08 0.00 0.00 0.00 0.00 0.01 0.26
7 0.11 0.11 0.13 0.01 0.00 0.00 0.01 0.01 0.37
8 0.17 0.12 0.13 0.01 0.01 0.00 0.00 0.01 0.45
9 0.17 0.13 0.18 0.01 0.01 0.00 0.01 0.01 0.52
10 0.15 0.17 0.17 0.01 0.01 0.01 0.01 0.01 0.54
11 0.22 0.20 0.20 0.01 0.01 0.01 0.01 0.02 0.68
12 0.19 0.16 0.17 0.01 0.01 0.01 0.01 0.02 0.59
13 0.17 0.23 0.19 0.02 0.01 0.02 0.01 0.02 0.66
14 0.21 0.19 0.18 0.01 0.01 0.01 0.01 0.02 0.64
15 0.17 0.22 0.19 0.01 0.01 0.01 0.01 0.02 0.65
16 0.17 0.15 0.16 0.01 0.01 0.01 0.01 0.01 0.52
17 0.17 0.22 0.20 0.01 0.01 0.01 0.01 0.02 0.66
18 0.23 0.27 0.24 0.01 0.01 0.01 0.01 0.02 0.82
19 0.22 0.22 0.19 0.01 0.01 0.01 0.01 0.02 0.69
20 0.16 0.18 0.20 0.01 0.00 0.01 0.01 0.01 0.58
21 0.21 0.29 0.22 0.02 0.00 0.02 0.01 0.02 0.78
22 0.28 0.35 0.32 0.02 0.00 0.02 0.01 0.02 1.01
23 0.30 0.28 0.32 0.01 0.01 0.01 0.01 0.02 0.96
24 0.16 0.18 0.16 0.01 0.00 0.01 0.01 0.01 0.54

Total 4.09 4.34 4.18 0.26 0.15 0.20 0.19 0.36 13.76
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Table 10. Comparison between the computational times.

No. Algorithm Computational Times [Seconds]

1 SMD (Proposed) 1.26
2 MCLA 0.58
3 PSO 348
4 GA 291
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The values from the table correspond to 24 h. It can be observed that the lowest values were
obtained for the heuristic methods (SMD and MCLA) and higher values for the metaheuristic methods
(PSO and GA). Even if the computational time of MCLA is lower than SMD, this does not guarantee
that effects will be better in the evaluation of the UC coefficient, the current in the neutral conductor
(and implicit on the energy losses), or the voltage at the level of each pillar.

Regarding the UC coefficient, the obtained value with the proposed algorithm is identical with
AG (1.0017) at the SP level, being smaller than in the case of MCLA and PSO, as shown in Figure 13.Mathematics 2020, 8, x FOR PEER REVIEW 19 of 28 

 

 

Figure 13. Comparison between the average values of UC at the SP level, calculated with different 

algorithms. 

Also, a comparison with the mathematical programming models, proposed by Arias et al. in [4] 

and Zhu et al. in [42], was done considering the UC coefficient. The UC coefficient was reduced from 

1.17 to 1.07 (a reduction with 9.4%) using the Branch and Bound algorithm (BBA), proposed in [4], in 

the case of a test radial network without lateral branches. The mixed-integer programming (MIP) led 

at a reduction of the UC coefficient from 1.086 to 1.005 (a reduction with 8%) for a test network with 

6 nodes [42]. The values are indicated in Table 11. 

Table 11. Comparison with the linear programming models. 

No. Algorithm Characteristics of EDN UCinitial UCfinal 
Improvement 

[%] 

1 
SMD 

(Proposed) 

real/complex/88 nodes/163 

consumers 
1.26 1.0017 25.8 

2 BBA 
fictive/radial without lateral 

branches/51 consumers 
1.17 1.07 9.4 

3 MIP 
fictive/radial with 2 lateral 

branches/6 nodes 
1.086 1.005 8.0 

The results confirm the advantages of the proposed algorithm compared with the mathematical 

programming algorithms. Also, the accuracy of the SMD algorithm was demonstrated in the case of 

a real complex EDN, compared with the other two algorithms, which were tested using fictive EDNs, 

with simple topologies (radial). 

To highlight the effects on the decrease of the current in the neutral conductor (and implicit on 

the energy losses) and on improving the voltage quality at the level of each pillar, the steady-state 

regimes were calculated, having as input data the load matrices obtained with each algorithm (SDM, 

MCLA, PSO, and GA). The average value of the current in the neutral conductor, on the first branch, 

is shown in Figure 14, for each algorithm. It can be observed that the smallest value was obtained by 

applying the proposed algorithm (2.07 A), with 22.7% better than GA. 

Figure 13. Comparison between the average values of UC at the SP level, calculated with
different algorithms.

Also, a comparison with the mathematical programming models, proposed by Arias et al. in [4]
and Zhu et al. in [42], was done considering the UC coefficient. The UC coefficient was reduced from
1.17 to 1.07 (a reduction with 9.4%) using the Branch and Bound algorithm (BBA), proposed in [4],
in the case of a test radial network without lateral branches. The mixed-integer programming (MIP)
led at a reduction of the UC coefficient from 1.086 to 1.005 (a reduction with 8%) for a test network
with 6 nodes [42]. The values are indicated in Table 11.

Table 11. Comparison with the linear programming models.

No. Algorithm Characteristics of EDN UCinitial UCfinal
Improvement

[%]

1 SMD (Proposed) real/complex/88 nodes/163 consumers 1.26 1.0017 25.8
2 BBA fictive/radial without lateral branches/51 consumers 1.17 1.07 9.4
3 MIP fictive/radial with 2 lateral branches/6 nodes 1.086 1.005 8.0

The results confirm the advantages of the proposed algorithm compared with the mathematical
programming algorithms. Also, the accuracy of the SMD algorithm was demonstrated in the case of a
real complex EDN, compared with the other two algorithms, which were tested using fictive EDNs,
with simple topologies (radial).

To highlight the effects on the decrease of the current in the neutral conductor (and implicit on the
energy losses) and on improving the voltage quality at the level of each pillar, the steady-state regimes
were calculated, having as input data the load matrices obtained with each algorithm (SDM, MCLA,
PSO, and GA). The average value of the current in the neutral conductor, on the first branch, is shown
in Figure 14, for each algorithm. It can be observed that the smallest value was obtained by applying
the proposed algorithm (2.07 A), with 22.7% better than GA.
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Regarding the energy losses, Table 12 presents the values calculated on the phase and neutral
conductors on the branching and main conductors. The analysis of the results indicates smaller energy
losses in the case of the proposed algorithm compared to the other algorithms, as shown in Table 12
and Figure 15. The energy losses decreased by 0.20%, more than in the case of AG. The difference from
the MCLA algorithm is higher, with 19.01%.

Table 12. Comparison between the energy losses calculated with different algorithms, [kWh].

Algorithm
Main Conductors Branching Conductors

Total
δ∆W
[%]a b c Neutral a b c Neutral

Without 1.13 16.93 3.48 13.34 0.13 0.41 0.03 0.37 35.81 -
SMD (proposed) 4.09 4.34 4.18 0.26 0.15 0.20 0.19 0.36 13.76 61.57

MCLA 4.14 6.23 4.98 4.32 0.33 0.05 0.16 0.36 20.57 42.56
PSO 4.44 4.43 3.77 0.32 0.23 0.17 0.15 0.36 13.86 61.30
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Also, the saving-energy (δ∆W), given in percent, are indicated in Table 12. The calculation relation
is the following:

δ∆W =

∣∣∣∣∣∣∆Winitial − ∆Walgorithm

∆Winitial

∣∣∣∣∣∣ · 100, [%] (17)

where algorithm is SMD, MCLA, PSO, and GA.
The voltage quality was evaluated at the level of the farthest pillar (P95), and the results are

presented in Table 13. The minimum values are highlighted with bold to be easily identified in the
analysis. It can be observed that the phase voltages are between the admissible limits (rated voltage
± 10%, where the rated voltage is 230 V). Small differences between the phase voltages, in the range
[0.13V, 0.36 V], were obtained in the case of the proposed algorithm, with an improvement of value on
phase b of 14.58 V (7.15%). The biggest differences, in the range [5.59 V, 12.9 V], were obtained in the
case of the MCLA algorithm.

Table 13. The minimum value of the phase voltages at the level of the farthest pillar (P95).

Algorithm
Phase

a b c

Without 224.33 204.00 226.71
SMD (proposed) 218.81 218.58 218.94

MCLA 218.90 211.59 224.49
PSO 218.19 219.03 218.55
GA 219.41 217.28 219.07

The detailed results for each algorithm are presented in Tables A2–A5 from Appendix B.

4. Conclusions

In the paper, a PLB algorithm was proposed having the following advantages: It can be
implemented in the EDNs with hybrid structures of the consumption points (switchable and
non-switchable consumers); it can work in both operation modes (real-time and off-line), uploading
information from different databases of the DNO which contain the consumers’ characteristics,
real loads of the consumers integrated into the SMS, and loads from the TLPs for the consumers
non-integrated in the SMS; the convergence is rapid because of the fast recognition of EDN topology
with the help of a structure vectors based-algorithm.

The testing of the algorithm was made in a real rural EDN from the northeastern region of Romania,
having a hybrid structure of the consumption points (114 1-P consumers (70.8%) are integrated into the
SMS with the possibility to have SPLBS, the other consumers having standard meter). The obtained
results were analyzed and compared with other algorithms from the heuristic category (minimum count
of loads adjustment (MCLA) algorithm) and the metaheuristic category (particle swarm optimization
(PSO) and genetic algorithm (AG)).

The best performances were recorded for the proposed algorithm, obtaining the smallest value of
the unbalance coefficient (1.0017), in comparison with MCLA (1.0022) and PSO (1.0021) algorithms.
The same value (1.0017) was also obtained in the case of AG. The average value of the current in
the neutral conductor decreased with 94% from the average value of 34.08 A (initial case) at 2.07 A.
This value is smaller with 22.70% than AG, 42.51% than PSO, and 43.47% than MCLA. The energy
losses decreased with 61.75% compared to the initial case using the data obtained with the proposed
algorithm. This value is smaller by 0.20% than AG, 0.27% than PSO, and 19.01% than MCLA.

The proposed solution can be introduced by the DNOs to ensure the transition toward the smart
grids, but only on the basis of a feasibility analysis, to justify the investment. Also, the DNOs must
take into account that the proposed algorithm cannot have very high efficiency in networks with many
not integrated consumers into the SMS, for which the TLPs must be associated. Within the proposed
algorithm, they belong to the category of non-switchable consumers, so that the number of switching
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options will be limited. The transition process should be mainly implemented in the “hot” areas where
there are EDNs without or with small number of non-switchable consumers, leading to a solution very
close to the optimal solution (in the ideal case, it is equal with 1.00).

The authors work now at an improved variant of the proposed algorithm, which considers the
weight of each switchable consumer at the unbalance degree. The main objective is the determination
of the optimal number of PLBD, which minimizes the unbalance coefficient and the investment costs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/4/549/s1.
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Nomenclature

0 Neutral conductor
1-P Single-phase consumer
3-P Three-phase consumer
EDN Electric distribution network
LV Low voltage
TLP Typical load profile
DNO Distribution network operator
SMS Smart metering system
SMD Smart meter data
PLB Phase load balancing
PLC Power-line communication
SCADA Supervisory control and data acquisition
APLBD Automatic phase load balancing device
SPLBS Smart phase load balancing system
DMCL Decision-making central level
PSO Particle swarm optimization
AG Genetic algorithm
MCLA Minimum count of loads adjustment
H The analyzed time period, [hours]
Bi Vector of the input nodes of branches
Bj Vector of the end nodes of branches
a, b, c The phases of the EDN
abc 3-P consumer in the input data files
{ph} The set of phases {a, b, c}
TV1 Topology vector containing the number of branches from each vicinity level
TV2 Topology vector containing the branches placed in the order of the vicinity levels
SP Supply Point
NC The total number of consumers from the EDN
CP Vector of the connected pillars, size (NC × 1)
PB Vector of the branching phase, size (NC × 1)
CS Vector of the consumption sector of the consumers, size (NC × 1)
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CC Vector of the consumption class of the consumers from a certain consumption sector, size (NC × 1)
INT Vector of the integration mode in the SMS, size (NC × 1)
BS Vector of the PLBD status, size (NC × 1)
IC Vector of the hourly loads for all consumers, size (NC × H)
SN Vector of the serial numbers corresponding the smart meters, size (NC × 1)
r0 Specific resistance, [Ω/km]
x0 Specific reactance, [Ω/km]
UC The unbalance coefficient
Ia, Ib, Ic The currents on the phases a, b, and c, [A]
Iaverage The average value of the phase currents, [A]
h The current hour (h = 1, . . . , H)
Np The number of pillars from the EDN
p The analyzed current pillar (p = 1, . . . , Np)
d Pillar located downstream by pillar p
UC(p),h The unbalance coefficient calculated at the pillar p and hour h
index Vector of the indices corresponding to pillar p in vector CP

Ia
(p),h The current on the phase a, at the pillar p and hour h, [A]

The current on the phase b, at the pillar p and hour h, [A]
Ic

(p),h The current on the phase c, at the pillar p and hour h, [A]
Ia,ns

(p),h The total current of the non-switchable consumers on the phase a, pillar p and hour h, [A]
Ib,ns

(p),h The total current of the non-switchable consumers on the phase b, pillar p and hour h, [A]
Ic,ns

(p),h The total current of the non-switchable consumers on the phase c, pillar p and hour h, [A]
Ia,s

(p),h The total current of the switchable consumers on the phase a, pillar p and hour h, [A]
Ib,s

(p),h The total current of the switchable consumers on the phase b, pillar p and hour h, [A]
Ic,s

(p),h The total current of the switchable consumers on the phase c, pillar p and hour h, [A]
Ia

