
Prof. Petru Cașcaval
Universitatea Tehnică „Gheorghe Asachi” din Iași

Facultatea de Automatică și Calculatoare

Departamentul de Calculatoare

LISTĂ DE LUCRĂRI ȘTIINȚIFICE REPREZENTATIVE

în domeniul de doctorat

Calculatoare și tehnologia informației

1. Caşcaval, P.; Leon, F., Optimization Methods for Redundancy Allocation in Hybrid Structure Large Binary Systems,

Mathematics, Vol. 10 (19), 2022, https://doi.org/10.3390/math10193698 (Q1).

2. Leon, F., Caşcaval, P., Bădica, C., Optimization Methods for Redundancy Allocation in Large Systems, Vietnam

Journal of Computer Science, Vol. 7 (3), 281-299, 2020, https://doi.org/10.1142/S2196888820500165 (Q4).

3. Caşcaval, P., Caşcaval, D., March test algorithm for unlinked static reduced three-cell coupling faults in random-

access memories, Microelectronics Journal, Elsevier, Vol. 93, November 2019 (Q3)

https://doi.org/10.1016/j.mejo.2019.104619.

4. Caşcaval, P., Approximate Method to Evaluate Reliability of Complex Networks, Complexity, Wiley, Volume 2018,

Article ID 5967604, https://doi.org/10.1155/2018/5967604 (Q2).

5. Caşcaval, P., Floria, S.A., SDP Algorithm for network reliability evaluation, IEEE Conf., INISTA, Gdynia, Poland, 3-5

July 2017, DOI: 10.1109/INISTA.2017.8001143 (Best Paper award).

6. Huzum, C., Caşcaval, P., A Multibackground March Test for Static Neighborhood Pattern-Sensitive Faults in

Random-Access Memories, Electronics and Electrical Engineering (Elektronika ir Elektrotechnika) – Section System

Engineering, Computer Technology, Vol. 119 (3), 81-86, 2012, DOI10.5755/j01.eee.119.3.1369 (Q4).

7. Caşcaval, P., Caşcaval, D., March SR3C: A Test for a reduced model of all static simple three-cell coupling faults in

random-access memories, Microelectronics Journal, Elsevier, Vol. 41 (4), 212-218, 2010,

doi:10.1016/j.mejo.2010.02.004 (Q3).

8. Caşcaval, P., Silion, R., Caşcaval, D., A Logic Design for MarchS3C Memory Test BIST Implementation, Romanian

Journal of Information Science and Technology, Vol. 12 (4), 2009, 440-454 (Q2).

9. Caşcaval, P., Bennett, S., Huţanu, C., Efficient March Tests for a Reduced 3-Coupling and 4-Coupling Faults in

Random-Access Memories, Journal of Electronic Testing: Theory and Applications, Springer, Vol. 20 (3), 227–243,

2004 (Q4), https://doi.org/10.1023/B:JETT.0000029457.21312.23.

10. Caşcaval, P., Bennett, S., Efficient March Test for 3-Coupling Faults in Random Access Memories, Microprocessors

and Microsystems, Elsevier Science, Vol. 24 (10), 501–509, 2001 (Q2),

https://doi.org/10.1016/S0141-9331(00)00103-4.

25 septembrie 2023

Prof. Petru Cașcaval

https://doi.org/10.3390/math10193698
https://doi.org/10.1016/j.mejo.2019.104619
https://doi.org/10.1155/2018/5967604

Citation: Cas, caval, P.; Leon, F.

Optimization Methods for

Redundancy Allocation in Hybrid

Structure Large Binary Systems.

Mathematics 2022, 10, 3698. https://

doi.org/10.3390/math10193698

Academic Editor: Ioannis G. Tsoulos

Received: 7 September 2022

Accepted: 6 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimization Methods for Redundancy Allocation in Hybrid
Structure Large Binary Systems
Petru Cas, caval and Florin Leon *

Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi,
Bd. Mangeron 27, 700050 Iasi, Romania
* Correspondence: florin.leon@academic.tuiasi.ro

Abstract: This paper addresses the issue of optimal redundancy allocation in hybrid structure large
binary systems. Two aspects of optimization are considered: (1) maximizing the reliability of the
system under the cost constraint, and (2) obtaining the necessary reliability at a minimum cost. The
complex binary system considered in this work is composed of many subsystems with redundant
structure. To cover most of the cases encountered in practice, the following kinds of redundancy
are considered: active redundancy, passive redundancy, hybrid standby redundancy with a hot or
warm reserve and possibly other cold ones, triple modular redundancy (TMR) structure with control
facilities and cold spare components, static redundancy: triple modular redundancy or 5-modular
redundancy (5MR), TMR/Simplex with cold standby redundancy, and TMR/Duplex with cold
standby redundancy. A classic evolutionary algorithm highlights the complexity of this optimization
problem. To master the complexity of this problem, two fundamentally different optimization
methods are proposed: an improved evolutionary algorithm and a zero-one integer programming
formulation. To speed up the search process, a lower bound is determined first. The paper highlights
the difficulty of these optimization problems for large systems and, based on numerical results, shows
the effectiveness of zero-one integer programming.

Keywords: redundancy allocation; hybrid structure binary systems; Markov chains; evolutionary
algorithms; RELIVE algorithm; zero-one integer programming

MSC: 68M15; 68T20; 90C26

1. Introduction

The problem of reliability optimization in large hybrid systems mainly refers to the
type of the system (binary or multi-state), type of solution (reliability allocation and/or
redundancy allocation), or the kind of redundancy, which can be static (TMR or 5MR, for
example), dynamic (active redundancy or standby redundancy), or hybrid (TMR/Simplex
or TMR/Duplex with spare components, etc.). Useful overviews covering models and
methods for these reliability optimization problems (ROPs), including reliability allocation,
redundancy allocation, and reliability-redundancy allocation can be found in many works,
such as [1–3].

The mathematical formulation of a reliability optimization problem requires the specifi-
cation of three elements: decision variables, imposed constraints, and objective function(s).

The decision variables describe those elements that can be changed or adjusted or the
decisions that can be made to improve system performance, as expressed by the objective
function(s). As examples of decision variables one can mention the types of components
and their characteristics (reliability, cost, etc.), the type of redundancy for each subsystem,
the number of spare components for each subsystem, etc.

The constraints reflect practical design limitations, e.g., a required level of reliability
or the available budget, which occur in almost all cases. But in practice there may be other
limitations, related to the volume or weight of the system, for example.

Mathematics 2022, 10, 3698. https://doi.org/10.3390/math10193698 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193698
https://doi.org/10.3390/math10193698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5382-0940
https://orcid.org/0000-0002-1370-9145
https://doi.org/10.3390/math10193698
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193698?type=check_update&version=2

Mathematics 2022, 10, 3698 2 of 33

The objective function measures the performance of the system for a set of values of
the decision variables. Thus, by optimizing the objective function(s) under the specified
constraints it is possible to identify the combination of values of the decision variables that
leads to the best possible design solution for the studied system.

Usually for ROPs, the goal of optimization is to maximize system reliability or mini-
mize system cost. In reliability engineering the problem of system reliability maximization
under two or more constraints often arises, e.g., under cost constraints, but also under
weight and/or volume constraints. When an analytical approach is possible (e.g., in the
case of active-redundancy-only subsystems), to ensure that two or more constraints are
satisfied, Lagrangian multipliers are often introduced as part of the objective function [4–6].

In this paper we address a class of redundancy allocation problems (RAPs) where
the decision variable is the number of redundant components for each subsystem in a
series redundant reliability model. RAP is one of the most studied reliability optimization
problems, because it has been proven to be quite difficult to solve, and many different
optimization approaches have been used to determine optimal or near-optimal solutions.
As [7] demonstrates, RAPs belong to the NP-hard class of optimization problems.

The RAPs we consider involves hybrid structures with no less than eight types of
redundancy; these are conditions where the optimization problems are difficult to solve,
even if we limit ourselves to single-constraint optimization problems. More specifically,
our goal is to highlight the difficulty of these RAPs for large systems, when the number of
subsystems grows to the order of tens or even hundreds.

In order to master the complexity of RAPs in case of large systems, for which the
difficulty of the problem increases, special research efforts have been made in recent
years. In addition, to cover a wide range of techniques used to increase the reliability
encountered in practice, many hybrid reliability models have been considered for which
the RAPs get even more complicated. For example, [8] investigates a complex reliability-
redundancy allocation problem with a component mixing strategy, which changes the
traditional RAP model to a heterogeneous one. Moreover, in the hybrid reliability models
proposed in [9], the choice of redundancy strategy is considered as a decision variable. So,
for each subsystem, an active or cold standby redundancy may be considered. In addition,
components of different types can be used in each subsystem, i.e., a component mixing
strategy. Consequently, this RAP involves determining a solution that maximizes system
reliability in terms of the type of redundancy and the number of spare components of each
type (for each subsystem). To solve this RAP, a genetic algorithm is developed. Also, a
reliability model based on cold standby redundancy combined with component mixing is
investigated by [10]. For this complex problem, the author proposes a simplified swarm
optimization method in which a multi-role resource sharing strategy is adopted to provide
the diverse system components. Another reliability model based on active or cold standby
redundancy combined with component mixing is investigated in [11]. To solve this RAP,
the authors propose a parallel stochastic fractal search algorithm. Other RAPs involving a
heterogeneous structure and/or component allocation strategy of a different type can be
found in [12–14].

Such a hybrid reliability model is also considered in this paper. In the previously
cited works, RAPs are formulated by considering redundant systems with hybrid re-
dundancy strategies and/or reliability models with heterogeneous components, which
means that each component of a subsystem can have its own failure rate. In this paper
we limit ourselves to the case where subsystems include homogeneous components, but
we extend RAPs to cover more redundancy strategies (not just active redundancy or cold
standby), including static redundancy or reconfigurable structures such as TMR/Simplex
or TMR/Duplex with cold standby redundancy.