(d),h The currents on the phase a, pillar d, and hour h, [A]
Ib,s

(d),h The currents on the phase b, pillar d, and hour h, [A]
Ic,s

(d),h The currents on the phase c, pillar d, and hour h, [A]
j Index of the non-switchable consumer connected on the phase a, pillar p, and hour h
k Index of the non-switchable consumer connected on the phase b, pillar p, and hour h
l Index of the non-switchable consumer connected on the phase c, pillar p, and hour h
m Index of the switchable consumer connected on the phase a, pillar p, and hour h
n Index of the switchable consumer connected on the phase b, pillar p, and hour h
o Index of the switchable consumer connected on the phase c, pillar p, and hour h
Na,ns

(p),h The number of the non-switchable consumers connected on the phase a, pillar p, and hour h
Nb,ns

(p),h The number of the non-switchable consumers connected on the phase b, pillar p, and hour h
Nc,ns

(p),h The number of the non-switchable consumers connected on the phase c, pillar p, and hour h
Na,s

(p),h The number of the switchable consumers connected on the phase a, pillar p, and hour h
Nb,s

(p),h The number of the switchable consumers connected on the phase b, pillar p, and hour h
Nc,s

(p),h The number of the switchable consumers connected on the phases c, pillar p, and hour h
NC,ns

(p),h The total number of the non-switchable consumers connected at the pillar p, and hour h
NC,s

(p),h The total number of the switchable consumers connected at the pillar p, and hour h
NC

(p),h The total number of the consumers connected at the pillar p, and hour h
Ia,ns,j

(p),h The current of the non-switchable consumer j (j = 1, . . . , Na,ns
(p),h), [A]

Ib,ns,k
(p),h The current of the non-switchable consumer k (k = 1, . . . , Nb,ns

(p),h), [A]
Ic,ns,l

(p),h The current of the non-switchable consumer l (l = 1, . . . , Nc,ns
(p),h), [A]

Ia,s,m
(p),h The current of the switchable consumer m (m = 1, . . . , Na,s

(p),h), [A]
Ia,s,n

(p),h The current of the switchable consumer n (n = 1, . . . , Nb,s
(p),h), [A]

Ia,s,o
(p),h The current of the switchable consumer o (o = 1, . . . , Nc,s

(p),h), [A]
δ∆W The percentage error, [%]
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Appendix A

Table A1. The allocation on pillar, phase, and the consumption sector.

Pillar
Consumer’

Type
Branching

Phase
Consumption

Sector Pillar
Consumer’

Type
Branching

Phase
Consumption

Sector

1-P 3-P a b c 1 2 3 1-P 3-P a b c 1 2 3

8 2 - - 2 - 1 - - 51 2 - - 1 1 1 - -
9 2 - - 2 - 1 - - 52 3 - - 3 - 1 - -

10 3 - 2 1 - 1 - - 53 1 - - 1 - - 2 -
11 1 - - 1 - 1 - - 54 6 - - - 6 1 - -
12 2 - - 2 - 1 - - 55 2 - 1 1 - 1 - -
13 1 - - 1 - 1 - - 56 2 - - 2 - 1 - -
14 2 - - - 2 1 - - 57 1 - - 1 - 1 - -
15 2 - - 1 1 1 - - 58 1 - 1 - - 1 - -
17 1 1 1 1 1 1 - - 59 2 - - 2 - 1 - -
18 2 - - - 2 1 - - 60 2 - 1 1 - 1 - -
19 2 - 2 - - 1 - - 61 1 - - 1 - 1 - -
20 2 - 2 - - 1 - - 62 1 - - - 1 1 - -
21 1 - 1 - - 1 - - 63 2 - 2 - - 1 - -
22 2 - 1 1 - 1 - - 65 1 - - 1 - 1 - -
23 2 - 2 - - 1 - - 66 4 - 1 3 - 1 - -
24 1 - - - 1 1 - - 67 2 - - 2 - 1 - -
26 2 - - - 2 1 - - 68 2 - - 2 - 1 - -
27 3 - 1 - 2 1 - - 69 2 - 1 1 - 1 - -
28 2 - - 1 1 1 - - 70 1 - - 1 - 1 - -
29 4 - - 1 3 1 - - 71 1 - - 1 - 1 - -
30 2 - - - 2 1 - - 72 1 - - 1 - 1 - -
31 2 - - - 2 1 - - 75 2 - - 2 - 1 - -
32 1 - - - 1 1 - - 76 2 - - 2 - 1 - -
33 4 - - - 4 1 - - 77 2 - 1 1 - 1 - -
34 5 - - - 5 1 - - 78 4 - 1 3 - 1 - -
35 4 - 1 1 2 1 - - 79 1 1 1 2 1 1 - -
36 1 - - 1 - 1 - - 80 2 - 2 - 1 - -
37 3 - - - 3 1 - - 82 2 - - 2 - 1 - -
38 1 - - - 1 1 - - 83 1 - 1 - - 1 - -
39 4 - - 1 3 1 - - 84 2 - - 2 - 1 - -
40 3 - - - 3 1 - - 86 1 - - 1 - 1 - -
41 1 - - - 1 1 - - 87 2 - - 2 - 1 - -
42 1 - - - 1 1 - - 88 1 - - 1 - 1 - -
43 2 - - - 2 1 - - 89 2 - - 2 - 1 - -
44 2 - - 1 1 1 - - 90 1 - - 1 - 1 - -
45 4 - - - 4 1 - - 91 2 - - 2 - 1 - -
46 2 - - - 2 1 - - 92 1 - - 1 - 1 - -
47 3 - 1 2 - 1 - - 93 2 - - 2 - 1 - -
48 3 - 1 2 - 1 2 - 94 1 - 1 - - 1 - -
49 2 - - 2 - 1 - - 95 1 - - 1 - 1 - -
50 1 - - - 1 1 - -
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Appendix B

Table A2. Comparison between the hourly UC calculated with different algorithms at the SP level.

Hour Without SMD (Proposed) MCLA PSO GA

1 1.2949 1.0000 1.0001 1.0017 1.0010
2 1.2965 1.0000 1.0005 1.0023 1.0009
3 1.2923 1.0000 1.0007 1.0024 1.0007
4 1.3016 1.0000 1.0012 1.0026 1.0011
5 1.2837 1.0000 1.0010 1.0029 1.0007
6 1.2265 1.0006 1.0005 1.0023 1.0003
7 1.1840 1.0042 1.0017 1.0010 1.0027
8 1.1700 1.0070 1.0042 1.0021 1.0046
9 1.2036 1.0050 1.0040 1.0004 1.0017

10 1.2630 1.0003 1.0022 1.0007 1.0000
11 1.3041 1.0000 1.0039 1.0018 1.0007
12 1.3339 1.0002 1.0031 1.0029 1.0019
13 1.3485 1.0003 1.0026 1.0040 1.0028
14 1.3209 1.0001 1.0028 1.0028 1.0016
15 1.3313 1.0001 1.0027 1.0031 1.0023
16 1.3078 1.0001 1.0012 1.0030 1.0013
17 1.3198 1.0001 1.0025 1.0030 1.0021
18 1.2881 1.0001 1.0018 1.0010 1.0006
19 1.2344 1.0025 1.0011 1.0001 1.0003
20 1.1843 1.0049 1.0029 1.0025 1.0032
21 1.1691 1.0070 1.0040 1.0053 1.0058
22 1.1867 1.0051 1.0031 1.0028 1.0032
23 1.2241 1.0024 1.0021 1.0007 1.0008
24 1.2562 1.0004 1.0005 1.0008 1.0001

Table A3. Comparison between the hourly neutral currents calculated with different algorithms,
the first branch (SP-Pillar 8).

Hour Without SMD (Proposed) MCLA PSO GA

1 31.84 0.30 0.56 2.42 1.87
2 30.49 0.24 1.23 2.68 1.72
3 28.58 0.19 1.40 2.60 1.42
4 29.20 0.36 1.81 2.71 1.74
5 28.43 0.21 1.67 2.85 1.39
6 22.15 1.14 1.06 2.21 0.87
7 23.59 3.58 2.27 1.75 2.85
8 24.97 5.06 3.90 2.79 4.10
9 29.18 4.59 4.07 1.34 2.66

10 33.83 1.10 3.11 1.70 0.30
11 40.52 0.22 4.57 3.07 1.98
12 39.28 0.91 3.78 3.67 2.92
13 42.20 1.26 3.67 4.49 3.80
14 40.18 0.77 3.73 3.76 2.85
15 41.18 0.76 3.68 3.98 3.39
16 35.84 0.68 2.19 3.52 2.34
17 40.77 0.64 3.59 3.96 3.33
18 43.34 0.63 3.39 2.58 1.89
19 36.19 3.72 2.49 0.74 1.37
20 29.41 4.79 3.68 3.39 3.90
21 32.43 6.61 4.97 5.71 6.03
22 39.04 6.46 5.02 4.75 5.12
23 41.72 4.29 3.99 2.30 2.44
24 33.45 1.24 1.53 1.90 0.79
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Table A4. Comparison between the hourly power losses calculated with different algorithms, [kWh].

Hour
SMD (Proposed) MCLA PSO GA

a b c a b c a b c a b c

1 0.40 0.03 0.43 0.60 0.03 0.63 0.40 0.03 0.43 0.43 1.68 2.11
2 0.36 0.03 0.39 0.54 0.03 0.57 0.37 0.03 0.39 0.39 1.52 1.91
3 0.32 0.02 0.35 0.48 0.02 0.50 0.33 0.02 0.35 0.35 1.35 1.70
4 0.33 0.02 0.35 0.48 0.02 0.50 0.33 0.02 0.36 0.35 1.36 1.71
5 0.33 0.02 0.35 0.49 0.02 0.51 0.33 0.02 0.36 0.35 1.38 1.73
6 0.25 0.01 0.26 0.40 0.01 0.41 0.25 0.01 0.26 0.26 1.08 1.35
7 0.35 0.02 0.37 0.55 0.02 0.57 0.35 0.02 0.37 0.37 1.51 1.88
8 0.43 0.03 0.45 0.67 0.03 0.70 0.42 0.03 0.45 0.45 1.85 2.30
9 0.48 0.03 0.52 0.74 0.03 0.77 0.48 0.03 0.51 0.52 2.06 2.58
10 0.50 0.04 0.54 0.75 0.04 0.78 0.51 0.04 0.54 0.54 2.11 2.64
11 0.63 0.05 0.68 0.91 0.05 0.96 0.64 0.05 0.69 0.68 2.59 3.27
12 0.54 0.05 0.59 0.83 0.05 0.88 0.55 0.05 0.60 0.59 2.35 2.94
13 0.60 0.06 0.66 0.92 0.06 0.97 0.61 0.06 0.67 0.66 2.60 3.25
14 0.59 0.05 0.64 0.84 0.05 0.89 0.60 0.05 0.64 0.64 2.42 3.05
15 0.60 0.05 0.65 0.86 0.05 0.91 0.61 0.05 0.66 0.65 2.46 3.11
16 0.49 0.04 0.52 0.71 0.04 0.75 0.49 0.04 0.53 0.52 2.02 2.55
17 0.61 0.05 0.66 0.87 0.05 0.92 0.62 0.05 0.67 0.66 2.50 3.16
18 0.76 0.06 0.82 1.12 0.06 1.18 0.77 0.06 0.82 0.82 3.18 3.99
19 0.65 0.04 0.69 1.01 0.04 1.05 0.65 0.04 0.69 0.69 2.79 3.48
20 0.55 0.03 0.58 0.89 0.03 0.92 0.55 0.03 0.58 0.58 2.42 3.00
21 0.73 0.04 0.78 1.15 0.04 1.19 0.73 0.04 0.77 0.78 3.16 3.94
22 0.96 0.05 1.01 1.58 0.05 1.64 0.96 0.05 1.01 1.01 4.29 5.31
23 0.91 0.05 0.96 1.48 0.05 1.53 0.91 0.05 0.96 0.96 4.02 4.98
24 0.51 0.03 0.54 0.80 0.03 0.83 0.51 0.03 0.54 0.54 2.20 2.73

Table A5. Comparison between the hourly phase voltages calculated with different algorithms, at the
level of the farthest pillar P95, [V].

Hour
SMD (Proposed) MCLA PSO GA

a b c a b c a b c a b c

1 223.25 222.85 222.25 223.28 219.05 225.96 222.50 222.46 223.38 223.81 221.64 222.90
2 223.62 222.55 223.27 223.55 219.75 226.08 222.87 222.78 223.78 224.12 222.13 223.18
3 224.01 222.94 223.69 223.91 220.40 226.29 223.28 223.20 224.17 224.45 222.65 223.54
4 223.29 223.60 223.67 223.79 220.47 226.25 223.20 223.17 224.18 224.47 222.60 223.47
5 223.33 223.55 223.59 223.82 220.35 226.26 223.30 223.07 224.10 224.35 222.57 223.55
6 224.24 224.12 224.45 224.80 221.03 226.94 224.38 223.89 224.55 224.75 223.43 224.63
7 223.33 223.16 223.14 223.26 219.58 226.72 223.09 223.16 223.38 223.64 222.57 223.42
8 221.59 223.17 222.75 222.20 218.58 226.65 222.23 222.67 222.60 222.95 221.91 222.65
9 221.36 222.83 221.88 221.84 218.08 226.07 221.69 222.03 222.35 222.69 221.29 222.08
10 222.22 221.81 221.69 221.95 218.13 225.57 221.54 221.62 222.55 222.90 220.91 221.90
11 220.73 221.02 221.25 220.94 217.16 224.83 220.43 220.62 221.95 222.37 219.82 220.81
12 221.37 221.86 221.91 223.84 216.11 225.09 221.04 221.36 222.74 223.15 220.59 221.39
13 222.15 220.28 221.45 223.49 215.53 224.75 220.57 220.86 222.45 222.89 220.05 220.93
14 220.97 221.41 221.57 221.44 217.53 224.91 220.80 220.86 222.29 222.72 220.05 221.18
15 221.95 220.37 221.35 221.37 217.39 224.85 220.71 220.76 222.20 222.70 219.83 221.14
16 221.78 222.27 222.22 222.47 218.35 225.39 221.77 221.59 222.89 223.26 220.89 222.11
17 221.85 220.34 221.23 221.31 217.20 224.85 220.73 220.63 222.06 222.56 219.66 221.19
18 220.60 219.18 220.24 220.17 215.27 224.49 219.58 219.62 220.82 221.41 218.47 220.14
19 220.78 220.07 221.17 220.96 215.62 225.34 220.40 220.60 221.03 221.63 219.37 221.01
20 222.07 220.89 221.23 221.49 216.34 226.24 221.15 221.66 221.38 221.99 220.40 221.80
21 220.83 218.92 220.42 221.29 214.22 224.53 219.60 220.66 219.91 220.66 219.12 220.39
22 219.25 218.58 218.94 218.90 211.59 225.06 218.19 219.03 218.55 219.41 217.28 219.07
23 218.81 218.91 218.98 219.75 212.05 224.71 218.55 219.04 219.11 219.98 217.33 219.38
24 222.11 221.24 222.09 222.58 217.10 225.67 221.60 221.57 222.27 222.74 220.64 222.06
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A B S T R A C T   

This paper presents the performances of a new passive anti-islanding protection with minimal switching losses 
for three-phase grid-connected photovoltaic power systems. The novelty of the proposed strategy consists of five 
conventional passive relays, which are as follows: over/under current, over/under voltage, over/under fre-
quency, rate of change of frequency, and dc-link voltage-based anti-islanding methods. Integrating these methods 
in a synergistic way reduces the limitations of each method, while combining the strengths and benefits of each 
method in islanding detection. As such, the dc-link voltage-based method consists in supervising the dc-link 
voltage in voltage source converters to reduce the voltage stress and increase performance. The performance 
in islanding prevention is determined by the detection time of islanding operation mode. The proposed anti- 
islanding protection was simulated under complete disconnection of the photovoltaic inverter from the elec-
trical power system, as well as under grid faults as required by new grid codes.   

1. Introduction 

For suitable performance, the grid-connected photovoltaic (PV) 
power systems designs should consider the behavior of the electrical 
networks. Because the distributed energy resources (DERs) are 
increasing, their behavior must become more interactive [1]. The PV 
inverters design is influenced by the grid requirements, including the 
anti-islanding requirement which is the most challenging [2,3]. Devel-
oping sensitive and reliable anti-islanding prevention methods is vital to 
support the integration of DERs into the electrical networks and smart 
grids (SGs) and avoid unnecessary tripping of DERs [3]. 

Islanding or loss of grid or loss-of-mains [3] happens when a portion 
of the electric power system (EPS) that contains both loads and DERs 
remains energized while separated from the rest of the EPS [4]. Also, 
according to [5], an island is a portion of an EPS area energized just by 
one or several local DERs via the corresponding point of common 
coupling (PCC) whereas that portion of an EPS area is separated elec-
trically from the rest of the EPS area [6]. 

1.1. Motivation and incitement 

Islanding for PV systems appears when the utility grid is discon-
nected and the PV inverter continues to operate with local loads during 
the utility outage [2,6]. The islanding operation can be unintentional or 
intentional [5,6,7]. An intentional islanding operation is planned 
whereas an unintentional islanding operation is unplanned [5]. An un-
intentional islanding operation can take place when a portion of the EPS 
area is separated accidentally from the rest of the EPS area and the DERs 
continue to supply power [5]. 

The difference between controlled and uncontrolled islanding 
operation mode must be made. Also, it is necessary to distinguish be-
tween short-time islanding operation mode and sustained or long-time 
islanding operation mode [8]. Islanding operation is desired if the PV 
distributed power generation systems (DPGSs) are present, and the 
service of local customers must be provided even without grid connec-
tion. Undesired islanding represents a danger to network maintenance 
personnel [2,8]. 

According to the grid codes, the DERs are required to quickly detect 
the unintentional islanding and immediately disconnect the grid in 
maximum two seconds (s) [2,6,9,10]. This rule should be applied to all 
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DPGSs with PVs [4]. After disconnecting the embedded generator, in 
some scenarios it can keep supplying the local connected loads or 
eventually a small part of the power grid determined by grid topology 
and its capacity [3]. 

One of the greatest challenging issues of DERs protection is the 
islanding detection sensitivity, which keeps the system stable to fre-
quency excursions and external faults. To achieve the islanding pro-
tection in specific circumstances, i.e., failure to form a stable island, can 
be enough to use a combination of over/under voltage (OUV) and over/ 
under frequency (OUF) protections [3]. 

As the PV systems become more competitive, reliable islanding 
detection becomes of utmost importance. New islanding detection so-
lutions are required since the limitations of the existing techniques can 
finally put a barrier to the DERs integration into the energy networks 
[3]. To scale down the cost and to make the PV systems more efficient, 
the PV inverters must contain effective and reliable anti-islanding al-
gorithms [11]. 

1.2. Literature review 

In view of the inverter-resident detection [2,7,12], the anti-islanding 
techniques can be passive [13], active [14], and hybrid methods 
[15,16]. The passive methods are based on monitoring the parameters of 
the electric network which usually changes under islanding operation 
mode (frequency, phase, amplitude, P, Q, or harmonics). Therefore, the 
passive islanding methods imply the use of controls or relays to avoid the 
unintentional islanding [5]. 

The active methods [15,17], which are not widely utilized in the 
present because of power quality issues [3], are based on small distur-
bances in the PCC to produce a detectable change in system parameters 
by the passive anti-islanding methods [2]. More innovative anti- 
islanding methods were reported, especially active techniques based 
on frequency and voltage drift, grid impedance estimation, and phase- 
locked loop (PLL) [2]. There are also artificial intelligence techniques 

like [18,19], and [20], hybrid anti-islanding methods like [15,21], and 
[22], anti-islanding methods for distributed generations (DGs) [23,24] 
or anti-islanding methods for PV-based microgrids (MGs) [25,26]. 

Standard low-cost methods for islanding detection, such as OUV and 
OUF protection relays protect the consumers equipment and serve as 
passive inverter-resident anti-islanding methods [27,28]. These 
methods can be software procedures implemented in the PV inverter. 
The OUF protection disconnects the grid-connected PV inverters if the 
frequency at the PCC between the grid and the customer is outside the 
set boundaries [27]. The OUF thresholds for disconnection of DERs and 
PV power systems from the grid are defined by the IEEE Std 1547–2003 
[6]. The most widely used passive anti-islanding method for DERs is the 
rate of change of frequency (ROCOF), which is based on the local voltage 
waveform monitoring of the PV inverters [3]. 

Reference [29] presents an analysis on several passive anti-islanding 
protections in various islanding scenarios for PV systems [30], in which 
it was revealed that the dc-link voltage rises significantly during 
islanding operation and transient grid faults [29]. The rise detection can 
be implemented in the PV power inverters controls. Results in an elegant 
solution for islanding prevention realized in the inverter control by su-
pervising the dc-link voltage. Then, the dc-link voltage-based method is 
implemented, analyzed, and compared with OUF and ROCOF relays in 
different islanding scenarios in [30]. The dc-link voltage-based method 
has also been used in a hybrid anti-islanding detection method to trigger 
multiple PV inverters in [15]. 

1.3. Contribution and paper organization 

The scope of the paper is to improve the anti-islanding protection 
into the large three-phase grid-connected PV power systems focusing on 
islanding detection time. 

The paper aims to devise, test, and analyze a passive solution of anti- 
islanding protection strategy for three-phase grid connected PV power 
systems. 

Nomenclature 

Abbreviations/Acronyms 
ac Alternating Current 
dc Direct Current 
DERs Distributed Energy Resources 
DG Distributed Generation 
DPGSs Distributed Power Generation Systems 
DSO Distribution System Operator 
EPS Electric Power System 
FDZ Fault Detection Zone 
FRT Fault-Ride Through 
LVRT Low Voltage Ride-Through 
MPPT Maximum Power Point Tracking 
NDZ Non-Detection Zone 
OC Overcurrent Protection 
OF Over Frequency Protection 
OUC Over/Under Current Protection 
OUF Over/Under Frequency Protection 
OUV Over/Under Voltage Protection 
OV Overvoltage Protection 
PCC Point of Common Coupling 
PLL Phase-Locked Loop 
PV Photovoltaic 
PWM Pulse Width Modulation 
RMS Root Mean Square 
ROCOF Rate of Change of Frequency Protection 
s seconds 

STCs Standard Test Conditions 
THD Total Harmonic Distortion 
TSO Transmission System Operator 
UC Undercurrent Protection 
UF Under Frequency Protection 
UV Undervoltage Protection 
VSC Voltage Source Converter 

Variable/Parameter 
f Frequency 
fn Grid frequency 
Ia, Ib, Ic Normalized three-phase primary grid currents 
P Active power 
Pn Nominal power 
Q Reactive power 
t Time 
V Voltage 
Va, Vb, Vc Normalized three-phase primary grid voltages 
Vm Grid phase voltage amplitude 
L Inductor of the LC grid filter 
Cdc DC-link capacitor (two in series) 
L1 Boost inductor 
fsw Switching frequency boost converter 
ω Angular frequency 
Vdc dc-link voltage 
Vdc_ref Reference dc-link voltage 
Vnom_dc Nominal dc bus voltage 
Vdc_m Measured dc-link voltage  
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The objective of the paper is to create a new passive anti-islanding 
strategy for large three-phase grid-connected PV systems. 

The previous studies with passive methods in real power grid systems 
are rare and not sufficient. Therefore, it is necessary strong research to 
investigate the impact of passive methods when they are applied to large 
three-phase grid-connected PV systems to give a clear idea for the 
network problems and to eliminate the islanding situation in the system. 
And in this time, the given solutions are the passive methods [31,32]. 
The main drawback of passive methods is large NDZ which results in 
failure to detect islanding and wrong detection, whereas the discon-
nection happens basically from their values. The main drawback of 
active and hybrid filters is disturbing the power quality. A solution to 
avoid these problems can be to add another kind of anti-islanding 
detection methods in parallel with them. 

Passive methods have certain specifications which are not similar to 
other kinds of islanding detection methods, like active methods, hybrid 
filters, artificial intelligence methods, and others. These specifications 
are why passive methods are always present even if other active 
methods are used or not. There is the choice to add or remove active 
methods, but there is no such option for passive methods. The passive 
methods are always present in any grid-connected system. It is therefore 
essential and very necessary to carry out in-depth research with passive 
methods to choose the appropriate or convenient strategy. 

This paper presents improvements to previous works [29,30]. The 
main contribution of this paper compared to [29] and [30] is the 
introduction of a detailed anti-islanding protection with all studied 
passive relays which combine the advantages of each method in 
islanding detection. The results are presented more clearly in parallel for 
all relays to confirm the performance and efficiency of the proposed 
method. In [29] and [30] the passive methods are independently stud-
ied. The advantage of the proposed strategy with respect to the [29], and 
[30] is combining the studied passive methods synergistically in a single 
anti-islanding strategy. 

The main contribution and novelty of the proposed anti-islanding 
strategy consists of combining five well-known passive protection 
methods to cover most of the islanding detection possibilities. That 
made it a novel and improved strategy studied under different condi-
tions and scenarios to show its performance and limitations. 

Currently, due to the fault ride-through (FRT) requirements of the 
new grid codes imposed on the anti-islanding methods of the PV power 
systems, they cannot disconnect from the power grid under certain 
circumstances because of supportability and stability issues. Therefore, 
the performance of the proposed anti-islanding protection under FRT 
operation is considered. 

This paper introduces a new passive anti-islanding protection 
method with reduced voltage stress for three-phase grid-connected PV 
power systems based on various conventional passive methods from 
literature. All analyzed methods are individually modeled and validated 
in the MATLAB and Simulink environment. The focus of the paper is on 
the performance of the grid-connected PV systems under islanding 
operation which occurs between the PCC and the rest of the EPS under 
various grid faults required by current grid codes [10]. The proposed 
method is justified by the introduction of a simple, reliable, and very fast 
method for detection of the islanding operating mode of PV systems in a 
short time and without power quality concerns. 

Finally, to justify the efficiency of the suggested method, a 100-kW 
three-phase grid-connected PV system equipped with different conven-
tional passive anti-islanding methods like over/under current (OUC), 
OUV, OUF, ROCOF, and dc-link voltage-based method is simulated in 
different islanding conditions and the reaction times for all these 
methods are measured through the simulation and compared. The 
considered scenarios evaluate the performances of the proposed anti- 
islanding protection for grid-connected PV power systems in case of 
analysis depending on islanding detection time. The paper shows under 
which islanding conditions the suggested anti-islanding protection is the 
most effective, including the FRT requirements. The data/dataset files 

related to the paper are available on IEEE DataPort [33]. 
The main contribution of the paper is analyzing the performances of 

a passive anti-islanding strategy for PV systems considering islanding 
detection times and the behavior of frequency, ROCOF, and DC-Link 
voltage-based method under islanding operation mode. Moreover, the 
analysis of non-detection zone (NDZ) and fault detection zone (FDZ) and 
the performance under grid faults and no islanding conditions and FRT 
operation are also studied. The proposed strategy is tested and analyzed 
in different conditions and islanding scenarios. The impact of the pro-
posed anti-islanding detection strategy on the power quality in terms of 
total harmonic distortion (THD) is also given. 

The drawbacks and gaps in the literature are the lack of a complete 
passive anti-islanding strategy with more methods working together. 
The proposed strategy aims at filling these gaps by combining more 
passive methods to cover most of the possibilities of developing new 
passive anti-islanding strategies. 