To solve redundancy allocation problems of this type, several techniques can be ap-
plied, such as heuristic methods [15–18], Lagrange multiplier analytical methods, and
branch-and-bound techniques, especially for active redundancy [5,6,19,20], dynamic pro-
gramming [21–23], evolutionary algorithms [9,10,24–27], linear programming methods [28–30]

Mathematics 2022, 10, 3698 3 of 33

or a mix of integer and nonlinear programming [31]. As the RAPs we considered are com-
plex, two evolutionary algorithms and a special model of zero-one integer programming
are used.

As the highlights of our contribution we can mention:

• The formalization of two RAPs for binary systems with hybrid structure, which include
no less than eight types of redundancy, where reliability modeling of redundant and
reconfigurable structures is based on Markov chains;

• The design and implementation of two evolutionary algorithms and the formulation
of a zero-one integer program for solving these complex optimization problems;

• Conducting an extensive performance evaluation study of the three proposed tech-
niques on thousands of problems, which demonstrates the effectiveness of the zero-one
integer programming approach for large systems with tens or even hundreds of sub-
systems.

This paper is organized as follows. Section 2 presents the issue addressed, whereas
the types of redundancy considered here and the models or equations used for reliabil-
ity evaluation are presented in detail in Section 3. Some related works are mentioned
in Section 4. The algorithms used for these optimal allocation issues are described in
Section 5. The objective functions adopted for the evolutionary algorithms and for the
linear programming model are reported in Section 6, whereas in Section 7 a lower bound
solution is proven. Experimental results are presented in Section 8. Further discussion
is the subject of Section 9. The conclusions of the paper and several directions of future
research are included in Section 10.

2. Problem Description

For systems with a large number of components without redundancy, reliability is
often very low. To achieve the required reliability, a certain type of redundancy is applied
to a certain element, depending on technical particularities, which can be static, dynamic,
or hybrid redundancy. All of these types of redundancy are considered in this paper.
The reliability model for this redundant system is a series-redundant one as presented in
Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 31

To solve redundancy allocation problems of this type, several techniques can be ap-
plied, such as heuristic methods [15–18], Lagrange multiplier analytical methods, and
branch-and-bound techniques, especially for active redundancy [5,6,19,20], dynamic pro-
gramming [21–23], evolutionary algorithms [9,10,24–27], linear programming methods
[28–30] or a mix of integer and nonlinear programming [31]. As the RAPs we considered
are complex, two evolutionary algorithms and a special model of zero-one integer pro-
gramming are used.

As the highlights of our contribution we can mention:
• The formalization of two RAPs for binary systems with hybrid structure, which in-

clude no less than eight types of redundancy, where reliability modeling of redun-
dant and reconfigurable structures is based on Markov chains;

• The design and implementation of two evolutionary algorithms and the formulation
of a zero-one integer program for solving these complex optimization problems;

• Conducting an extensive performance evaluation study of the three proposed techniques
on thousands of problems, which demonstrates the effectiveness of the zero-one integer
programming approach for large systems with tens or even hundreds of subsystems.
This paper is organized as follows. Section 2 presents the issue addressed, whereas

the types of redundancy considered here and the models or equations used for reliability
evaluation are presented in detail in Section 3. Some related works are mentioned in Sec-
tion 4. The algorithms used for these optimal allocation issues are described in Section 5.
The objective functions adopted for the evolutionary algorithms and for the linear pro-
gramming model are reported in Section 6, whereas in Section 7 a lower bound solution
is proven. Experimental results are presented in Section 8. Further discussion is the subject
of Section 9. The conclusions of the paper and several directions of future research are
included in Section 10.

2. Problem Description
For systems with a large number of components without redundancy, reliability is often

very low. To achieve the required reliability, a certain type of redundancy is applied to a cer-
tain element, depending on technical particularities, which can be static, dynamic, or hybrid
redundancy. All of these types of redundancy are considered in this paper. The reliability
model for this redundant system is a series-redundant one as presented in Figure 1.

Figure 1. Series-redundant reliability model for a complex hybrid system.

The notations used to describe the redundant structures and their reliability evalua-
tion models are presented at the end of the paper. Along with these notations we include
a short nomenclature and some assumptions under which the reliability models are valid.

Typically, in this allocation process the criterion may be reliability, cost, weight, or
volume. One or more criteria can be considered in an objective function, while the others
may be considered constraints, as considered by [22] (pp. 331–338). In this paper, the cri-
teria we consider are reliability and cost, and in this situation, two optimization problems
are frequently encountered in practice:
1. Minimizing the cost of the redundant system for which a required reliability must be

achieved;
2. Maximizing the reliability of the system within a maximum allowed cost.

Figure 1. Series-redundant reliability model for a complex hybrid system.

The notations used to describe the redundant structures and their reliability evaluation
models are presented at the end of the paper. Along with these notations we include a
short nomenclature and some assumptions under which the reliability models are valid.

Typically, in this allocation process the criterion may be reliability, cost, weight, or
volume. One or more criteria can be considered in an objective function, while the others
may be considered constraints, as considered by [22] (pp. 331–338). In this paper, the criteria
we consider are reliability and cost, and in this situation, two optimization problems are
frequently encountered in practice:

1. Minimizing the cost of the redundant system for which a required reliability must be
achieved;

2. Maximizing the reliability of the system within a maximum allowed cost.

Mathematics 2022, 10, 3698 4 of 33

In both cases, from the mathematical point of view, one must solve an optimization
problem with an objective function and constrains. More exactly, for the first problem, one
must minimize the cost function:

Crs = f (C1, C2, · · · , Cn) =
n

∑
i=1

Ci (1)

with the constraint of reliability:

Rrs =
n

∏
i=1

Ri ≥ R∗. (2)

For the second problem, one must maximize the reliability function:

Rrs = f (R1, R2, · · · , Rn) =
n

∏
i=1

Ri (3)

with the cost constraint:
n

∑
i=1

Ci ≤ C∗. (4)

For example, when for all the subsystems an active redundancy is considered, for the
redundant system a series-parallel reliability model results. Thus, the cost and reliability
functions can be expressed by the equations:

Crs =
n

∑
i=1

ciki (5)

Rrs = 1−
n

∏
i=1

(1− ri)
ki (6)

Thus, we have to determine the values k1, k2, . . . , kn that minimize the cost function
in Equation (5) with the reliability constraint in Equation (2), or maximize the reliability
function in Equation (6) with the cost constraint in Equation (4), as the case may be.

3. Types of Redundancy

To cover most situations encountered in practice, the following types of redundancy
are considered in this study, namely:

• active redundancy (tr = A);
• passive redundancy (or cold standby redundancy) (tr = B);
• hybrid standby redundancy with a hot reserve (tr = C) or a warm one (tr = D) and

possibly other cold ones;
• hybrid redundancy consisting of a TMR structure with control facilities and possibly

cold reserves (tr = E);
• static redundancy: TMR or 5MR (tr = F);
• reconfigurable TMR/Simplex type structure with possible other cold-maintained spare

components (tr = G);
• reconfigurable TMR/Duplex type structure with possible other cold-maintained spare

components (tr = H).

The reliability model and the equations used to evaluate the reliability for a subsystem,
depending on the type of redundancy, are presented in this section. Since the time to failure
for a component is assumed to have a negative exponential distribution, the following
equations are valid:

r = e−λT (7)

Mathematics 2022, 10, 3698 5 of 33

and
λT = − ln r (8)

Remember that for any redundant subsystem the spare components are considered
identical to the basic ones.

3.1. Active Redundancy (tr = A)

For this parallel reliability model where all components operate simultaneously, the
well-known equation is applied:

R = 1− (1− r)k, k = 2, 3, . . . (9)

3.2. Passive Redundancy (tr = B)

In this case, one component is in operation and all other identical k− 1 spare compo-
nents are maintained in a cold state, which means that a spare component is switched off
until it is needed to replace the defective one (i.e., a redundant component does not fail in
cold standby mode). The following equation can be applied to this model:

R =
k−1

∑
j=0

(λT)j

j!
e−λT = r

k−1

∑
j=0

(− ln r)j

j!
, k ≥ 2 (10)

Note that Equation (10) is the sum of the first k terms of the Poisson distribution of the
parameter λT.

3.3. Hybrid Standby Redundancy with a Hot (tr = C) or a Warm (tr = D) Spare and Possibly
Other Cold Ones

In this case of standby redundancy, a component is in operation, a spare component
is active or kept in a warm state, and possibly other spare components are kept in cold
conditions as illustrated in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 31

and 𝜆𝑇 = − ln 𝑟 (8)

Remember that for any redundant subsystem the spare components are considered
identical to the basic ones.

3.1. Active Redundancy (𝑡𝑟 = 𝐴)
For this parallel reliability model where all components operate simultaneously, the

well-known equation is applied: 𝑅 = 1 − (1 − 𝑟) , 𝑘 = 2, 3, … (9)

3.2. Passive Redundancy (𝑡𝑟 = 𝐵)
In this case, one component is in operation and all other identical 𝑘 − 1 spare com-

ponents are maintained in a cold state, which means that a spare component is switched
off until it is needed to replace the defective one (i.e., a redundant component does not
fail in cold standby mode). The following equation can be applied to this model:

𝑅 = (𝜆𝑇)𝑗! 𝑒 = 𝑟 (− ln 𝑟)𝑗! , 𝑘 ≥ 2 (10)

Note that Equation (10) is the sum of the first 𝑘 terms of the Poisson distribution of
the parameter 𝜆𝑇.