The paper is organized as follows. First Section of the paper reviews 
various passive anti-islanding methods for DERs and PV systems. The 
grid-connected PV power system and the suggested passive anti- 
islanding protection are described in Section 2. Section 3 presents and 
discusses the results of islanding operation mode detected by the pro-
posed anti-islanding protection with analyzed methods concerning the 
islanding detection times in each case and scenario. Finally, the con-
clusions are presented in the last Section of the paper. 

2. Materials and methods 

This section presents the simulation setup which comprises the grid- 
connected PV power system and its proposed passive anti-islanding 
protection, including the model parameters and simulation data 
collection methodology. To replicate the work, the simulation model is 
available open access at [33]. 

2.1. Grid-Connected PV power system 

The detailed Simulink model [33] of the 100-kW three-phase grid- 
connected PV power system used in the simulations is presented in Fig. 1 
[34]. The simulation model was developed based on [35]. The PV sys-
tem includes the anti-islanding relay protection on the 20 kV bus. The 
PV solar array, formed by 330 SunPower modules [36] generates in 
standard test conditions (STCs) of 1000 W/m2 solar irradiance, 25◦ solar 
cell temperature, 1.5 air mass, and ASTM G173-03 standard spectrum of 
solar insolation a maximum power of 100.7 kW and 273.5 V, while at 
250 W/m2 provides 22.6 kW and 252.4 V [29,30]. The characteristics of 
PV modules are taken from NREL System Advisor Model [35,36]. 
Manufacturer specifications for one PV module measured under STCs 
are given in [29]. 

The 100-kW PV Array is connected to a standard 20-kV utility grid 
(20-kV distribution feeder and 110-kV equivalent transmission systems) 
with the main frequency of 50 Hz through a 100-kVA 260 V/20 kV three- 
phase coupling transformer via a two-stage PV inverter with a 5 kHz dc- 
dc step-up (boost) power converter and a 2 kHz three-phase three-level 
voltage source converter (VSC). The dc-dc step-up converter increases 
the dc voltage to 500 V from 272 V PV maximum natural voltage. The 
Maximum Power Point Tracking (MPPT) control system controls the dc- 
dc boost converter [30] using a variant subsystem, as in [37], with in-
cremental conductance MPPT algorithm, as described in [38] which 
automatically changes and optimizes the switching duty cycle of the 
power converter to extract maximum available power and generate the 
required voltage [29]. The boost converter independently controls the 
MPPT and the VSC controls the dc-link voltage for the power grid 
connection [39]. 

The three-phase PV inverter sets the dc-link voltage at 500 V [35]. 
The three-phase three-level VSC converter converts from 500 Vdc to 260 
Vac while maintaining unity power factor [35]. The VSC filter which 
contains the 25 µH inductor L and the 10-kvar capacitor bank C filters 
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the harmonics produced by the PV inverter [29,35]. The system pa-
rameters are listed in Table 1 [33,40]. 

2.2. Proposed passive anti-Islanding protection 

The implemented passive anti-islanding protection is given in Fig. 2. 
The investigated anti-islanding methods are triggered only once during 
simulation. The trip signals are not connected to the three-phase circuit 
breaker on the 20 kV side of the PCC of the grid-connected PV system to 
activate as many as possible relays and compare their islanding detec-
tion times. 

The conventional over/under current, voltage, frequency, ROCOF, 
and dc-link voltage-based anti-islanding methods used in the proposed 
method are presented in the next sections. 

2.2.1. Current, Voltage, and frequency relays 
The conventional OUC, OUV, and OUF relays for anti-islanding 

protection of grid-connected PV systems are depicted in Figs. 3 – 5. 
These relays operate on the same principle by measuring the three-phase 
current, three-phase voltage, or the system frequency parameters and 
comparing them with some thresholds. The minimum and maximum 
current and voltage thresholds blocks in Fig. 3 and Fig. 4 output either 
the minimum or the maximum elements of the inputs. The models 
shown in these Figs. work very fast in real-time [29]. 

The OUF protection continuously checks the frequency in the PV 
inverter and compares its value with certain default thresholds [29]. The 
frequency is measured using the PLL [29,30]. The input vector of the 
discrete three-phase PLL block contains the Va, Vb, and Vc normalized 
three-phase primary grid voltages and the output represents the esti-
mated frequency (Hz) f = ω/(2π). 

2.2.2. ROCOF relay 
The ROCOF method is presented in Fig. 6. The ROCOF protection 

from [29] and [41] measures the frequency and terminal voltage pa-
rameters in the PV inverter. In this work, the ROCOF protection mea-
sures only the frequency parameter of the PV inverter to calculate the 
discrete derivative ROCOF which is compared with a ROCOF threshold. 
In this paper, the ROCOF threshold is set at 12 Hz/s. The ROCOF relay is 
activated when the ROCOF threshold is exceeded and the PV inverter 

Fig. 1. 100-kW Grid-Connected PV Power System.  

Table 1 
Parameters of the 100-kW double-stage three-phase PV system.  

Parameter Symbol Value 

Nominal power Pn 100 kW 
Grid phase voltage amplitude Vm 20 kV 
Grid frequency fn 50 Hz 
Inductor of the LC grid filter| L 250 µH 
DC-link capacitor (two in series) Cdc 24 mF 
Boost inductor L1 5 mH 
Switching frequency boost converter fsw 5 kHz  

Fig. 2. Suggested Passive anti-Islanding Protection for PV Systems.  

Ia,b,c

Over/Under Current
Relay Signals

Calculate
Discrete RMS Values

Calculate Minimum and 
Maximum Values

Compare to Over/Under 
Current Thresholds

Relays Delay

Fig. 3. Over/under current protection.  
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disconnects the utility grid [30]. 

2.2.3. DC-Link Voltage-Based method 
The DC-Link Voltage-Based method consists in supervising the dc- 

link voltage of the grid converters, which rises significantly during 

islanding operation mode [30] and transient grid faults [30,40], as 
shown in [29]. The rise detection of dc-link voltage can be realized in the 
main control of the VSC converter of the three-phase PV power inverters 
[30]. 

The dc-link voltage-based anti-islanding protection is shown in 
Fig. 7. The operating principle of the dc-link voltage-based anti- 
islanding techniques is very simple and easy to implement. The dc- 
link voltage-based method has a dc-link voltage Vdc input, which is the 
output voltage of the dc-dc boost converter. If the dc-link voltage trip 
threshold is exceeded, then the method is activated [30]. 

The dc-link voltage, Vdc_m is estimated by the VSC main controller of 
the PV system. The reference dc-link voltage Vdc_ref is set at 500 V, which 
is the nominal dc bus voltage Vnom_dc. The optimal trip threshold of the 
dc-link voltage-based method was set at 10 % of normal dc-link voltage 
Vnom_dc based on experiments and justified by operating with a low dc- 
link voltage to reduce the power converter switching losses, as stated 
in [42]. After several simulations, it was observed that the islanding 
detection time increases in direct proportion to the increasing the dc- 
link voltage threshold [30]. 

Other advantages of the protection scheme from Fig. 3 to Fig. 7 are 
the introduction of operating principles and detailed implementation of 
these basic passive methods from literature used synergistically in the 
proposed strategy to facilitate de anti-islanding protection into the PV 
power system. 

The proposed anti-islanding protection is a combination of all pre-
viously presented passive anti-islanding relays, where the dc-link 
voltage-based method detects the islanding mode in all conditions 
with reduced switch voltage stress and without affecting the electric 
power quality, as is detailed in the following results in next section. 

2.3. Data collection methodology 

This section presents how the simulation data was generated from 
the used model to determine the performances of the proposed method 
under certain islanding conditions. 

The 100-kW grid-connected PV system from Fig. 1, equipped with 
the proposed passive anti-islanding protection was simulated in MAT-
LAB and Simulink environment during 0.4 s at 1000 W/m2 irradiance 
level and 25 ◦C in various islanding scenarios. Dynamic simulation cases 
involve opening the three-phase circuit breaker (see Fig. 1) on the 110 
kV grid side, which led to an islanding condition, and different grid 
faults (short-circuits) appearing at 5 km away from the PCC of the PV 
system [34]. The islanding operation mode takes place when the circuit 
breaker on the 110 kV grid side is opened at the time (t) = 0.1 s. The 
circuit breaker disconnects the power grid from the rest of EPS during 
150 ms, where the locally produced power was lower than the local 

Fig. 4. Over/under voltage protection.  

Fig. 5. Over/under frequency protection.  

Fig. 6. ROCOF protection.  

Fig. 7. DC-link voltage-based anti-islanding method.  
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connected loads. 
An encoder was used to measure the trip status and trip time of each 

relay of the proposed strategy. The obtained results were achieved by 
recording independently the relays status and time detection of island-
ing operation for each relay of the proposed passive anti-islanding 
protection in each studied case (islanding operation, grid faults and no 
islanding condition, and FRT operation). 

The implemented grid-connected PV system and all proposed models 
are independently validated in MATLAB/Simulink and can be used to 
verify the results in software based simulations and hardware in the loop 
simulations. 

3. Results of islanding operation mode and discussion 

The results under these islanding scenarios which includes the per-
formances of the proposed anti-islanding protection under various load 
scenarios and the detection times of islanding methods are presented 
and assessed in the following sections. The islanding mode results in 
perturbations of the currents, voltages, power, and frequency of the 
electrical network. After the islanding operation mode or three-phase 
grid faults, the current increases, voltage decreases, and frequency 
shifts. The islanding detection times of analyzed cases are presented in 
Fig. 8 and Fig. 11, respectively. 

3.1. Studied islanding operation cases 

The three studied islanding cases are: (i) the islanding operation 
mode because of the opening of the three-phase circuit breaker on 110- 
kV grid side, (ii) grid faults and no islanding condition, and (iii) 
islanding mode under FRT operation. 

3.1.1. Test case 1: Opening the Three-Phase circuit breaker 
The detection times of the proposed passive anti-islanding strategy in 

case 1 are compared next. 

3.1.1.1. Islanding detection times of the proposed strategy. Fig. 8 depicts 
graphically the islanding detection times (ms) of all methods discussed 
in this paper for the test case 1 in all considered scenarios. The perfor-
mance of the dc-link voltage-based method is emphasized by comparing 
favorably its islanding detection time with those of all studied methods. 
As can be noted from Fig. 8, during islanding mode the undervoltage 

(UV), overcurrent (OC), dc-link voltage-based, ROCOF, under frequency 
(UF), and over frequency (OF) protections are activated in the same 
order in all analyzed scenarios. 

Comparing the islanding detection time performance of the analyzed 
anti-islanding methods, the fastest protection was the undervoltage 
method. The longest islanding detection time was obtained by the fre-
quency relays. The scenario with the smallest detection times is the local 
load greater than the local PV power generation (scenario 1). The under- 
frequency protection is activated only in this scenario. The over- 
frequency protection is activated in scenarios 1 and 2. The OUF pro-
tection has the preset thresholds limits imposed by the grid codes, 
resulting in late detection of the islanding operation mode of PV systems. 
The overvoltage protections did not detect the islanding operation mode 
in this islanding case. 

3.1.1.2. Behavior of frequency and ROCOF under islanding. Fig. 9 depicts 
the frequency and ROCOF (df/dt) variations during islanding operation 
mode of the grid-connected PV system [30]. From Fig. 9 it can be 
observed the effect of islanding mode on the frequency of PV systems. 
During islanding operation mode, the frequency decreases quickly. Fast 
change in frequency involves a noticeable variation of ROCOF [30]. As 
can be seen from Fig. 9, the optimal value of the ROCOF threshold limit 
which is exceeded after the islanding mode is 12 Hz/s [29]. The minus 
sign indicates a decrease in grid frequency [30]. 

3.1.1.3. Behavior of DC-Link voltage under islanding. A direct compari-
son between the dc-link voltage and frequency for resistive loads is 
illustrated in Fig. 10 [30]. The dc-link voltage variation is detected faster 
than frequency variation due to the fact that it has a larger slope and 
range during islanding operation [30]. 

3.1.1.4. Performance of DC-Link Voltage-Based method during islanding 
scenarios. As shown in Fig. 10, the dc-voltage rises significantly in 
islanding operation mode without dc-link voltage-based protection in all 
three scenarios and implicitly the power losses on the switching devices 
of the PV inverter are significantly increased [43]. Thus, with dc-link 
voltage-based anti-islanding method activated in 14.6 – 23.2 ms, as 
shown in Fig. 8, the overall reliability of the PV power system is 
improved [43] by dc voltage level limitation to keep the switching losses 
down [42], which results in a lower mean junction temperature [43] and 
operating with the reference for the controlled dc-link voltage at 10 % 

Fig. 8. Detection times of the analyzed anti-islanding methods in case study 1.  
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higher than the natural dc-link voltage [42] (which means that the dc- 
link voltage threshold is equal to 550 Vdc). 

Fig. 9 and Fig. 10 provide with respect to the anti-islanding protec-
tion the information concerning the effect of islanding mode on the 
behavior of frequency, ROCOF and DC-Link voltage-based methods, and 
respectively the effect of islanding mode on the variation given by the 
studied methods to know if the passive methods can detect these 
changes in terms of islanding detection time. As can be noted from those 
figures, it can be concluded that the studied methods perform very well 
under islanding mode. 

3.1.2. Test case 2: Performances under grid faults (No Islanding) 
This test case presents the performance of the proposed anti- 

islanding protection under grid faults with no islanding scenario. 
A number of grid faults such as three-phase-to-ground faults, phase- 

to-phase and phase-to-phase-to-ground faults, and single-phase-to- 
ground faults lasting for 150 ms have been simulated in the 20-kV 
power grid of the PV system at 5 km away from the PCC at the time 

(t) = 0.1 s [40,34]. The results are depicted in Fig. 11. During grid faults 
and no islanding scenario more anti-islanding relays detect an abnormal 
situation, as shown in Fig. 11. 

3.1.3. Test case 3: Islanding detection times during grid faults (FRT 
Operation) 

This islanding test case presents the performance of the proposed 
anti-islanding protection under FRT operation. Therefore, in this test 
case the three-phase circuit breaker on the 110 kV grid side is simulated 
in an open position with grid faults. 

The comparison of islanding detection times in test case 3 under 
islanding operation and different short-circuit grid faults are depicted in 
Fig. 12. The best performances have also been obtained by the over-
current and undervoltage protections, as observed in the first test case. 
The overvoltage protection is activated in phase-to-phase-to-ground and 
three-phase-to-ground faults scenarios. The longest detection time was 
obtained by the under frequency relay. The undercurrent (UC) and OF 
protection did not detect the islanding mode in FRT operation. 

Fig. 9. Frequency and its ROCOF in PCC during islanding mode [30].  

Fig. 10. DC-Link Voltage and frequency variations [30].  
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The dc-link voltage-based method under FRT operation has good 
islanding detection times (better than ROCOF and under frequency 
methods) and limits the dc-link voltage of the PV inverter to a safe level 
during grid faults through its islanding detection and disconnecting the 
PV inverter from the grid. The performance of the ROCOF method under 
three-phase faults is like the under frequency method. 

Due to the fact that the simulation results under grid faults with and 
no islanding operation are very close, the PV inverters should incorpo-
rate a fast grid fault detection (i.e., monitoring system) to improve the 
islanding detection and performance of the entire system under FRT. 

3.1.3.1. Performance of proposed protection during islanding and FRT 
operations. For proper and successful operation of the proposed anti- 
islanding protection and to not disconnect the PV inverter during FRT, 
it should have the following settings according to the islanding detection 
times in Fig. 8 and Fig. 11.  

1) OC: 10.3 – 12.6 ms/2.7 – 9.6 ms (islanding detection/FRT) and 2.3 – 
9.3 ms (grid fault)  

2) UC: no islanding detection time  
3) UV: 6.4 – 8.8 ms/3.9 – 6.5 ms (islanding detection/FRT) and 4.1 – 

6.8 ms (grid fault)  
4) OV: 15.9 – 29 ms/4.5 – 167.1 ms (islanding detection/FRT) and 5 – 

8.1 ms (grid fault)  

5) DC-Link: 14.6 – 23.2 ms/9.7 – 14.4 ms (islanding detection/FRT) and 
9.7 – 18.5 ms (grid fault)  

6) ROCOF: 15.9 – 29 ms/14.3 – 66.4 ms (islanding detection/FRT) and 
38.9 – 66.1 ms (grid fault)  

7) UF: 53.6 ms/53.7 – 73.4 ms (islanding detection/FRT) and 73.5 ms 
(grid fault)  

8) OF: 63.2 ms (islanding detection) 

When the detection times are higher than the specified ones defined 
in Fig. 11, the PV inverter should not disconnect to the utility grid and 
inject reactive power to support the grid during FRT and low voltage 
ride-through (LVRT) [44]. 

The proposed passive anti-islanding protection identifies and dis-
tinguishes between islanding operation mode and grid faults, like short- 
circuits depending on the detection time of the events. To minimize the 
unintentional islanding operation mode and grid fault effects and to 
meet the grid codes requirements, the anti-islanding protections must be 
installed at points where islanding operating mode can occur. Therefore, 
the obtained results are useful for selecting these points and designing 
the anti-islanding protection devices for three-phase grid-connected PV 
systems. 

Fig. 11. Detection times under different grid faults (no islanding).  

Fig. 12. Islanding detection times in case study 3 (islanding mode under different grid faults).  
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3.2. Discussion of obtained results and main achievements 

Overall, the suggested passive anti-islanding protection confirmed its 
performance and functionality under islanding operating mode and FRT 
operation. As for the dc-link voltage-based relay, it is suitable for anti- 
islanding protection of PV power systems and can be used instead of 
ROCOF and frequency relays or in combination with active methods like 
in [15] since it has small detection time and low switch voltage stress, is 
effective in islanding detection, and easy to implement. 

The proposed protection has good and acceptable THD in terms of 
their impacts on the power quality [14,45]. 

3.2.1. Comparison with other reported anti-islanding methods 
The proposed strategy has fast islanding detection times in com-

parison with other simple passive [29,41] and active methods [46,47], 
or hybrid strategies [19,48]. The suggested method also results in low 
switching losses in power converters for PV systems [49]. 

The proposed anti-islanding strategy results in a small NDZ and FDZ 
compared with other reported strategies [15,25]. 

The proposed anti-islanding protection has a low computational 
burden and operation time [22] compared with other passive [50] and 
intelligent methods [51]. 

4. Conclusions 

In this paper, a novel passive anti-islanding protection with reduced 
switching losses for double-stage three-phase grid-connected photovol-
taic power systems was introduced. The islanding detection time of the 
proposed method is compared in various cases and scenarios, including 
under fault ride-through operation case. 

The investigation revealed that using the suggested protection results 
in significantly better performance in terms of islanding detection times. 
Additionally, the proposed anti-islanding protection can detect the 
islanding mode during grid faults. The proposed anti-islanding protec-
tion makes the difference between islanding operation mode and fault 
ride-through operation required by new grid codes depending on the 
detection time of the abnormal event. The proposed anti-islanding 
protection can increase the resilience of the electric grid and power 
system resilience, as it can operate in both the islanding mode and the 
fault ride-through mode. 

It can be concluded that the proposed anti-islanding protection can 
be suitable for islanding detection of photovoltaic systems under 
different scenarios since it has small detection time and reduced voltage 
stress, is effective, and easy to implement. 
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Abstract: The topic addressed in this article is part of the current concerns of modernizing power
systems by promoting and implementing the concept of smart grid(s). The concepts of smart metering,
a smart home, and an electric car are developing simultaneously with the idea of a smart city by
developing high-performance electrical equipment and systems, telecommunications technologies,
and computing and infrastructure based on artificial intelligence algorithms. The article presents
contributions regarding the modeling of consumer classification and load profiling in electrical power
networks and the efficiency of clustering techniques in their profiling as well as the simulation of the
load of medium-voltage/low-voltage network distribution transformers to electricity meters.

Keywords: smart grid; clustering techniques; pattern clustering; power distribution planning; regres-
sion algorithms

1. Introduction

A few of the changes and problems the world’s population is currently facing are
related to the climate, electricity, food, water, transport, utilities, health, education, ad-
ministration, and industry. Cities use 75% of the energy produced and are answerable for
80% of all dioxide emissions, although they only cover 2% of the planet’s surface. Future
cities will need to adapt in order to counteract the effects of factors such as environmen-
tal change, population expansion, and social mobility, together with migration, human
conflicts and unfairness, economic globalization, technological advancements, food, water,
and energy vulnerability, geostrategic shifts, etc. Future cities must manage infrastructure
and resources more intelligently to meet people’s needs both now and, in the future, as the
world becomes increasingly “urban” [1,2].

Mobility is at the core of modern society when the aforementioned factors are consid-
ered. Over the next 20 years, there will be a lot of changes in this area as global auto markets
and the transportation industry are reshaped by electrification, shared mobility, vehicle
networking, and autonomous vehicles. This transformation is supported by technological
advancement and other crucial variables, such as legislative directives pointing these two
sectors in the direction of low-carbon solutions and increased fuel efficiency [3–6].
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In the medium and long term, automakers and major EV operators are ensuring that
the decarbonization goals are treated to a higher standard. Around the world, there are
currently more than 7 million electric vehicles (EVs) in use, and other aspects of road
transportation, such as the freight industry, are being electrified.

The electric vehicle is not a recent invention; it first emerged alongside internal com-
bustion engine vehicles. Electric cars outperformed all other car types between 1890
and 1900. Because they were less noisy and polluted than cars with internal combustion
engines, they significantly increased in popularity at the beginning of the 20th century.
However, the short battery life of electric automobiles meant that their owners could travel
great distances.

In recent years, technological advancements and concerns related to climate change
have progressively sparked the resurgence of electric automobiles. The transformation
from internal combustion to electric engines, which is now occurring in the automotive
area, represents the most significant change. To adjust to changing market conditions,
automakers have undertaken massive financial investments and unforeseen alliances [7–9].

EVs have been more and more popular in recent years due to their capacity to provide
a variety of benefits, including [9]:

• Energy efficiency: Electric vehicles use less energy than vehicles powered by traditional
internal combustion engines (ICEs).

• Electric mobility improves energy security because the road transportation industry is
so reliant on petroleum-based fuels. Additionally, electricity may be created using a
range of materials and fuels and is frequently produced locally.

• Air pollution: Since electric vehicles produce no emissions, they are an excellent solu-
tion to the issue of air pollution, particularly in densely populated regions and those
nearby, where many citizens can be exposed to dangerous toxins from transit vehicles.

• Greenhouse gas (GHG) emissions: Combined with a progressive increase in the
production of low-carbon energy, increasing electric mobility can result in considerable
reductions in GHG emissions from the transportation infrastructure when compared
to other traditional vehicles. Additionally, electric vehicles can behave according to the
integration of renewable energy, which is often unpredictable for generating electricity,
and offer flexible services for power systems.

• Noise reduction: Electric vehicles, especially those with two or three wheels, are
quieter than ICE vehicles.

Industrial advancement: Given the relevance of energy storage for the switch to
“clean” electricity, electric vehicles also have the capability of storing generated energy. In
essence, battery technology, one of the fundamental factors in industrial competitiveness,
is a possible facilitator for the significant reduction in cost in the electric car industry.

In many cities across the world today, one can find personal automobiles, common
transport, car sharing, taxis, municipal parking lots, two- and three-wheeled machines
(mainly electric scooters), as well as an expanding number of commercial and freight
vehicle sectors. The proposed study topic fits within the background and is related to actual
policies in the decarbonization of transportation areas, minimization of urban pollution,
and the integration of EVs into electrical systems [10–12].

This study’s objectives were to analyze the impact and potential effects of integrating
many EVs into the power network, as the efficiency could be influenced in both positive
and negative ways by the need to charge all these EVs, as well as suggest several strategies
and measures to integrate them. The article discusses the effects of integrating electric
vehicles into the electric distribution networks and analyses those effects from a technical
standpoint in terms of how they affect urban electric distribution networks and how that
affects changes in electricity usage.

One challenge is connected to energy management, the impact of which may be
reduced if the charging of EVs is achieved outside the peak period, which is likely to
occur when big fleets of electric vehicles are incorporated into power networks. Electric
vehicles (EVs) can be viewed from the perspective of electrical networks as either basic tasks
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(with continuous consumption) or using the Vehicle-to-Grid (V2G) idea, where storage
devices plan recharging intervals or they can inject grid energy using their energy storage
devices [9,10]. In the case of a significant uptake of EVs, it will be important to coordinate
their functioning both as a potential source of revenue and as a new aggregator that affects
the electrical network by managing demand.

If EVs are gathered or aggregated, they can contribute to the balancing process by
lowering grid usage or injecting electricity into the grid as needed by helping to coordinate
the load.

The article is organized in the following way: a presentation of the clustering methods
used in this study is first given; electrical load profiling, load-type profiles correlated with
low voltage (LV) consumers, and a distribution network loading simulation are discussed
along with the results obtained, and then the conclusions are presented.

In recent years, technological developments in the energy domain, including the intro-
duction of smart meters and the transition to the concept of “Smart Grids”, have provided
transmission and distribution operators with opportunities to forecast the load required by
the system, modeling consumers to take into account their behavior, for the prevention of
unplanned outages, the optimal load planning of generating units, etc. [13]. In these cases,
operators must manage a lot of data and perform complex analyses in order to make the
best decisions regarding the optimal planning and operation of electricity networks. For
the efficient management of large databases, there are two aspects that need to be consid-
ered: data extraction (data analysis to obtain specific knowledge, patterns, or models) and
database management (data storage, processing, and querying). Both related concepts are
crucial in the energy networks’ decision-making process [14]. The choice of technology and
the organization of installation, processing, and maintenance operations are the first steps
in the adoption of smart metering systems. These technologies mark a significant devel-
opment in the interaction between users and network operators. If consumer-mounted
smart meters were totally integrated into a modern metering infrastructure and data were
adapted, then distribution operators (ODs) could have access to full monitoring, which
would make it easier to estimate the state of distribution networks [15–17].

The transition to the “Smart Grids” concept can lead to the implementation of smart
monitoring and remote communications equipment necessary for optimal power systems
operation and planning that will lead to maximizing economic benefits and minimizing the
environmental impact. The phrase “Smart Grids” represents a hyperbole that involves the
management of the EEA without the intervention of the human factor. The key components
of this idea include two-way communication with consumers and all other market partici-
pants, as well as digital control of the energy transmission and distribution network. This
smart infrastructure will enable various energy services, markets, integrated distributed
energy sources, and control systems. The world economy in the future will be supported
by the smart grid. It suggests that, in many respects, electricity generation, transmission
and distribution companies, regulators, and institutions, indeed, all levels of government,
face a real challenge in terms of the energy sector which is the driving force behind the
world economy [18–22].

Starting from the aspects highlighted above, the efficient solution to many problems
related to the management of the electric power system goes through the elaboration of
solutions based on one form or another of artificial intelligence. Artificial Intelligence (AI)
techniques aim to create intelligent computing systems, systems based on the characteristics
of human intelligence: reasoning, ability to learn, solve and communicate, systems for
problems for which there is no classical computational algorithm. Over time, with the
development of AI techniques, hybrid algorithms have been developed and perfected,
such as fuzzy logic-controlled neural networks, fuzzy genetic algorithms or expert systems,
and artificial neural networks generated by genetic algorithms or neuro systems, having
already proven their effectiveness [23–25].

Because an AI system has more complex tasks to solve, the knowledge that needs to
be represented in it increases (facts, rules and heuristics of the field, general concepts, and
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theories). In general, a system may work well, in line with the goal set by the knowledge
provided, but any move outside its competence causes its performance to decline rapidly.
This phenomenon is also called the fragility of knowledge [26].