3.3. Hybrid Standby Redundancy with a Hot (𝑡𝑟 = 𝐶) or a Warm (𝑡𝑟 = 𝐷) Spare and Possibly
Other Cold Ones

In this case of standby redundancy, a component is in operation, a spare component
is active or kept in a warm state, and possibly other spare components are kept in cold
conditions as illustrated in Figure 2.

Figure 2. Standby redundancy with a hot/warm spare component and possibly other cold ones.

A warm component may fail before being put into operation and its failure rate is
less than that of the same component in active mode. Therefore, let 𝛼𝜆, 0 < 𝛼 ≤ 1, be the
failure rate for this reserve. For this type of redundancy, the subsystem reliability function
is obtained based on the Markov method, depending on the total number of components,
as shown below.

3.3.1. Case 1: 𝑘 = 2
Consider a subsystem consisting of a component in operation and a warm-main-

tained reserve. The evolution of this redundant subsystem until failure is illustrated by
the Markov chain presented in Figure 3.

Figure 2. Standby redundancy with a hot/warm spare component and possibly other cold ones.

A warm component may fail before being put into operation and its failure rate is
less than that of the same component in active mode. Therefore, let αλ, 0 < α ≤ 1, be the
failure rate for this reserve. For this type of redundancy, the subsystem reliability function
is obtained based on the Markov method, depending on the total number of components,
as shown below.

3.3.1. Case 1: k = 2

Consider a subsystem consisting of a component in operation and a warm-maintained
reserve. The evolution of this redundant subsystem until failure is illustrated by the Markov
chain presented in Figure 3.

Mathematics 2022, 10, 3698 6 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 6 of 31

Figure 3. Markov chain for subsystem reliability evaluation (𝑘 = 2).

To begin with, let us refer to a general Markov model. Let 𝑆 , 𝑆 ,  .  .   . , 𝑆 be the
states of the Markov chain and 𝐀 = 𝑎 , × be the matrix of state transition rates, where 𝑎 , , 𝑥 ≠ 𝑦, represents the rate of transition from state 𝑆 to state 𝑆 , while an element of
the main diagonal (i.e., 𝑥 = 𝑦) is the negative value of the sum of all the other elements in
the column.

Let 𝑠(𝑡) be the state of the subsystem at the time 𝑡, and 𝑝 (𝑡) = prob(𝑠(𝑡) = 𝑆), 𝑥 ∈ {1, 2, . . , 𝑁}. (11)

To obtain the probability functions 𝑝 (𝑡), 𝑥 = 1: 𝑁, the following system of differen-
tial equations must be solved: 𝐏 = 𝐀 × 𝐏, (12)

where 𝐏 = [𝑝 (𝑡) 𝑝 (𝑡) ⋯ 𝑝 (𝑡)] , and 𝐏 = [𝑝 (𝑡) 𝑝 (𝑡) ⋯ 𝑝 (𝑡)] .
Note that the state probabilities for 𝑡 = 0 are also known.
Let us resume the analysis of the subsystem under study. In the Markov chain pre-

sented in Figure 3, 𝑆 and 𝑆 are successful states, while 𝑆 is a failure state. Thus, the
reliability function of this redundant subsystem can be defined as 𝑅(𝑡) = 𝑝 (𝑡) + 𝑝 (𝑡), 𝑡 ≥ 0. (13)

As the transition rate matrix is:

𝐀 = −(1 + 𝛼)𝜆 0 0(1 + 𝛼)𝜆 −𝜆 00 𝜆 0 , (14)

to determine the probability functions 𝑝 (𝑡) and 𝑝 (𝑡), the following system of differen-
tial equations must be solved: 𝑝 (𝑡) = −(1 + 𝛼)𝜆𝑝 (𝑡)𝑝 (𝑡) = (1 + 𝛼)𝜆𝑝 (𝑡) − 𝜆𝑝 (𝑡) (15)

With the initial values: 𝑝 (0) = 1 and 𝑝 (0) = 𝑝 (0) = 0, by applying the Laplace
transform (ℒ), the following system of algebraic equations results: 𝑠𝑃 (𝑠) − 1 = −(1 + 𝛼)𝜆𝑃 (𝑠)𝑠𝑃 (𝑠) = (1 + 𝛼)𝜆𝑃 (𝑠) − 𝜆𝑃 (𝑠) (16)

where 𝑃 (𝑠) = ℒ {𝑝 (𝑡)}, 𝑖 ∈ {1, 2}, are functions in the frequency domain, and 𝑠 is the La-
place operator. Based on (16), after some algebraic operations, the following functions are
obtained: 𝑃 (𝑠) = 1𝑠 + (1 + 𝛼)𝜆, 𝑃 (𝑠) = (1 + 𝛼)𝜆𝑠 + (1 + 𝛼)𝜆 ∙ 1𝑠 + 𝜆 (17)

After a partial-fraction-expansion, the function 𝑃 (𝑠) can be expressed as follows: 𝑃 (𝑠) = − 1 + 𝛼𝛼 1𝑠 + (1 + 𝛼)𝜆 + 1 + 𝛼𝛼 1𝑠 + 𝜆 (18)

As the function (𝑠) = ℒ{𝑅(𝑡)} = 𝑃 (𝑠) + 𝑃 (𝑠), the following expression results:

Figure 3. Markov chain for subsystem reliability evaluation (k = 2).

To begin with, let us refer to a general Markov model. Let S1, S2, . . . , SN be the
states of the Markov chain and A =

[
ax,y
]

N×N be the matrix of state transition rates, where
ax,y, x 6= y, represents the rate of transition from state Sy to state Sx, while an element of
the main diagonal (i.e., x = y) is the negative value of the sum of all the other elements in
the column.

Let s(t) be the state of the subsystem at the time t, and

px(t) =prob(s(t) = Sx), x ∈ {1, 2, . . . , N}. (11)

To obtain the probability functions px(t), x = 1 : N, the following system of differen-
tial equations must be solved:

P′ = A× P, (12)

where P = [p1(t) p2(t) · · · pN(t)]
T , and P′ =

[
p′1(t) p′2(t) · · · p′N(t)

]T .
Note that the state probabilities for t = 0 are also known.
Let us resume the analysis of the subsystem under study. In the Markov chain

presented in Figure 3, S1 and S2 are successful states, while S3 is a failure state. Thus, the
reliability function of this redundant subsystem can be defined as

R(t) = p1(t) + p2(t), t ≥ 0. (13)

As the transition rate matrix is:

A =

−(1 + α)λ 0 0

(1 + α)λ −λ 0

0 λ 0

, (14)

to determine the probability functions p1(t) and p2(t), the following system of differential
equations must be solved: {

p′1(t) = −(1 + α)λp1(t)

p′2(t) = (1 + α)λp1(t)− λp2(t)
(15)

With the initial values: p1(0) = 1 and p2(0) = p3(0) = 0, by applying the Laplace
transform (L), the following system of algebraic equations results:{

sP1(s)− 1 = −(1 + α)λP1(s)

sP2(s) = (1 + α)λP1(s)− λP2(s)
(16)

where Pi(s) = L {pi(t)}, i ∈ {1, 2}, are functions in the frequency domain, and s is the
Laplace operator. Based on (16), after some algebraic operations, the following functions
are obtained:

P1(s) =
1

s + (1 + α)λ
, P2(s) =

(1 + α)λ

s + (1 + α)λ
· 1
s + λ

(17)

Mathematics 2022, 10, 3698 7 of 33

After a partial-fraction-expansion, the function P2(s) can be expressed as follows:

P2(s) = −
1 + α

α

1
s + (1 + α)λ

+
1 + α

α

1
s + λ

(18)

As the functionR(s) = L{R(t)} = P1(s) + P2(s), the following expression results:

R(s) = 1 + α

α

1
s + λ

− 1
α

1
s + (1 + α)λ

(19)

The reliability function R(t) can then be obtained by applying the inverse Laplace
transform, R(t) = L−1{R(s)}. Thus, the reliability function has the following form:

R(t) =
1 + α

α
e−λt − 1

α
e−(1+α)λt, t ≥ 0, 0 < α ≤ 1. (20)

For a certain period of time T, the component reliability is r = e−λT , so that the
subsystem reliability R as a function of r and α is given by the equation:

R(r, α) =
1 + α

α
r− 1

α
r1+α = r +

1
α

r(1− rα), 0 < α ≤ 1. (21)

For a redundancy subsystem with a larger number of components, the reliability
function can be obtained based on the Markov method in the same way, but algebraic
operations are more complicated. The results for the other two cases are presented below.

3.3.2. Case 2: k = 3

Take a redundant subsystem composed of an active component, a hot/warm spare
component, and another one maintained in cold conditions. For this case, the following
reliability function results:

R(r, α) =
(1 + α)2

α2 r−
(

1 + 2α

α2 − 1 + α

α
ln r
)

r1+α, 0 < α ≤ 1. (22)

3.3.3. Case 3: k = 4

For a redundant subsystem with an active component, a hot/warm spare component,
and two other ones maintained in cold conditions, the reliability function is given by the
following equation:

R(r, α) =
(1 + α)3

α3 r−
(

1 + 3α + 3α2

α3 − 1 + 3α + 2α2

α2 ln r +
(1 + α)2

2α
(ln r)2

)
r1+α, 0 < α ≤ 1. (23)

3.4. TMR Structure with Control Facilities and Cold Spare Components (tr = E)

In this case, another hybrid redundancy is considered. Thus, a redundant system
is composed of a TMR structure with control facilities as a basic structure (i.e., static
redundancy) and possibly one or more components maintained in cold conditions (i.e.,
standby redundancy). This type a hybrid redundancy is illustrated in Figure 4.

The decision logic works on the principle of majority logic, 2 out of 3, called voter and
represented by the symbol V in Figure 4. When one of the three components in operation
(CO1, CO2 or CO3) fails, an error signal indicates the faulty component. Thus, the faulty
component can be replaced with a cold-maintained standby one as soon as possible. In this
way, this redundant hybrid subsystem can tolerate one or more defective components, as
the case may be. For additional decision and control block the failure rate, denoted by λdc,
is expressed based on the basic component rate, λ. In this study, the following expression
is used:

λdc =
λ

β
, β > 1. (24)

Mathematics 2022, 10, 3698 8 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 8 of 31

Figure 4. TMR structure with control facilities and cold spare components.

3.4.1. Case 1: TMR Structure without Standby Redundancy
In case of a TMR structure without reserves (i.e., 𝑘 = 3), the redundant subsystem

can tolerate only one faulty component, so the subsystem reliability function is given by
the well-known equation: 𝑅(𝑟, 𝛽) = (3𝑟 − 2𝑟)𝑟 = (3𝑟 − 2𝑟)𝑟 , 𝛽 > 1 (26)

3.4.2. Case 2: TMR Structure and One Cold Spare Component
A redundant subsystem with hybrid redundancy composed of a TMR structure and

one CSC (i.e., 𝑘 = 4) may tolerate two faulty components. For a start, for the logical block
of decision and control, the possibility of failure is neglected. The reliability evaluation is
made based on the Markov graph given in Figure 5.

Figure 5. Markov chain for subsystem reliability evaluation (𝑘 = 4).

In this graph, 𝑆 , 𝑆 and 𝑆 are successful states, while 𝑆 is a failure one. Given
these aspects, the reliability function of this redundant subsystem is expressed as: 𝑅(𝑡) = 𝑝 (𝑡) + 𝑝 (𝑡) + 𝑝 (𝑡), 𝑡 ≥ 0. (27)

As the transition rate matrix is:

𝐀 = ⎣⎢⎢
⎢⎡−3𝜆 0 0 03𝜆 −3𝜆 0 00 3𝜆 −2𝜆 00 0 2𝜆 0 ⎦⎥⎥

⎥⎤, (28)

by applying Equation (12) in order to determine the probability functions 𝑝 (𝑡), 𝑝 (𝑡)
and 𝑝 (𝑡), the next system of differential equations results:

Figure 4. TMR structure with control facilities and cold spare components.

Consequently, the reliability function for logical decision and control block, denoted
by rdc, is expressed as:

rdc = e−λdcT = e−
λ
β T

=
(

e−λT
)β−1

= rβ−1
, β > 1. (25)

3.4.1. Case 1: TMR Structure without Standby Redundancy

In case of a TMR structure without reserves (i.e., k = 3), the redundant subsystem can
tolerate only one faulty component, so the subsystem reliability function is given by the
well-known equation:

R(r, β) = (3r2 − 2r3)rdc = (3r2 − 2r3)rβ−1
, β > 1 (26)

3.4.2. Case 2: TMR Structure and One Cold Spare Component

A redundant subsystem with hybrid redundancy composed of a TMR structure and
one CSC (i.e., k = 4) may tolerate two faulty components. For a start, for the logical block
of decision and control, the possibility of failure is neglected. The reliability evaluation is
made based on the Markov graph given in Figure 5.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 31

Figure 4. TMR structure with control facilities and cold spare components.

3.4.1. Case 1: TMR Structure without Standby Redundancy
In case of a TMR structure without reserves (i.e., 𝑘 = 3), the redundant subsystem

can tolerate only one faulty component, so the subsystem reliability function is given by
the well-known equation: 𝑅(𝑟, 𝛽) = (3𝑟 − 2𝑟)𝑟 = (3𝑟 − 2𝑟)𝑟 , 𝛽 > 1 (26)

3.4.2. Case 2: TMR Structure and One Cold Spare Component
A redundant subsystem with hybrid redundancy composed of a TMR structure and

one CSC (i.e., 𝑘 = 4) may tolerate two faulty components. For a start, for the logical block
of decision and control, the possibility of failure is neglected. The reliability evaluation is
made based on the Markov graph given in Figure 5.

Figure 5. Markov chain for subsystem reliability evaluation (𝑘 = 4).

In this graph, 𝑆 , 𝑆 and 𝑆 are successful states, while 𝑆 is a failure one. Given
these aspects, the reliability function of this redundant subsystem is expressed as: 𝑅(𝑡) = 𝑝 (𝑡) + 𝑝 (𝑡) + 𝑝 (𝑡), 𝑡 ≥ 0. (27)

As the transition rate matrix is:

𝐀 = ⎣⎢⎢
⎢⎡−3𝜆 0 0 03𝜆 −3𝜆 0 00 3𝜆 −2𝜆 00 0 2𝜆 0 ⎦⎥⎥

⎥⎤, (28)

by applying Equation (12) in order to determine the probability functions 𝑝 (𝑡), 𝑝 (𝑡)
and 𝑝 (𝑡), the next system of differential equations results:

Figure 5. Markov chain for subsystem reliability evaluation (k = 4).

In this graph, S1, S2 and S3 are successful states, while S4 is a failure one. Given these
aspects, the reliability function of this redundant subsystem is expressed as:

R(t) = p1(t) + p2(t) + p3(t), t ≥ 0. (27)

Mathematics 2022, 10, 3698 9 of 33

As the transition rate matrix is:

A =

−3λ 0 0 0

3λ −3λ 0 0

0 3λ −2λ 0

0 0 2λ 0

, (28)

by applying Equation (12) in order to determine the probability functions p1(t), p2(t) and
p3(t), the next system of differential equations results:

p′1(t) = −3λp1(t)

p′2(t) = 3λp1(t)− 3λp2(t)

p′3(t) = 3λp2(t)− 2λp3(t)

(29)

With the initial values: p1(0) = 1, and p2(0) = p3(0) = 0, by applying the Laplace
transform, the following system of algebraic equations is obtained:

sP1(s)− 1 = −3λP1(s)

sP2(s) = 3λP1(s)− 3λP2(s)

sP3(s) = 3λP2(s)− 2λP3(s)

(30)

By solving the system, the following functions in the frequency domain result:
P1(s) = 1

s+3λ

P2(s) = 3λ

(s+3λ)2

sP3(s) = 9λ2

(s+3λ)2 · 1
s+2λ = 9

s+2λ −
9

s+3λ −
9λ

(s+3λ)2 .

(31)

As the function

R(s) = L{R(t)} = P1(s) + P2(s) + P3(s), (32)

the following expression results:

R(s) = 9
s + 2λ

− 8
s + 3λ

− 6λ

(s + 3λ)2 (33)

The reliability function R(t), obtained by applying the inverse Laplace transform, is of
the form:

R(t) = 9e−2λt − 8e−3λt − 6λte−3λt, t ≥ 0. (34)

Finally, taking also into account the reliability of the decision and control logic, the
subsystem reliability R as a function of r and β is given by the equation:

R(r, β) = (9r2 − r3(8− 6 ln r))rdc = (9r2 − r3(8− 6 ln r))rβ−1
, β > 1 (35)

For a hybrid redundancy subsystem with a larger number of CSCs, the reliability
function can be obtained by applying the Markov method in the same way, but algebraic
operations are more complicated. A result obtained for another case is presented as follows.

3.4.3. Case 3: TMR Structure and Two Cold Spare Components

Take a redundant subsystem with hybrid redundancy composed of a TMR structure
and two CSCs (i.e., k = 5). This redundant subsystem can tolerate three defective compo-

Mathematics 2022, 10, 3698 10 of 33

nents. A Markov-based approach similar to the one presented above gives the following
subsystem reliability as a function of r and β:

R(r, β) =
(

27r2 − r3(26− 24 ln r + 9(ln r)2)
)

rβ−1
, β > 1 (36)

3.5. Static Redundancy: TMR or 5MR (tr = F)

This type of redundancy refers to those subsystems for which a static redundancy with
majority logic (TMR or 5MR) can be adopted, depending on the desired level of reliability.
Thus, in the process of finding an optimal solution, the valid values for variable k are 1, 3
and 5.

3.5.1. Case 1: TMR Structure

This case where k = 3 was also considered in Section 3.4, Case 1, so that the reliability
function for this redundant subsystem is given by Equation (25).

3.5.2. Case 2: 5MR Structure

When a 5MR redundancy is adopted (i.e., k = 5), as [22] (pp. 165–176) appreciates,
the additional logic of decision and control is more complex than that used for TMR
redundancy. Consequently, the failure rate, denoted by λ′dc, expressed on the basis of the
failure rate of the basic components, is considered of the form:

λ′dc =
λ

γ
, γ > 1 (37)

where the reduction factor γ is lower than the reduction factor β used for the TMR redun-
dancy. Because the 5MR structure can tolerate two defective components, the reliability of
the subsystem can be calculated as follows:

R(r, γ) = (r5 + 5r4(1− r) + 10r3(1− r)2)λ′dc
=
(
10r3 − 15r4 + 6r5)rγ−1

, γ > 1.
(38)

3.6. TMR/Simplex and Cold Standby Redundancy (tr = G)

This is another case of hybrid redundancy in which the basic structure is reconfig-
urable. Specifically, the redundant subsystem consists of a TMR structure with control and
reconfiguration facilities and other possible CSCs, as shown in Figure 6.

If one of the three components in operation fails, the subsystem continues to operate
successfully based on redundancy, and the control logic generates an error signal indicating
the faulty component. The status of the active component (good or failed) is reflected by
three dedicated flip-flops. For example, Figure 6 illustrates the case where components
CO1 and CO3 work successfully and component CO2 is defective.