Several machine learning techniques are presented in the studied literature, including
supervised and unsupervised approaches that have been utilized for energy consumption
level predictions. Among the unsupervised learning techniques, clustering is considered
one of the most frequently applied techniques in data mining and machine learning. Clus-
tering involves partitioning objects with similar patterns under observation into different
groups. A vast number of works on clustering electricity usage patterns have been pre-
sented by researchers. The article [27] generated a typical load profile from data measured
with automatic meter reading systems, then performed cluster analysis using three clus-
tering algorithms, specifically, the hierarchical, k-means, and fuzzy c-means algorithms.
In [28], classified daily load curves in industrial parks, which can be regarded as micro-
grids from the energy network perspective using SOM, then exploited k-means to obtain
a number of clusters, and [29] demonstrated the possibility of applying disaggregation
techniques on smart meter data via fuzzy c-means clustering. Similar work is in [30],
where they utilized the k-means algorithm to group residential houses with similar hourly
electricity use profiles, and in [31] where they proposed a method to characterize medium
voltage electricity consumers by using several clustering algorithms. In order to choose the
best one among the typical load profiles, they measured the performance of the clustering
algorithms in terms of eight clustering validity indices. To deal with the scalability and
computational complexity of the power consumption profiling process, the authors of [32]
proposed a multi-layered clustering method for power consumption profiling. First, they
acquired local power consumption profiles using k-means, considering clusters with a low
number of patterns as abnormal power consumption behavior. In the second stage, a global
power consumption profile was derived from the local ones. Furthermore, Refs. [33,34]
applied an improved k-means algorithm with particle swarm optimization (PSO) to open
residential buildings datasets to divide their electricity consumption in an entire region into
different levels. The authors of [35] developed a methodology in which one-dimensional
time series smart meter data were reshaped to two-dimensional arrays called load profile
images. After performing image processing techniques on those images, they derived the
class load image profiles via clustering algorithms. In addition, [36] partitioned customers
into electricity user groups based on similar electricity usage behavior with the SOM,
k-means, and hierarchical clustering algorithms. Similar to group electricity consumption
profiles, the authors of [37] investigated a shape-based clustering method.

The discussed literature reveals several limitations of the employed techniques from
various perspectives of energy consumption prediction. The literature lacks focus on
capturing the recognizable patterns in building smart sensing data, which has a limited
number of features. These features can be represented in low-dimensional feature space and
may affect the overall performance of data analytic tasks. Many of the existing techniques
enquire about the number of clusters to differentiate among distinct categories of data. In
addition, the presentation of energy consumption for data analysts and common individuals
is a common problem that has not been tackled effectively in the existing literature.

Therefore, based on the above-mentioned problems in household energy predictions,
this paper presents a new framework with the following main contributions:

• There is not a lot of energy consumption data obtained from smart sensors for resi-
dential buildings, and the presence of missing data is a difficult problem in statistical
analysis. Less than 1% of missing data can be considered a common problem, and
between 1 and 5% can be considered a solvable problem. If the percentage is greater
than 5%, difficulties may arise in solving the respective problems. Thus, if the val-
ues are between 5 and 15%, the problem requires the application of sophisticated
solution methods, and if the value exceeds 15%, the problem may have difficulties
in interpretation. Finding recognizable patterns in such data is very difficult, which
affects the performance of electricity consumption analysis. To solve this problem, five
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hierarchical clustering methods were used in the clustering process: average distance
(Average Method), the center of gravity (Centroid Method), minimum distance (Single
Linkage Method), maximum distance (Complete Linkage Method), and Ward, which
were the basis for obtaining the load-type profiles presented in the article. Based on the
clustering methods used, we propose a method based on load-type profiles which is
more robust, reduces calculation errors for off-peak time/peak time, requires less com-
putation volume, and converts small model representations from data with reduced
dimensions in high-level representations, comparable to using large databases.

• Clustering algorithms require an input parameter to divide data into multiple clusters.
This article, by using the method of simultaneous layers in the hierarchical clustering
process, average distance (Average Method), the center of gravity (Centroid Method),
minimum distance (Single Linkage Method), maximum distance (Complete Linkage
Method), and Ward, obtained an adaptive grouping to organize large data.

• After dividing the data into several clusters, the regression model based on first- and
second-degree polynomials for every consumption class was applied, performing a
predictive statistical analysis on the data to determine which buildings had a high,
medium, and low level of energy consumption.

2. Materials and Methods
2.1. Clustering Techniques

The use of clustering algorithms allows for the spatial distribution of characteristic vec-
tors to be used as a basis for grouping input data. Each element connected with a set of data
will be characterized by a vector whose components are represented by the representative
qualities or attributes of the vector in order to examine the similarity or differences between
them and to categorize them. The determination of the characteristic/attribute number
and their definition requires a deeper analysis of the database designed on the available
information and considering the expertise of specialists [38,39]. The vectors connected to
the input data are grouped throughout the clustering phase based on the estimated distance
between each of them. Depending on the analyzed topic, the clustering process will result
in one or more clusters (groups, patterns, models, or classes), which describe the spatial
position of the qualities taken into account for the process’ elements. Within each cluster,
the elements are closer to a common center when compared to other centers belonging to
other groups. This aspect is exemplified in Figure 1.
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In Figure 1, the elements, represented by vectors with two characteristics (xi, yi),
i = 1, . . . , N (where N is the maximum number of elements of the database subjected to the
clustering procedure) were assembled using a similarity principle defined by the distance
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calculated between vectors. In this mode, two or more components can be associated
with the same pattern if the distance between them is smaller in relation to the distance
from the elements of another cluster. Finally, each cluster will be characterized by a
representative element, determined by mediating the characteristics of the elements that
make up the cluster [40].

2.2. Stages of the Clustering Procedure

Clustering processes can be applied in various domains in order to group unlabeled
components. These domains already involve various assumptions, terms, or techniques,
related to clustering procedure phases, as a function of the addressed problems.

The steps that must be covered are described below and represented in Figure 2 [40,41].
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Figure 2. Clustering process phases.

Step 1. The components subjected to the clustering procedure must be established.
In this phase, it is necessary to consider the option from the database that is best suited
to the aim of the problem. The type and size of the attributes available for the clustering
procedure can be chosen.

Step 2. The attributes/characteristics of the components subjected to the process
must be extracted. The identification of the most useful and important characteristics
must be achieved. During this process, one or more component transformations can be
accomplished to obtain new dominant attributes.

Step 3. A similarity measure must be defined. Usually, the similarity can be determined
by measuring the distance connecting adjacent items. Once a vector has been attributed to
each component, this length may indicate how similar two elements are. The literature has
defined several different distance measurement techniques, with Euclidean distance being
the most used.

Step 4. This phase represents the actual clustering procedure. It can be achieved
in various modes depending upon the techniques chosen by the decisional factor. All
clustering techniques should conduct several clusters for any input data set. If no clusters
resulted from the process, other techniques can be applied in order to obtain the desired
results. The obtained results can be “clear”, meaning that the separation of the components
is achieved in well-defined clusters, or they can be “fuzzy”, meaning that each component
has a degree of dependence on each cluster.

Step 5. The results must be extracted. For this, an accurate interpretation of the results
is necessary so that their rendering can be achieved in a simple way that is easy to interpret
by the decisional factor. In this scenario, either from the point of view of automatic analysis
(where a computational system can perform further data processing effectively) or from
the perspective of a human, simplicity is required (the representation used for results is
easier to understand by decision makers). The extraction of the results from the clustering
method is a brief illustration of each cluster using representative components.

Step 6. Evaluation of results. An assessment of the clustering procedure is taken
into account when analyzing the validity of the outcomes (represented by clusters), and
this evaluation often employs an optimization criterion. This impartial analysis examines
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whether the outcomes are accurate. If a cluster does not occur unintentionally or for other
reasons, it is validated.

2.3. Clustering Methods

Next, certain terms will be defined and the notions that will be used will be briefly
described in the next section.

The element xj, j = 1, . . . , N (where N is the total number of elements), is a unique
object used in the clustering process. It is usually represented by an n-dimensional vector
xj =

[
xj

1 xj
2 . . . . . . xj

n

]
.

Scalar components xj
i , i, i = 1,..., n, are called characteristics/attributes of the vector xj

and are established by the decision maker.
The distance between vectors is a metric in the space of the attributes xj

i , i = 1, .., n,
corresponding to input vectors xj, j = 1, . . . , N, and used to determine the similarity
between elements. The most used is the Euclidean distance.

For a database X, consisting of the vectors xj, j = 1,..., N, with n characteristics,
xj =

[
xj

1 xj
2 . . . . . . xj

n

]
, different distances between vectors can be defined. Thus, if two

vectors xr and xs are taken into account, the distance can be calculated with the relation:

d(xr, xs) =

√
(xr − xs)(xr − xs)t (1)

There are several ways to classify clustering methods in the literature. The most used
classifications are given in [40,42]: hierarchical methods and the K-means method.

Hierarchical clustering methods can be subdivided, according to their meaning, into
methods of agglomeration and division. In the case of agglomeration methods, for example,
we start from the k clusters, each containing a single element xj, j = 1,..., N, and by successive
mergers, form a single cluster, containing all N elements. In the case of division methods,
the direction of deployment is inverse, i.e., starting from a single cluster containing all the
xj, j = 1,..., N elements, we reach k clusters, each containing a single element xj. Agglom-
eration techniques are usually used more frequently. As shown above, in the hierarchical
spatial grouping, an agglomeration process goes through a series of mergers/couplings
of groups/classes, Pn, Pn−1, . . . ., P1. The first, Pn, consists of n “groups” with a single
element/object, and the last P1 includes a single group having all n elements/objects. At
each stage, the method couples two close groups (at the first level, of course, this means
the coupling of two elements/objects that are close to each other (in distance), since at the
initial stage, each group has an element) [40,43].

The clustering process can be illustrated as a two-dimensional diagram named a
dendrogram. These methods are suitable for small tables, having a few hundred rows. The
desired number of clusters can be chosen after the proper shaft is designed by imposing a
threshold [30,40].

The difference among the agglomeration techniques is given by the method for defin-
ing the distance between the clusters.

Considering two clusters, Cr and Cs, containing nr and ns elements, the average
distance d(Cr, Cs) is calculated on an Euclidean distance base:

d
(

x f
r , xh

s

)
=

√
∑N

k=1

(
x f

rk, xh
sk

)2
(2)

can be expressed through the relation:

d(Cr, Cs) =
1

nrns
∑nr

f=1 ∑ns
h=1 d

(
x f

r , xh
s

)
(3)

Starting from the above-mentioned, the most used hierarchical clustering methods are
briefly presented below.
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The following figure shows the result obtained by applying the hierarchical clustering
algorithm (Figure 3).
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a. Minimum distance method (minimum method)

This method is the simplest, being based on the minimum distance, also known as the
method to the closest neighbor. In such cases, the distance between the clusters represents
the distance between the closest items:

d(Cr, Cs) = min{d( f , h)} (4)

where the f component is attributed to the Cr cluster and the element h to cluster Cs.
In this case, the distance is calculated between each possible pair of elements (f, h). The
minimum value is the distance between the cluster’s Cr and Cs. In other words, the distance
between two clusters is given by the shortest link value. At every stage of the clustering
process, the Cr and Cs clusters, for which d(Cr, Cs) is minimal, will be coupled. A graphical
interpretation of the minimum distance between the clusters is shown in Figure 4.
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b. Maximum distance method (maximum method)

This method, also known as the farthest neighbor method, is based on distance
maximum, being the opposite of the minimum method. In this technique, the distance
d(Cr, Cs) is calculated using the equation:

d(Cr, Cs) = max{d( f , h)} (5)

where the f element is attributed to the Cr cluster and the h element to the cluster Cs. In
such a case, the distance between two clusters is given by the longest link value. At each
phase of the spatial hierarchical grouping, the clusters Cr and Cs, for which d(Cr, Cs) is
maximum, will be coupled. Figure 5 presents a graphical interpretation of the distance
between the clusters.
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c. The average distance method

In this method, the distance between two clusters is defined as the average of the
distances between all element pairs, where each pair contains one element from each cluster.
The average distance d(Cr, Cs) is calculated with the relation:

d(Cr, Cs) =
Tr,s

(nr × ns)
(6)

where Tr,s is the sum of all possible distances between the elements of Cr cluster and the
elements of Cscluster and nr and ns represent the number of elements in the cluster Cr and
Cs, respectively.

At each stage of the clustering process, the Cr and Cs clusters for which the distance
d(Cr, Cs) is minimum, are coupled. Figure 6 illustrates how the average distance is defined.
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d. Center of weighted method

In this technique, the distance between two clusters is described as the square Eu-
clidean distance between their centers of weight.

d(Cr, Cs) = ‖xr − xs‖2 (7)

where xr and xs are the mean vectors for the Cr and Cs clusters.
This method is much more robust, deviating from the average more than other meth-

ods of hierarchical clustering, but in other situations may not give as good results as the
Ward method or the average distance method.

e. Ward method

This method seeks to form Pn, Pn−1, . . . ., P1 partitions in a way that minimizes
the information loss associated with each cluster and measures them in an easy-to-use
interpreted form. At each step of the analysis, two clusters are combined, the fusion of
which leads to results that minimize the increase in “lost information”. The lost information
is defined by Ward in the conditions of the criterion of the square sum of the error.

d(Cr, Cs) =
‖xr − xs‖2

1
nr

+ 1
ns

(8)

where xr and xs are the mean vectors for the Cr and Cs clusters and nr and ns represent the
number of elements from the Cr and Cs clusters, respectively.
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f. K-means method

This method involves a simple and easy mechanism to classify the input data set into
several K clusters (K fixed a priori). The basic plan implies defining K centers of weight, one
by one for each group. These centers of weight must be rationally fixed because different
locations lead to different results. The best choice is to fix them, if possible, as far apart as
possible from each other. The next step is to take each element of the input data set and
link it with the closest center of weight. The first grouping stage ends when there are no
more ungrouped items. At this point, it is mandatory to recalculate new K centers of the
groups arising from the previous phase. The process continues until the positions of the
new centers no longer change significantly.