When an error signal is activated, the defective component must be replaced with a
spare one as soon as possible to restore the initial fault tolerance state. Let us suppose this
replacement is done quickly enough so reliability is not significantly affected. When only
two components remain in good state, in order to increase the reliability, it is preferable for
only one component to continue to work, not both. This reconfigurable structure is known
as TMR/Simplex [32] (p. 233) or TMR 3-2-1 [22] (p. 152). Note that after a component has
failed, the control logic can no longer correctly indicate another fault, so the values of the
status flip-flops must be preserved until the fault tolerance is restored. This is the role of
the 3-input NAND logic gate in Figure 6.

Mathematics 2022, 10, 3698 11 of 33

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 31

3.5.1. Case 1: TMR Structure
This case where 𝑘 = 3 was also considered in Section 3.4, Case 1, so that the reliabil-

ity function for this redundant subsystem is given by Equation (25).

3.5.2. Case 2: 5MR Structure
When a 5MR redundancy is adopted (i.e., 𝑘 = 5), as [22] (pp. 165–176) appreciates,

the additional logic of decision and control is more complex than that used for TMR re-
dundancy. Consequently, the failure rate, denoted by 𝜆 , expressed on the basis of the
failure rate of the basic components, is considered of the form: 𝜆 = 𝜆𝛾 , 𝛾 > 1 (37)

where the reduction factor 𝛾 is lower than the reduction factor 𝛽 used for the TMR re-
dundancy. Because the 5MR structure can tolerate two defective components, the reliabil-
ity of the subsystem can be calculated as follows: 𝑅(𝑟, 𝛾) = (𝑟 + 5𝑟 (1 − 𝑟) + 10𝑟 (1 − 𝑟))𝜆 = (10𝑟 − 15𝑟 + 6𝑟)𝑟 , 𝛾 > 1. (38)

3.6. TMR/Simplex and Cold Standby Redundancy (𝑡𝑟 = 𝐺)
This is another case of hybrid redundancy in which the basic structure is reconfigu-

rable. Specifically, the redundant subsystem consists of a TMR structure with control and
reconfiguration facilities and other possible CSCs, as shown in Figure 6.

Figure 6. Reconfigurable TMR structure with cold redundancy.

If one of the three components in operation fails, the subsystem continues to operate
successfully based on redundancy, and the control logic generates an error signal indicat-
ing the faulty component. The status of the active component (good or failed) is reflected

Figure 6. Reconfigurable TMR structure with cold redundancy.

For an additional decision, control and reconfiguration logic block, the faulty rate
denoted by λdcr is expressed based on the basic component rate. In this study, the following
equation is used:

λdcr =
λ

δ
, δ > 1 (39)

where the reduction factor δ is lower than the reduction factor β used for TMR redundancy.
Consequently, the reliability function for the logic of decision, control and reconfiguration
denoted by rdcr is expressed as:

rdcr = e−λdcrT = e−
λ
δ T =

(
e−λT

)δ−1

= rδ−1
, δ > 1. (40)

The reliability of the redundant subsystem depends on the number of CSCs, as shown
below.

3.6.1. Case 1: TMR/Simplex without Standby Redundancy

In case of TMR/Simplex redundancy without spare components (i.e., k = 3), the
subsystem reliability function is given by the well-known equation [32], (p. 233):

R(r, δ) = (1.5r− 0.5r3)rdcr = (1.5r− 0.5r3)rδ−1
, δ > 1. (41)

3.6.2. Case 2: TMR/Simplex and One Cold Reserve

For this case of hybrid redundancy, the reliability evaluation is made by applying the
Markov method. For starters, for the logical block of decision, control and configuration
the possibility of failure is neglected. In this condition, the evolution of the redundant
subsystem to failure is illustrated by the Markov chain shown in Figure 7.

Mathematics 2022, 10, 3698 12 of 33

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 31

by three dedicated flip-flops. For example, Figure 6 illustrates the case where components CO and CO work successfully and component CO is defective.
When an error signal is activated, the defective component must be replaced with a

spare one as soon as possible to restore the initial fault tolerance state. Let us suppose this
replacement is done quickly enough so reliability is not significantly affected. When only
two components remain in good state, in order to increase the reliability, it is preferable
for only one component to continue to work, not both. This reconfigurable structure is
known as TMR/Simplex [32] (p. 233) or TMR 3-2-1 [22] (p. 152). Note that after a compo-
nent has failed, the control logic can no longer correctly indicate another fault, so the val-
ues of the status flip-flops must be preserved until the fault tolerance is restored. This is
the role of the 3-input NAND logic gate in Figure 6.

For an additional decision, control and reconfiguration logic block, the faulty rate
denoted by 𝜆 is expressed based on the basic component rate. In this study, the fol-
lowing equation is used: 𝜆 = 𝜆𝛿 , 𝛿 > 1 (39)

where the reduction factor 𝛿 is lower than the reduction factor 𝛽 used for TMR redun-
dancy. Consequently, the reliability function for the logic of decision, control and recon-
figuration denoted by 𝑟 is expressed as: 𝑟 = 𝑒 = 𝑒 = 𝑒 = 𝑟 , 𝛿 > 1. (40)

The reliability of the redundant subsystem depends on the number of CSCs, as
shown below.

3.6.1. Case 1: TMR/Simplex without Standby Redundancy
In case of TMR/Simplex redundancy without spare components (i.e., 𝑘 = 3), the sub-

system reliability function is given by the well-known equation [32], (p. 233): 𝑅(𝑟, 𝛿) = (1.5𝑟 − 0.5𝑟)𝑟 = (1.5𝑟 − 0.5𝑟)𝑟 , 𝛿 > 1. (41)

3.6.2. Case 2: TMR/Simplex and One Cold Reserve
For this case of hybrid redundancy, the reliability evaluation is made by applying the

Markov method. For starters, for the logical block of decision, control and configuration
the possibility of failure is neglected. In this condition, the evolution of the redundant
subsystem to failure is illustrated by the Markov chain shown in Figure 7.

Figure 7. Markov chain for TMR/Simplex and one CSC (𝑘 = 4).

In this graph, 𝑆 , 𝑆 and 𝑆 are states of success, while 𝑆 is a failure state. Conse-
quently, the subsystem reliability is defined as: 𝑅(𝑡) = 𝑝 (𝑡) + 𝑝 (𝑡) + 𝑝 (𝑡), 𝑡 ≥ 0. (42)

Since the transition rate matrix is:

Figure 7. Markov chain for TMR/Simplex and one CSC (k = 4).

In this graph, S1, S2 and S3 are states of success, while S4 is a failure state. Conse-
quently, the subsystem reliability is defined as:

R(t) = p1(t) + p2(t) + p3(t), t ≥ 0. (42)

Since the transition rate matrix is:

A =

−3λ 0 0 0

3λ −3λ 0 0

0 3λ −λ 0

0 0 λ 0

, (43)

based on (12), the following system of differential equations results:
p′1(t) = −3λp1(t)

p′2(t) = 3λp1(t)− 3λp2(t)

p′3(t) = 3λp2(t)− λp3(t)

(44)

With the initial values: p1(0) = 1, and p2(0) = p3(0) = 0, by applying the Laplace
transform, the following system of algebraic equations is obtained:

sP1(s)− 1 = −3λP1(s)

sP2(s) = 3λP1(s)− 3λP2(s)

sP3(s) = 3λP2(s)− λP3(s)

(45)

By solving this equation system, the following functions in the field of Laplace trans-
form are obtained:

P1(s) = 1
s+3λ

P2(s) = 3λ

(s+3λ)2

sP3(s) = 9λ2

(s+3λ)2 · 1
s+λ = 9

4(s+λ)
− 9

4(s+3λ)
− 9λ

2(s+3λ)2

(46)

The reliability function in the field of Laplace transform is:

R(s) = P1(s) + P2(s) + P3(s) =
9

4(s + λ)
− 5

4(s + 3λ)
− 3λ

2(s + 3λ)2 (47)

The reliability function R(t), obtained by applying the inverse Laplace transform, is of
the form:

R(t) =
9
4

e−λt − 5
4

e−3λt − 3
2

λte−3λt, t ≥ 0. (48)

Mathematics 2022, 10, 3698 13 of 33

Finally, taking also into account the reliability of the logical block of decision, control
and configuration, the reliability of the subsystem R as a function of r and δ is given by the
equation:

R(r, δ) =
(
2.25r− r3(1.25− 1.5 ln r)

)
rdcr

=
(
2.25r− r3(1.25− 1.5 ln r

)
)rδ−1

, δ > 1
(49)

3.6.3. Case 3: TMR/Simplex and Two Cold Reserves

Take a reconfigurable subsystem with hybrid redundancy composed of a TMR/Simplex
structure and two CSCs (i.e., k = 5). This redundant subsystem can tolerate three defective
components. A Markov-based approach similar to the one presented above gives the
following subsystem reliability as a function of r and δ:

R(r, δ) =

(
27
8

r− 1
8

(
19− 30 ln r + 18(ln r)2

)
r3
)

rδ−1
, δ > 1 (50)

3.7. TMR/Duplex and Cold Standby Redundancy (tr = H)

As in the previous case, the redundant subsystem has a hybrid redundancy consisting
of a reconfigurable TMR structure and possibly other CSCs, as shown in Figure 6. But this
reconfigurable structure also aims at high operational safety. Thus, when one component
of the TMR structure fails, the other two good components are put into operation in duplex
mode. Specifically, the two components operate in parallel and their outputs are compared
continuously. When the two components no longer generate the same response, an error
signal is activated (as shown in Figure 6), so that the operation is stopped in safe mode.
This reconfigurable structure is called by [32] TMR/Duplex.

Regarding the reliability assessment, note that this redundant subsystem can tolerate
the same number of faulty components as the TMR structure presented in Section 3.4 for
type E redundancy. Consequently, depending on the total number of components (k),
Equations (26), (35) or (36) are valid in this case as well, with the only difference that the
reduction factor β is replaced by δ.

4. Related Work

The problems of maximizing reliability with a cost constraint or minimizing cost with
a reliability constraint can be solved using various methods. One is by solving an analytical
model based on Lagrange multipliers with an alternative indicator for reliability [4]. The
resulting system of algebraic equations can be solved but involve some approximate
relations which may impact the accuracy of the solution. Also, this method gives real-
valued results which must be converted into integers, and this may have a strong impact
on solution quality. Therefore, heuristic methods can be appropriate. For example, one
such technique described by [22] (p. 335) is a greedy approach that tries to make an optimal
choice at each step: starting with the minimum system design, the system reliability is
increased by adding one component to the subsystem with the lowest reliability. This
process is repeated as long as the cost constraint is met.

Another method described by [33] (pp. 499–532) tries to accelerate the allocation
process by noticing that the subsystem with the highest reliability should have the smallest
number of components, and the least reliable subsystem should have the greatest number
of components. Starting with the initial system, the reliability is increased by adding one
component to each subsystem as long as the cost constraint is met. For the most reliable
subsystem, this is the final allocation. The process continues with the other subsystems,
until no allocation is possible any longer.

Pairwise Hill Climbing (PHC) [29] adapts the idea of classic hill climbing to the
reliability-cost problem. Two candidate solutions are generated for each pair of subsystems.
The first candidate is created by adding one component to the first subsystem, i.e., the
direct hill climbing operation. The second is created by adding one component to the first
subsystem and subtracting one from the second subsystem, i.e., a swapping operation. A

Mathematics 2022, 10, 3698 14 of 33

hybrid approach starting from an approximate, but nearly-optimal solution given by the
analytical approach, further improved by PHC was found to provide good results.

The problem can also be expressed as a quadratic unconstrained binary optimization
(QUBO). This formulation has the potential of being solved by the D-Wave quantum
computer as shown by [29] or [34].

The problem must be stated in the form of:

O(q; a, b) = ∑
i

aiqi + ∑
(i, j)

bijqiqj. (51)

The user needs to specify the parameters ai (the weights associated with each qubit)
and bij (the strengths of the couplers between qubits). The expression is minimized by
quantum annealing when run on the quantum computer and the observed qi values of
either 0 or 1 represent the solution. A special procedure is required to transform the
inequality constraint into additional terms to be optimized together with the main objective
function in the same expression [29].

5. The Optimization Algorithms

The experimental studies presented in Section 9 are based on three approaches: a
classical real-valued evolutionary algorithm, an improved evolutionary algorithm called
RELIVE, that combines global search with local search, and a zero-one integer programming
model, i.e., a special case of linear programming. While these techniques have been
extensively used for various optimization problems, an original contribution of the current
paper is the design of the objective functions corresponding to the problem under study,
described in Section 6.

5.1. Classic Evolutionary Algorithm

Evolutionary algorithms (EAs) are inspired by biological natural selection [35,36].
They maintain a population of individuals (or chromosomes) which are potential solu-
tions, i.e., different values of the x input of the objective function f (x) that needs to be
optimized. There are three main genetic operators which are repeatedly applied for a
pre-specified number of generations or until a convergence criterion is satisfied: selection
(which identifies “parents”, such that individuals with better objective functions have a
higher probability of being selected), crossover (which combines the genes of two parents
and creates an offspring), and mutation (which may change some genes of a child before it
is inserted into the new population). All these operators are stochastic, but the constant
favoring of better individuals to reproduce drives the algorithm towards increasingly better
solutions, while random changes in the chromosomes try to prevent it from convergence
into local optima. For the experiments in Section 8, the standard evolutionary algorithm
(SEA) uses the following types of operators and parameters:

• tournament selection with two individuals;
• elitism is used, i.e., the best individual is directly copied into the next generation;
• arithmetic crossover, where a child chromosome is a linear combination of the parent

chromosomes, with a probability of 0.9;
• mutation by gene resetting, where the value of a randomly selected gene is set to a

random number from a uniform distribution defined on its domain of definition, with
a probability of 0.2;

• stopping criterion with a fixed number of generations; depending on the experiment
1000 or 10,000 generations are used.

5.2. RELIVE

The cross-generational evolutionary algorithm with local improvements (RELIVE) [4]
is an original evolutionary algorithm which performs secondary local searches in addition
to the main global search and includes the concept of personal improvement of individuals
that survive for several generations, instead of just one. Since the lifespan of individuals is

Mathematics 2022, 10, 3698 15 of 33

no longer fixed, the size of the population is variable. Personal improvement is based on
a number of hill climbing steps in each generation. During a generation, the individuals
undergo the classic evolution based on selection, crossover and mutation. Another typical
feature of RELIVE is the way in which it encourages exploration. This has proved particu-
larly useful for difficult optimization problems such as the one addressed in our work. First,
a few newly created chromosomes are added in each generation. Secondly, to generate a
neighbor state in the hill climbing stage, three types of mutation are used with different
probabilities: Gaussian mutation, resetting mutation, and pairwise mutation, where two
genes exchange a unit, i.e., one’s value is incremented and the other’s value is decremented.
The latter type is again specifically designed for problems involving integer solutions, such
as the present one. For the experiments in Section 8, RELIVE uses the following parameter
values:

• the initial size of the population is 50;
• the fraction of newly generated chromosomes in a generation is 0.25;
• the life span of an individual is 4;
• the number of neighbors generated for hill climbing is 20;
• the number of hill climbing steps is 20;
• the probability of overall mutation is 0.2, divided into:

Gaussian mutation, with a probability of 0.05, where the value of a randomly
selected gene is set to a normal random number with the mean equal to the
original gene value and a standard deviation of 2;

resetting mutation, with a probability of 0.05, where the value of a randomly
selected gene is set to a random number from a uniform distribution defined on
its domain of definition is 0.25;

pairwise mutation, with a probability of 0.1, where two genes exchange a unit.

For the rest of the operators RELIVE uses, like SEA, tournament selection with two
individuals, elitism, arithmetic crossover, with a probability 0.9, and a maximum number
of 100 or 1000 generations.

5.3. Linear Programming

Linear programming (LP) is an optimization method aimed at problems with a lin-
ear objective function and linear constraints. There are several specific LP algorithms
implemented in various libraries and programs. For our experiments, lpsolve [28] was
used, which implements an optimized version of the simplex algorithm proposed by [37].
Depending on the nature of the optimization problem, it can select either the primal or the
dual method, with factorization and scaling procedures to increase numerical stability. The
problem we address in this paper is in fact cast as a zero-one integer programming (01IP)
problem, a special case of LP.

6. Designing the Objective Functions
6.1. Evolutionary Algorithms
6.1.1. Problem Definition

For the two evolutionary algorithms, the objective (or fitness) function closely follows
the definition of the two correlated problems stated in Section 3 and repeated here for
convenience.

The maximization of the reliability with a maximum cost limit can be expressed as:
Maximize :

n
∏
i=1

Ri

subject to :
n
∑

i=1
Ci ≤ C∗

(52)

Mathematics 2022, 10, 3698 16 of 33

The minimization of the cost of the redundant system with a required reliability can
be expressed as:

Minimize :
n
∑

i=1
Ci

subject to :
n
∏
i=1

Ri ≥ R∗
(53)

As Ci and Ri are computed by means of the equations detailed in Section 3, which
depend on the number of components for each subsystem, the optimization problem
reduces to finding k1, k2, . . . , and kn.

For the two evolutionary algorithms, the fitness functions are the expressions in (52)
and (53) that need to be optimized. Since an EA maximizes the fitness function by default,
in case of (53), the negative of the sum of costs is actually used as the fitness function.
The encoding of the problem uses real values, thus the chromosomes have n real genes,
corresponding to ki. The domain of the genes is [1, kmax], i.e., 1 ≤ ki ≤ kmax. It depends on
the problem and therefore kmax needs to be chosen by the user.

6.1.2. Genotype-Phenotype Mapping

The real values involved in the evolutionary search are interpreted as integer values
for ki before the computation of the fitness function. Therefore, the first step is to round the
real values to the nearest integer:

kp
i =

⌊
kg

i + 0.5
⌋

(54)

where kg
i reflects the genotype (the actual value of the gene), and kp

i reflects the phenotype
(its interpretation for further use).

Because in our case studies, for some types of redundancy we limited ourselves to a
certain number of spare components as sufficient, another important issue is related to the
unsuitability of some values of ki for certain subsystems. Therefore, the adjustment rules in
Table 1 are used to interpret the values of ki as valid ones.

Table 1. Adjustment rules for phenotype interpretation.

Redundancy Type Adjustment Rule

tr = A or tr = B No adjustment

tr = C if kp
i > 5 then kp

i ← 5

tr = D if kp
i > 4 then kp

i ← 4

tr = E
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

tr = F
if kp

i < 4 then kp
i ← 3

else kp
i ← 5

tr = G
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

tr = H
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

It must be mentioned that trying to enforce a valid domain for each subsystem gene a
priori would have caused discontinuities in the evolutionary search, would have decreased
the genetic diversity, and thus would have led to inferior results.

Mathematics 2022, 10, 3698 17 of 33

6.1.3. Chromosom Repairing Procedure

Although expressed with a very simple equation, because of the possibly large size of
a problem (e.g., n = 50 or n = 100, as considered in our case studies), the constraints are
actually difficult to satisfy.

A naïve approach based on penalties for constraint violation decreases the genetic
diversity to such an extent that the algorithms usually fail to find any solution at all, or find
feasible solutions very far from the optimum.