The objective of the method is to minimize an objective function (quadratic error
function) given by the expression:

J = ∑K
k=1 ∑nk

l=1 ‖x
k
l − ck‖2 (9)

where ‖xk
l − ck‖2 is the distance measured between point xk

l , l = 1,..., nk, where nk is the
total number of components of the k cluster, and the center of the group ck, k = 1,..., K.

2.4. Validation of Results

The evaluation of the results obtained from the clustering process is the main concern
of cluster validation. At this stage, the density, size and shape, separation of clusters, and
robustness of classification were examined. The literature mentions the following tests to
validate the clustering process [39,40,44,45]:

• External tests—data not included in the basic ranking are compared with the catego-
rization results of the input data.

• Internal tests—only input data are utilized to evaluate the classification’s quality; each
cluster’s separate validation is carried out using this test.

• Relative tests—this approach takes into account several classifications of the database,
the results being analyzed using the same clustering method, but with various input
data.

Internal cluster validation tests are more common and effective in real-world settings.
Testing based on the creation of a global silhouette index of clusters is one of them and
is also one of the most popular. This test determines the average shape width for each
cluster, the median shape width of each element, and the average shape width of the entire
collection of input data. With this method, each cluster might have a “shape” that is based
on comparing its separation and density. The clustering procedure is then validated using
the shape’s average width, and the ideal cluster number will also be set using the same
information.

GSI =
1

Nk
∑K

k=1 Fk (10)

Fk, the local silhouette coefficient, is calculated using the relation:

Fk =
1
rk

∑rk
l=1 fl (11)

fl , the silhouette width coefficient for element l, is calculated by:

fl =
bl − al

max{bl , al}
(12)

where al is the average distance from element l and the elements from cluster k and bl is the
minimum median distance from component l and the components in the closest cluster k.

In Equation (12), if the element l is unique inside a cluster, then fl = 0. The literature
proposes the following explanation of the GSI coefficient [38,40]:
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• 0.71 to 1.00 (a strong structure was highlighted);
• 0.51 to 0.70 (a reasonable structure was obtained);
• 0.26 to 0.50 (the structure is weak and might be artificial);
• <0.25 (no substantial structure was noticed).

Verifying the clustering process quality is one of the main steps in analyzing the
inherent database characteristics. Its purpose is to evaluate the results of the process
clustering and select the schema that best fits the elements in the database.

2.5. Electric Load Profiling

The loads from the nodes within the electrical networks range in consumption time
and place. Consequently, distribution operators (ODs) need details regarding the load
of fed consumers so that they will be able to optimally plan and operate the network
and ensure proper power supply and operation modes, load management, and proper
billing [40,46–48]. The load demanded by consumers depends on various parameters such
as:

• Consumer type: consumption type, with/without electric heating, or size of the building;
• Time factor: time of day, weekday, and month;
• Climatic factors: humidity, temperature, cloudiness, wind speed, etc.;
• Other electrical charges related to the analyzed load.

For a certain consumer, his behavior is determined by a load profile correlated with
the electricity consumption for each interval. The accessibility of this data is dependent
on the type of consumer. In general, small consumers (such as residential ones) have
an uncertain behavior, because the implementation of smart metering on a large scale
would lead to large investments whose recovery time from their energy consumption
would be too long. For these consumers, there is only the consumption of electricity at
certain periods of time each year. For large consumers (such as industrial consumers), the
installation of smart meters is facilitated by advantages related to billing (done every month)
and high electricity consumption (justifying the investment by the fact that the detailed
recording of consumption allows for the application of differentiated tariffs varying with
consumption period).

In the traditional strategy for a distribution system plan, load profiles are employed to
evaluate the maximum necessary load, in correlation with the simultaneity coefficient of the
consumers coupled to the network node. Despite the fact that this strategy is appropriate,
some major disadvantages arise:

• There are inherent inaccuracies, due to the simultaneity coefficients, which must
be highlighted;

• The energy consumption and losses calculation does not have an increased precision;
• The voltage within the network nodes from various hours is not known;
• The load profiles of nodes having arbitrary variations in power requirement cannot be

accurately modeled or evaluated.

Utilizing modern techniques of load analysis, load forecasts and the calculation of
power and energy losses (for any period) can be achieved. The use of load profiles has
some advantages [40,49]:

• It is not necessary to estimate or calculate concurrency coefficients, as load profiles
already include the information;

• The energy consumption and power/energy losses calculation can be correctly achieved
at any point within the network;

• The main voltage and charging are known for any period;
• The optimal position of the transformer plot can be determined, both for the peak load

period, as well as for other times of the day;
• The effect of overloading or increasing the load is modeled more accurately than in

the traditional method.
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Medium voltage (MV) and low voltage (LV) networks, mainly urban ones, have many
nodes even if only the nodes where electric distribution substations (EDSs) are located are
taken into account. Thus, monitoring the system consumption for every node can become
overwhelming, sometimes virtually impossible. This is practically overcome if, in the
organization studies corresponding to the networks, the load-type profiles are associated
with the node groups.

2.6. Load-Type Profiles Correlated with Nodes in Electrical Distribution Networks

This paragraph presents an approach based on hierarchical clustering techniques
(presented in Section 2) for calculating the load-type profiles (LTP) correlated with nodes’
high voltage (HV) and medium voltage (MV) electrical distribution networks. Through
knowledge of the load profile of the nodes, the OD can clarify the procedure for estimating
the requirement in a certain sector.

In this respect, it is mandatory to understand the daily loading profiles. The load
diagram of the nodes must be reconstructed by applying the standard load profile and
daily demand. This standard profile is characterized by 24 or 48 load values.

The type and season influence the shape of load profiles. Because many profile
responsibilities are correlated with various nodes of the network and may complicate the
problem, they must be grouped into clusters, taking into consideration some similarities
among them. For every cluster, the typical load profile can be established.

In this sense, all the measurements performed must be processed, by arrangement
and normalization, using a convenient normalization factor (average power, peak power,
or more frequently, the energy consumption of the studied period):

ph
i =

Ph
i

∑T
h=1 Ph

i
, i = 1, . . . . . . , N (13)

where ph
i is the normal value of the power in i node at h hour, Ph

i is the real value of the
power in i node at h hour, and ∑T

h=1 Ph
i is the total energy consumption in the interval T

(24 h).
It is worth mentioning that after the clustering procedure is applied, clusters can be

acquired as coherent and representative so that the diagrams within the same cluster are
similar [40,49,50]. In the end, every cluster will be related to a typical task profile, estimated
using the graphs median.

mh
Ck

=
∑

NCk
i=1 ph

i
NCk

; h = 1, . . . . . . , 24; k = 1, . . . , NK (14)

where NK is the cluster numbers derived from the node’s classification in concordance
with the absorbed load (active power) and NCk is the node number from each cluster Ck,
k = 1, . . . , NK.

2.7. Load-Type Profiles Correlated to Low-Voltage Consumers

In recent years, distribution operators have increasingly used smart metering systems
(Smart Metering System) to monitor the electricity consumption of consumers. The devel-
opment of these systems begins with technology selection and planning for installation,
operation, and maintenance. In general, the implementation of residential or non-residential
consumer categories is quite discrete in the case of many countries in the European Union.
Currently, there are two alternative solutions to solve the problem of metering electricity
consumption for consumers.

The first solution envisages the installation of smart meters for all consumers, being
expensive and uneconomical, but the most accurate. The second solution envisages the
continued use of traditional meters and the attachment of load-type profiles to the monthly
energy consumption, which is then distributed over days and hours.
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For large consumers, in the category of industrial ones, the presence of smart meters is
necessary for several reasons: invoicing is done every month, the consumption of electricity
is high (which implies rapid amortization of the investment), and it provides a detailed
recording of consumption necessary for the process of invoicing.

This section presents an algorithm for determining the type of load profiles associated
with LV consumers according to the category of energy consumption in which they fall.
Consumption categories are identified from historical information and can be updated
following changes in consumer behavior.

The algorithm phases are [40]:
Phase 1. In this phase of load analysis and database formation, a representative

specimen must be identified from the crowd of consumers who have installed smart meters
and the sampling step for the purchase of load schedules must be described. Consequently,
a database with the registered load program and the consumer category is created.

Phase 2. Technical problems in the pre-processing of the data may affect the quality of
the database in real cases of monitoring consumer charges, requiring many meters spread
over a large geographic region over an extended period. The most relevant and frequent
problems are communication issues, interruptions, meter failure, and, occasionally, the
irregular behavior of individual consumers. These issues will influence the records of the
database, appearing as null values or exceeding a particular threshold set by the connection
notice. Such records must be identified and working techniques must be applied to obtain
the missing data, resulting in the substitution of missing or equal to zero data with some
estimated values so the database can be made ready to obtain clusters.

Phase 3. The database with records of load schedules must be divided into clusters of
consumption, defined by the consumer’s type: residential, commercial, or industrial.

Phase 4. This phase represents the clustering procedure. A hierarchization of clusters
is achieved, taking into consideration the daily consumers’ energy consumption within
every consumption macro-category. In this respect, the K-media clustering technique is
applied. For every cluster, the representative load profile is determined by applying the
average of the load graphs’ hourly values.

Phase 5. Task-type profiles must be assigned. For every customer’s class, a typical
task profile is assigned as a function of the activity macro-category to which the consump-
tion belongs.

The suggested algorithm was evaluated using a database with 296 load diagrams.
After the macro-categories were divided, 147 consumers were distributed in the resi-
dential consumers class, 97 in the commercial consumers class, and 52 in the industrial
consumers class.

The utilization of the k-means clustering technique within every activity macro-
category resulted in five clusters within the residential consumers class and three clusters
within the commercial and industrial consumers ones.

Using these standard profiles, consumers can be better delineated in connection with
load modification than the standard profiles correlated to the complete activity macro-
category. This detail can be emphasized if a correlation is achieved between the load-type
profiles of every activity macro-category and the load-type profiles linked to these macro-
categories (Figure 7).

The change in consumers’ energy consumption determines important problems in the
planning of activities associated with the technological procedure, in terms of adopting
the optimal power supply and operation solutions. Solving these issues can be efficiently
achieved by utilizing consumption profiles correlated to energy carriers.

This section proposes a perspective based on clustering methods for the determination
of load-type profiles for electric vehicle charging networks. The standard profile’s forms,
which take into account both the type of electrical equipment or installations supplied
and the time of year the survey is conducted, represent the specifics of how consumers
use electricity.
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The methodology proposed for the load profiling process for electrical vehicles as
(industrial) consumers is presented in Figure 8 [40].
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Figure 8. Scheme for the determination of load-type profiles in electric vehicles considered as
industrial consumers.

The importance of every phase from Figure 7 is the same as for all profiling procedures
that are operated with clustering methods from the previous paragraphs.

2.8. Distribution Network Loading Simulation

In the distribution network, the basic component represents the loading simulation
of MV/LV transformers. Because tens of thousands of transformers are positioned in the
distribution matrix, their hourly load is hard to determine, due to the many distribution
networks, including current and voltage sensors mounted in devices, transformers, and
MV connections unequipped with recording meters with transmission capacity, remote,
real-time recording, and load level. Consequently, it is hard to identify those transformers
operating at overload or to estimate the loads of MV connections intended for transfer
between distributors without a simulation.

The most effective route to evaluate a load of transformers, without performing real
measurements, is represented by the utilization of simulation programs, with some of the
following elements being taken into consideration [40]:

1. The number of consumers coupled to every transformer;
2. The consumer type;
3. The annual energy consumption for every consumer;
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4. Task type diagrams correlated with every consumer class;
5. Software able to calculate the load of transformers.

It must be emphasized that, when a load of transformers is estimated, the maximum
and hourly active powers (within low voltage/medium voltage side) are computed on
peak days and varying typical intervals (winter, summer, average working days of the
week, etc.).

2.9. MV/LV Distribution Transformers Load Simulation by Clustering Procedure

The database structure that is necessary to simulate the load of the distribution trans-
formers in the MV/LV substations includes:

• The LV database having a “consumer link-substation (CS)” (number and class of
consumers from every transformer in CS);

• Basic profiles containing task-type profiles for all consumers classes;
• A consumption database containing data on the annual energy consumption and

consumer class.

In order to establish the typical load profiles correlated with consumers in LV networks,
a database is required to include as many registered load diagrams as possible, representing
all consumption categories. The decisional procedure of associating a typical task profile
with a certain consumer constitutes a complicated problem. Consequently, a load profiling
algorithm using clustering methods has been suggested for residential and non-residential
consumers. Figure 9 shows the implementation diagram for determining load-type profiles
for residential and non-residential LV consumers [40] and the software pseudocode. In
the following figures, the software implementation for the proposed algorithm is repre-
sented. The software development was carried out in the LabVIEW programming language
developed by National Instruments.
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3. Results

An important issue in the optimal operation and planning of electric distribution
networks by electric companies is the estimation of the maximum load of consumers. This
problem occurs especially with home consumers. The decision to determine the optimal
number of consumption categories within the same class of consumers and the estimation of
the maximum load is a complex problem. Therefore, an improved regression method with
clustering techniques is presented. Within the proposed method, to define the consumption
categories of consumers, a classification can be made considering the monthly energy
consumption and the maximum load (data obtained from the recorded load graphs). After
identifying the consumption category, the maximum load of each consumer is estimated
using a regression model corresponding to each consumption class. The major advantage
of the proposed method is the exploration of the data using clustering techniques in order
to obtain models/patterns/categories of consumption.