Therefore, one can apply a repairing procedure for the chromosomes, such that even
if a certain individual resulted from the application of the genetic operators is initially
unfeasible, it can be slightly modified to become feasible. In this way, all the individuals
in the population represent feasible solutions and the evolutionary algorithm focuses on
optimizing the fitness function.

For the reliability maximization problem with cost constraints, a random repairing
method is applied. Iteratively, a subsystem whose ki > 1 is randomly selected and its ki is
decreased by 1, until the overall cost of the system becomes smaller than C∗.

Alternative methods were also attempted, but they were slower with no significant
improvement of results:

• The selection of the subsystem with the highest cost. Because of the genotype-
phenotype distinction, this could sometimes lead to infinite loops (e.g., the repairing
procedure decrements a value, and the corresponding adjustment rule increments it);

• The selection of the subsystem with the highest reliability. This is even slower because
it requires the recomputation of the system reliability after each ki is decremented,
with i from 1 to n.

The repairing procedure for the cost minimization with reliability constraints proved
much more challenging. Eventually, a random repairing method was also applied in this
case. Iteratively, a subsystem whose ki < kmax is randomly selected and its ki is increased
by 1, until the overall reliability of the system becomes greater than R∗. However, the
way in which this increment affects the overall system reliability is nonlinear. Simple
random selection may be very slow, because it may take several trials to choose the proper
subsystem whose increased reliability may turn the overall reliability above the imposed
threshold. That is why a specified number of repairing attempts trials is imposed (e.g., 10).
If after these repeated trials the reliability does not exceed R∗, the individual is penalized
with a very low value for its fitness function (e.g., −106) and thus becomes likely to be
excluded from the evolutionary selection process.

Several other alternative methods were attempted as well, but they all had various
drawbacks compared to the random method presented above:

• The selection of the subsystem with the lowest reliability. This method is slower and
its results are not much better;

• A more elaborate method, where the number of components is increased on layers,
with subsystems taken in a random order. When one layer of incrementation is
completed, the next one begins. This method was the slowest, about an order of
magnitude slower than random selection.

6.2. Linear Programming

The objective function is transformed in a different way in order to apply 01IP opti-
mization. This is based on the idea proposed by [29]. The maximization of the product
is equivalent to the maximization of the sum of logarithms. The desired solutions of the
problem, i.e., ki, i = 1 : n, are included as separate terms, one for each possible result, from
1 to kmax:

Maximize :
n

∑
i=1

kmax

∑
j=1

xij· ln Ri(j) (55)

Mathematics 2022, 10, 3698 18 of 33

where xij ∈ {0, 1}, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , kmax}, is a binary variable that shows
that for subsystem i, j components are needed to maximize reliability. The notation Ri(j)
signifies the reliability of subsystem i when it contains j redundant components.

For a subsystem i, only one solution is possible, i.e., its binary indicator must be 1, and
the rest must be 0, and this can be written as an additional constraint:

kmax

∑
j=1

xij = 1, ∀i ∈ {1, . . . , n} (56)

The main constraint of the problem is also expressed by using a different term for each
possible solution:

n

∑
i=1

kmax

∑
j=1

xij·j·ci ≤ C∗ (57)

For the cost minimization problem, the formulation becomes:

Maximize :

n
∑

i=1

kmax
∑

j=1
xij·j·ci

subject to :

n
∑

i=1

kmax
∑

j=1
xij· ln Ri(j) ≥ R∗

kmax
∑

j=1
xij = 1, ∀i ∈ {1, . . . , n}

(58)

The genotype-phenotype mapping described above is also used here to compute
the reliability of the subsystems by handling the ki values that are not allowed for the
corresponding subsystem type.

7. Lower Bound Solution

The minimum system design represents the first step toward achieving an optimized
system design. Let us consider the optimization problem in which the required reliability
R∗ must be achieved at a minimum cost. To obtain a lower bound solution expressed by
the values k′i, i = 1 : n, as the first step for optimization, an improved version of Albert’s
method [22,38] is used. Albert’s method assumes that as spare elements are added, the
reliability of the subsystems tends to become more uniform. This method involves the
following steps:

Step 1. The components are renumbered so that the reliabilities are in increasing order:

r1 ≤ r2 ≤ · · · ≤ rn. (59)

Step 2. Let m be the lower limit to which all subsystems certainly require an additional
allocation. According to Albert’s method, the limit m is adopted so that

rm ≤ R∗ < rm+1, (60)

or m = n in case of rn ≤ R∗.
As an improved version, we propose that the limit m be adopted as the highest value

for which the following condition is met:

rmrm+1 · · · rn < R∗. (61)

Mathematics 2022, 10, 3698 19 of 33

Let R be the reliability level that the first m subsystems must reach. Based on the
condition that:

Rmrm+1rm+2 · · · rn ≥ R∗, (62)

for R the following condition results:

R ≥ (R∗/(rm+1rm+2 · · · rn))
m−1

. (63)

Step 3. With this intermediate result (reliability value R), for each subsystem i, i = 1:m,
depending on the redundancy type, the lower bound k′i is then determined. For example,
for a subsystem i with active redundancy (tr = A), the following equations apply:

1− (1− ri)
ki ≥ R = (1− ri)

ki ≤ 1− R, i = 1 : m (64)

After applying the logarithm we get:

ki ln(1− ri) ≤ ln(1− R), (65)

and then:

ki ≥
ln(1− R)
ln(1− ri)

, i = 1 : m (66)

So, the lower bound as an integer value is:

k′i =
⌊

ln(1− R)
ln(1− ri)

⌋
+ 1, i = 1 : m (67)

where the equations are too complicated, the lower bound is determined iteratively, and
not algebraically.

For other components with higher reliability, the lower bound corresponds to the
non-redundant variant, so that:

k′i = 1, i = m + 1 : n (68)

Based on this lower bound solution, the search for an optimal solution can decrease
significantly.

8. Experimental Results

In order to evaluate the effectiveness of the proposed algorithms, a large number of
optimization problems of the order of thousands were analyzed. For all these optimization
problems, all eight types of redundancy presented in Section 3 are considered. For any of the
n subsystems, the type of redundancy is randomly generated based on the predetermined
weights, as shown in Table 2.

Table 2. Weights for types of redundancy considered in experimental studies.

Type of Redundancy A, B, C, D E, F, G, H

Weight 15% 10%

Component reliabilities and costs are also randomly generated. In terms of cost, the
values are in the range of [1, 50] units for all n subsystems. In terms of reliability, the value
ranges depend on the type of redundancy, as shown in Table 3.

Table 3. Value ranges for component reliability by type of redundancy.

Type of Redundancy A, B, C, D E, F, G, H

Weight [0.9, 1) [0.95, 1)

Mathematics 2022, 10, 3698 20 of 33

Regarding the coefficient α and the reduction factors β and δ, the values are randomly
generated in the ranges:

0 < α < 1, 50 ≤ β ≤ 100, 40 ≤ δ ≤ 80 (69)

In the case of type F redundancy subsystems, the value of the reduction factor γ is
taken as half of the value for β (γ = β/2).

For the optimization problems we address, two levels of complexity were taken into
account, when n = 50 and n = 100. For each case, extensive experimental studies were
performed, including thousands of optimization problems.

For each reliability model, the proposed algorithms were tested taking into account
both optimization problems. Specifically, for any reliability model, the study on the optimal
allocation of redundancy was conducted in this way. First, the issue of redundancy alloca-
tion is considered to maximize system reliability at a maximum allowable cost C∗ = 3×Cns.
Let Rmax be the maximum system reliability obtained in this way. Then, another redundancy
allocation problem is solved to obtain the required reliability R∗ = Rmax at a minimum
cost. In this way, either the solution from the first optimization problem is validated, or an
improved solution is obtained.

This is the final allocation that we consider, reflected by the vector k and for which the
reliability and cost are Rrs and Crs, respectively. For any allocation solution, the redundancy
efficiency is then calculated as follows:

E f =
1− Rsn

1− Rrs
. (70)

Efficiency is a more intuitive indicator that shows how often the risk of a failure for
the redundant system decreases compared to the basic, non-redundant one.

To illustrate this approach, the numerical results of four experimental studies (problems
P1 − P4) are presented below. First, two reliability models for a system with 50 subsystems
are considered (problems P1 and P2). All the details of these models are presented in
Tables 4 and 5.

Each problem is defined by a set of n tuples corresponding to the parameters of
its subsystems. In Table 4, we define a problem with 50 subsystems, therefore we have
50 tuples. The first number in the tuple, i, goes from 1 to 50. The second item of a tuple is
the subsystem type. It is identified by a letter following the convention defined in Section 3.
For example, the first tuple (1: D, 0.989, 39; α = 0.55) has tr1 = D, which corresponds
to hybrid standby redundancy with a warm reserve and possibly other cold ones. The
following two numbers identify the reliability and the cost of a single component. Again,
for the first tuple, the reliability is r1 = 0.989 and the cost is c1 = 39.

Mathematics 2022, 10, 3698 21 of 33

Table 4. Problem P1 for n = 50 subsystems.

Structural Details: Tuples of (i: tri,ri, ci) Extended with Parameters αi, βi, or as Appropriate, i = 1:n.