The contributions to modeling loads in electrical networks, the effectiveness of cluster-
ing techniques in their profiling, and the load simulation for MV/LV distribution trans-
formers using clustering procedures are highlighted in the study.

3.1. Estimating the Maximum Load of LV Users (Consumers) Using Clustering Techniques

The estimation of the maximum load of users is a key parameter in the effective opera-
tion and planning of electricity distribution networks by energy providers. This problem
occurs especially in household consumers, but also in the integration of electric vehicle
charging. From analyzing the built databases and using data exploration techniques, load
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patterns/models can be identified that can be extrapolated to other potential consumers
such as electric vehicle charging networks.

The decision to estimate the appropriate number of consumption categories within
the same consumer class and the maximum burden is a complex issue. Thus, a customized
regression method using clustering techniques is presented.

The monthly energy consumption, as well as the maximum load, can be classified
using the suggested approach to determine the consumption groups of users (data obtained
from the recorded load graphs). After determining the consumption category, a regression
pattern matching every consumption class is used to estimate the maximum load of each
consumer. The main benefit of the suggested approach is the data exploration utilizing
clustering techniques to produce models, trends, and consumption categories that would
aid in consumer modeling.

Its stages are presented below [40]:
Stage 1. Database. For consumers in the selected pilot area where smart meters

have been installed, the load graphs for the analyzed time period are recorded. For
each consumer, the variables that characterize the consumption category (maximum load,
monthly and annual energy) are extracted.

Stage 2. Data pre-processing. All records from the database are analyzed, and those
that contain missing values, equal to zero or atypical, are subjected to the process of
treatment with missing data techniques. After all processing, the data are used to classify
consumption categories.

Stage 3. Data exploration process. The first step in this stage is the use of clustering
techniques in order to obtain consumption categories according to the maximum load and
monthly energy consumption. The K-media technique is utilized for the clustering process.
Then, a regression model is built for each consumption category to estimate the maximum
load related to consumers.

Step 4. Estimation of peak load. The regression models obtained in Stage 3 are
used to estimate the maximum load absorbed by the monitored consumers by means of
classical meters.

The structure of the database includes information on the type of consumers (residen-
tial, industrial, commercial, and public) and their daily/monthly/annual consumption
respective to the maximum load absorbed. This information can be obtained using smart
meters. The information acquired is represented by the load curves that describe the con-
sumer’s behavior during the day. The processing of the load curves allows us to determine
the data on energy consumption respective to the maximum load absorbed by each con-
sumer. For the method implementation, the database was split in two, a working base and
a testing base. The application of the working base will lead to mathematical regression
models able to conduct the estimation of the maximum load for each type of consumer
within the same category of energy consumption. Energy consumption categories are then
acquired using the K-average clustering procedure for each consumer type (residential, in-
dustrial, commercial, and public). The outcomes of the clustering technique are confirmed
using a group quality assessment, based on the shape coefficient. The method is then tested
to estimate the maximum load absorbed by consumers belonging to the testing base.

The method was applied using an initial database containing records of load schedules
for 1160 household consumers located in a countryside region over a one-month period.
For each consumer, the characteristic variables related to the peak load (Pmax) and monthly
energy consumption (Wluna) were extracted.

In Stage 2, the analysis of load graphs and characteristic variables led to the elimination
of 15 consumers due to zero energy consumption. Thus, in the next phase, the database
consisted only of the associated information for 1145 consumers. This base was split in
two, a working and a testing base. The size of the working and testing bases varies in the
literature and primarily depends on the total amount of records in the original database.
The split between the two bases ranges from 90/10 to 60/40. In this instance, the working
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database contained 814 consumers (representing 66 percent of the database), leaving the
testing database with the remaining customers (331 consumers, 33 percent of the database).

In Stage 3, the data exploration process was initialized through the K-media clustering
method to obtain the consumption categories in which the consumers in the work base will
be integrated.

The first phase of the K-average method consisted of the determination of the maxi-
mum cluster number (consumption categories) with the relation:

Ck max =
√

N =
√

841 = 29 (15)

Then, for each K = 2, . . . , 29, the K-averages technique was applied. For the clustering
processes initiated for the K value of the number of clusters, the quality of the grouping
process was estimated by calculating the global silhouette index (GSI). The values of the
shape index obtained for each K = 2, . . . , 29 are represented in Figure 10. This grouping is
the best result of the clustering technique since the GSI has the greatest value for K = 5. The
results for the global silhouette index (GSI = 0.775) show that the clustering technique was
quite effective. The graphical representation of the clusters obtained in the case Koptim = 5
is illustrated in Figure 11.
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The characteristic variables represented by the mean values (m) and the dispersion
(σ) corresponding to the maximum load (Pmax) and the monthly energy (Wmonth) for each
cluster (consumption category) are summarized in Table 1.

Table 1. Statistical variables of the characteristic variables associated with the consumption categories.

Consumption Class Number of Consumers
Pmax (kW) Wmonth (kWh)

m σ m σ

C1 31 1.51 0.32 192.20 13.66
C2 104 1.06 0.13 115.62 11.83
C3 387 0.43 0.09 30.70 12.93
C4 279 0.87 0.17 88.64 11.83
C5 12 4.78 0.92 252.96 19.70

The analysis of data from each consumption category indicated a correlation between
the maximum load and the monthly energy consumption that can be mathematically mod-
eled by applying regression models. In Figures 12–14, regression models are represented
based on first- and second-degree polynomials for every consumption class.
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Regression models based on the degree II polynomial led to a better approximation
than the degree I polynomial. Thus, regression models based on the degree II polynomial
were adopted to determine the Pmax (Wmonth) dependence; coefficients of the regression
models determined for each consumption class are summarized in Table 2.

Table 2. Regression model coefficients associated with consumption categories.

Consumption Class a (×10−5) b (×10−3) c

C1 13 22 2.6
C2 6.2 3.1 0.7
C3 7.3 0.023 0.00008
C4 8.2 0.45 0.027
C5 15 105 17

In Stage 4, for all consumers in the test base, the maximum load is estimated by
applying the regression model of the consumption class associated with every consumer,
depending on the monthly energy consumed.

Figure 15 presents the real and forecasted values associated with the maximum con-
sumer tasks within the test base, assembled according to the consumption class.
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Of the 331 testing base consumers, 206 (approximately 62%) forecast errors were ≤3%,
77 (approximately 23%) errors were between 3 and 7%, and 48 (approximately 15%) errors
were between 7 and 10% (Figure 16); thus, the average estimation error in the testing
base was 4.01%. This value is reasonable in the context that most consumers do not have
permanent monitoring.
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3.2. Simulation of a Load of MV/LV Distribution Transformers by Clustering Procedure
Application

The future power supply networks of electric vehicles will be powered by medium
and low-voltage networks.

The following algorithm is suggested for simulating the load of the distribution
transformers from the MV/LV transformation stations [40].

Phase 1. Database: representative consumers with smart meters will be sorted out
from the database. Typical load diagrams will be recorded for every consumer, then, the
main characteristic variables will be detached, i.e., minimum (Pmin) and maximum active
power (Pmax), daily energy (Wz), and consumption class.

Phase 2. Pre-processing load diagrams: all records involving missing data or values
will be excluded or subjected to processing. After being pre-processed and reduced, the
results will be applied to obtain the classification into consumption categories (clusters)
using the clustering procedure.

Phase 3. The division into consumption macro-categories: the database with the
records of load schedules will be split into clusters described by the consumer’s type:
residential, commercial, and industrial.

Phase 4. Clustering procedure: a clustering technique will be applied for load-type
profile determination to determine the optimum results. In the end, a typical load profile
for each consumption class will be obtained by applying the average of the hourly values
for the load diagrams.

Phase 5. Determining the load profiles: a typical load profile will be attributed to every
consumer’s class, depending on their consumption class.

Phase 6. Estimating the load of the MV/LV transformer: a simulation protocol will
then be proposed based on the Equation [40]:

Ph = ∑Ck
k=1 nkWmed k ph

k +

√
∑Ck

k=1 nk
(
Wmed kσh

k
)2 , h = 1, . . . ., 24[kW] (16)

where:

Ph is the MV/LV transformer load from the transformer station at h, (kW);
nk is the consumer number, where k is the consumption class;
Wmed k is the average energy consumption, where k is the consumption class, (kWh);
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ph
k is the hourly coefficient of transformation for energy consumed by the consumers,

(kW/kWh);
σk is the standard deviation of the power distribution necessary to the cluster consumption
(kW/kWh);
Ck is the cluster number (consumption class) correlated to the consumer’s feed.

The weight center technique was applied to evaluate the load-type profiles through a
database containing 180 load curves registered by smart meters from residential consumers
in a distribution system from the LV pilot.

To evaluate the representative load profiles, the gravity center was applied, taking into
consideration the scattering of the LV pilot located in a region from Romania [40]. Every
load graph is set by 48 hourly values correlated with consumer behavior over one day.
Missing load curves or abnormal values of zero throughout the day must be eliminated
from the procedure, with only 144 consumers remaining eligible. The clustering procedure
resulted in five consumption classes (clusters) (Table 3).

Table 3. Consumption class characteristics.

Consumption Class Number of Consumers
Pmax (kW) Pmin (kW) W (kWh)

m σ m σ m σ

C1 15 0.21 0.02 0.06 0.01 3.41 0.82
C2 5 0.51 0.05 0.02 0.02 4.35 1.20
C3 22 0.46 0.12 0.03 0.01 2.98 0.54
C4 30 0.04 0.06 0.02 0.03 0.25 0.43
C5 72 0.17 0.06 0.03 0.02 1.95 0.41

It can be observed that the most representative class of consumption is C5 (50% of
the total consumer number), the least representative being C2 (only 3.5%). The load-type
profiles correlated to every cluster (consumption class) are depicted in Figures 17–19 and
the consumer distribution is presented in Figure 20.
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4. Discussion

Numerical simulations related to the methodologies, algorithms, and calculation pro-
grams developed in this paper have shown that the intelligent distribution of consumers in
Smart Grid distribution systems can help smooth the charging curve that can lead to lower
electricity prices and facilitate the integration of renewable energy sources, resulting in a
much safer and more economical operation of Smart Grid networks. The authors in [37,38]
perform an analysis of data extraction techniques from the perspectives of different tech-
nical approaches to achieve consumer profiles using direct clustering, indirect clustering,
clustering evaluation criteria, and customer segmentation. The article [39] presents an
approach to the consumer profile from the perspective of time series, and in [38], the
issue discussed is approached with the Bayes model and k-means clustering. As can be
seen from the literature, clustering algorithms are frequently used in the energy field for
profiling consumers. The method proposed in this article combines grouping algorithms by
clustering techniques and evaluation criteria for the clustering results using the regression
algorithm with second-order polynomials (logistic regression). By separating consumer
behaviors, the relationship between them can be simplified. The use of hierarchical clusters
(hierarchical classification) can significantly reduce the influence of external factors (e.g.,
region, weather, time, day, and social activities) on classifier performance. The results of the
case study showed that the model proposed in this paper achieves a better classification of
electricity consumption. In addition, the technique presented in this article contributes to
an overall improvement in the profiling of consumers, as the proposed method achieves a
better classification using fewer training samples. The performance of the results presented
suggests that the proposed data-based model can be used as an effective tool in real-time.
The idea of load demand variability is key information for the load monitoring control unit,
thus the proposed task prediction models will help energy management. Based on a more
accurately forecasted load demand, different optimization techniques for demand response
applications can be developed. In addition, the classification of the model proposed in this
paper depends on the completeness and reliability of the data. By combining these two
algorithms in the next stage, we plan to develop a supervised machine learning algorithm
that will automatically determine the profile of consumers based on historical data and
data acquired in real-time (data mining).

5. Conclusions

Following the proposed study that formed the basis of this article, some conclusions
can be made:

o Urban areas have significant issues in several areas, including the economy, water
supply, energy, buildings transit, environmental protection, and basic services as a
result of the phenomenon known as “global urbanization”.

o Municipalities are encouraged to employ smart ideas and try various smart infras-
tructure approaches in order to address these problems, thereby becoming the future
smart cities or “Smart Cities”.

o Urban transportation issues are a key component of the Smart City idea, and the
approximately 7.2 million electric passenger and freight vehicles demonstrate that
electrification of the transportation sector is the undeniable future of mobility.

o The restrains in regulations on the use of conventional fossil fuels in Europe and China
caused the automotive industry to quickly realign to multiple EV and BEV models,
with more than 442 new products being available at this moment, leading to an 87%
drop in Lithium-Ion battery prices, per kWh, between 2010 and 2019. These factors
all have contributed to the rapid growth of the number of EVs. When considering
the above-mentioned factors, electric vehicles have emerged as one of the primary
solutions for decarbonizing the transportation industry and using renewable energy
sources to generate electricity. Their impact on electrical networks, however, cannot
be disregarded. The quest for low-emission mobility around the globe is expected to
drive a major increase in the electrification of road transportation in the next decades.
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The volume of the world’s electricity demand may shift as a result of the rise in
electric vehicles, posing serious problems for the infrastructure supporting electricity
production, transmission, and distribution.

o The integration of too many EVs will significantly impact the electric power systems;
however, by coordinating EV charging, flexibility services in the electric power net-
work can be achieved, and the required investments in infrastructure can be kept to a
minimum level.

Future study directions suggested to continue the research outlined in this paper include:

• Participation of EVs or charging stations equipped with converters that use power
electronics in reactive power regulation services for EVs.

• Offering support services by coordinating EV charging via LV power grids.
• Variations in the voltage level caused by EV fleets since it is equal to the electrical

charge throughout the steady state operation or photovoltaic renewable energy sources
while supplying energy to the grid.

• Analysis of hybrid solutions utilizing battery energy storage systems for the neces-
sary integration of ultra-fast charging stations with capacities of up to 350 kW in
metropolitan electricity networks.
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