(1: D, 0.989, 39; α = 0.55), (2: C, 0.958, 25), (3: C, 0.905, 41), (4: E, 0.952, 46; β = 50), (5: C, 0.975, 44), (6: A, 0.984, 14),
(7: D, 0.939, 43; α = 0.86), (8: A, 0.944, 13), (9: G, 0.987, 48; δ = 74), (10: A, 0.914, 9), (11: H, 0.955, 32; δ = 65), (12: A, 0.986, 41), (13: D,
0.957, 16; α = 0.84), (14: D, 0.920, 1; α = 0.31), (15: C, 0.913, 27), (16: A, 0.985, 8), (17: A, 0.902, 9), (18: F, 0.956, 26; β = 80, γ = 40),
(19: B, 0.910, 32),
(20: F, 0.986, 42; β = 95, γ = 48), (21: F, 0.968, 47; β = 80, γ = 40), (22: D, 0.965, 47; α = 0.24), (23: H, 0.981, 31; δ = 72), (24: H, 0.982, 31;
δ = 53),
(25: F, 0.953, 45; β = 77, γ = 39), (26: B, 0.959, 18), (27: H, 0.962, 13; δ = 49), (28: E, 0.974, 46; β = 98), (29: C, 0.915, 26), (30: D, 0.983, 18;
α = 0.74),
(31: H, 0.975, 8; δ = 47), (32: A, 0.988, 12), (33: A, 0.971, 21), (34: C, 0.909, 17), (35: C, 0.953, 7), (36: C, 0.926, 7), (37: D, 0.989, 8;
α = 0.74),
(38: C, 0.906, 43), (39: H, 0.971, 11; δ = 66), (40: C, 0.944, 16), (41: E, 0.989, 21; β = 79), (42: A, 0.907, 36), (43: B, 0.942, 5), (44: C,
0.975, 18),
(45: F, 0.961, 42; β = 95, γ = 48), (46: G, 0.979, 8; δ = 60), (47: E, 0.970, 38; β = 82), (48: H, 0.952, 23; δ = 48), (49: G, 0.958, 15; δ = 68),
(50: C, 0.975, 7)

Cns = 1241, C∗ = 3× Cns = 3723

Table 5. Problem P2 for n = 50 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, or as Appropriate, i = 1:n.

(1: D, 0.925, 39; α = 0.42), (2: B, 0.985, 31), (3: E, 0.968, 29; β = 67), (4: A, 0.969, 35), (5: B, 0.904, 36), (6: A, 0.909, 18), (7: F, 0.973, 6;
β = 92, γ = 46),
(8: C, 0.976, 10), (9: C, 0.947, 19), (10: C, 0.940, 33), (11: A, 0.931, 22), (12: G, 0.970, 35; δ = 62), (13: H, 0.966, 14; δ = 69), (14: B,
0.989, 31),
(15: A, 0.945, 41), (16: C, 0.974, 17), (17: B, 0.980, 47), (18: H, 0.972, 4; δ = 79), (19: C, 0.917, 44), (20: B, 0.902, 32), (21: B, 0.981, 1),
(22: C, 0.983, 34),
(23: F, 0.983, 12; β = 92, γ = 46), (24: G, 0.960, 12; δ = 54), (25: D, 0.936, 28; α = 0.41), (26: G, 0.965, 11; δ = 56), (27: F, 0.976, 7; β = 53,
γ = 26),
(28: B, 0.978, 10), (29: H, 0.972, 21; δ = 55), (30: C, 0.980, 2), (31: G, 0.975, 46; δ = 41), (32: B, 0.901, 46), (33: H, 0.972, 26; δ = 56), (34: C,
0.928, 7),
(35: A, 0.909, 5), (36: A, 0.977, 49), (37: D, 0.973, 22; α = 0.72), (38: C, 0.918, 42), (39: A, 0.930, 29), (40: B, 0.986, 37), (41: G, 0.968, 37;
δ = 60),
(42: G, 0.977, 31; δ = 41), (43: F, 0.981, 41; β = 84, γ = 42), (44: G, 0.975, 33; δ = 40), (45: B, 0.975, 25), (46: E, 0.965, 37; β = 81), (47: B,
0.941, 20),
(48: F, 0.979, 8; β = 86, γ = 43), (49: F, 0.964, 40; β = 58, γ = 29), (50: E, 0.967, 25; β = 64)

Cns = 1287, C∗ = 3× Cns = 3861

The rest of the parameters depend on the subsystem type. They were defined in the
mathematical description in Sections 3.1–3.7, but for convenience we include a summary
here with the list of the parameters used for each type of subsystems:

• active redundancy (tr = A), passive redundancy (or cold standby redundancy) (tr = B),
and hybrid standby redundancy with a hot reserve (tr = C) and possibly other cold
ones: no additional parameters;

• hybrid standby redundancy with a warm reserve (tr = D) and possibly other cold
ones: parameter α (the coefficient of reduction of the failure rate for a warm-maintained
reserve compared to the failure rate of the component in operation);

• hybrid redundancy consisting of a TMR structure with control facilities and possibly
cold reserves (tr = E): parameter β (the reduction factor used to express the failure
rate of the decision and control logic of a TMR structure based on the failure rate of
the basic components);

• static redundancy: TMR or 5MR (tr = F): parameters β (as above) and γ (the reduction
factor used to express the failure rate of the decision and control logic of a 5MR
structure based on the failure rate of the basic components);

Mathematics 2022, 10, 3698 22 of 33

• reconfigurable TMR/Simplex type structure with possible other cold-maintained spare
components (tr = G) and reconfigurable TMR/Duplex type structure with possible
other cold-maintained spare components (tr = H): parameter δ (the reduction factor
used to express the failure rate of the decision, control and reconfiguration logic of
a TMR/Simplex or a TMR/Duplex structure based on the failure rate of the basic
components).

For example, in Table 4, since subsystem 1 is of type D, its parameter α1 is 0.55. Since
subsystem 4 is of type E, its parameter β4 is 50. The subscripts were omitted to avoid
cluttering the table, but the parameters have distinct values for each subsystem, i.e., they
are αi, βi, γi or δi.

On the last line, one can see the cost of the non-redundant system Cns and the maxi-
mum allowable cost of the system C∗, chosen to be three times greater than Cns. C∗ could
have in fact any value, but greater values do not make the problem harder, because the
main difficulty lies in finding the proper distribution of redundant components in the
“upper” part of the allocation. Greater values for C∗ would lead to a certain number of
redundant components included for all subsystems, and then the main issue would also lie
in this “upper” part of the allocation.

The redundancy allocation for these problems generated by the three proposed al-
gorithms after the first optimization process, that tries to maximize system reliability at a
maximum allowable cost C∗, is presented in Tables 6 and 7.

Table 6. Best solutions to problem P1 after first optimization (maximizing reliability under cost
constraint: C∗ = 3723).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA 2, 2, 3, 4, 2, 2, 3, 4, 3, 5, 4, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3,
2, 5, 4, 3, 2, 4, 3, 2, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2 3719 0.973398 33.714

RELIVE 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

LP 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

Table 7. Best solutions to problem P2 after first optimization (maximizing reliability under cost
constraint: C∗ = 3861).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA 3, 2, 4, 2, 3, 3, 3, 2, 3, 3, 4, 4, 5, 2, 3, 3, 2, 5, 3, 3, 8, 2, 3, 4, 3,
4, 3, 2, 4, 5, 3, 3, 4, 5, 4, 2, 4, 3, 3, 2, 3, 3, 3, 3, 2, 4, 3, 3, 3, 4 3856 0.978930 41.911

RELIVE 3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

LP 3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

The solutions after the second optimization process trying to minimize the cost under
the reliability constraint Rrs ≥ R∗ = Rmax are presented in Tables 8 and 9.

Mathematics 2022, 10, 3698 23 of 33

Table 8. Best solutions to problem P1 after second optimization (minimizing cost under reliability
constraint R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R* = 0.973398

2, 3, 3, 4, 2, 2, 3, 3, 3, 3, 4, 2, 3, 4, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 5, 3, 3, 2, 4, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3 3658 0.973465 33.798

RELIVE
R* = 0.977724

2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

LP
R* = 0.977724

2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

Table 9. Best solutions to problem P2 after second optimization (minimizing cost under reliability
constraint R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R* = 0.978930

3, 2, 4, 3, 3, 4, 3, 2, 3, 3, 3, 3, 4, 2, 3, 2, 2, 5, 3, 3, 2, 2, 3, 4, 3,
4, 3, 2, 4, 4, 3, 3, 4, 3, 5, 2, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3819 0.979250 42.556

RELIVE
R* = 0.981474

3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

LP
R* = 0.981474

3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

For the second experiment, more complex reliability models corresponding to a system
with 100 subsystems are considered (problems P3 and P4). These models are presented in
Tables 10 and 11.

Table 10. Problem P3 for n = 100 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, γi or as Appropriate, i = 1:n.

(1: F, 0.987, 9; β = 75, γ = 38), (2: H, 0.970, 16; δ = 40), (3: F, 0.959, 20; β = 82, γ = 41), (4: C, 0.984, 40), (5: B, 0.919, 23), (6: D, 0.953, 9;
α = 0.34),
(7: G, 0.985, 8; δ = 44), (8: A, 0.966, 23), (9: H, 0.978, 38; δ = 48), (10: B, 0.908, 5), (11: C, 0.919, 23), (12: A, 0.946, 18), (13: A, 0.969, 42),
(14: F, 0.970, 15; β = 94, γ = 47), (15: B, 0.921, 17), (16: B, 0.913, 32), (17: D, 0.905, 15; α = 0.41), (18: H, 0.958, 14; δ = 58), (19: B,
0.963, 12),
(20: B, 0.930, 29), (21: A, 0.954, 18), (22: C, 0.989, 27), (23: A, 0.990, 7), (24: C, 0.983, 23), (25: D, 0.928, 10; α = 0.22), (26: E, 0.958, 13;
β = 93),
(27: A, 0.962, 25), (28: F, 0.967, 20; β = 53, γ = 27), (29: G, 0.970, 36; δ = 67), (30: B, 0.972, 20), (31: C, 0.943, 23), (32: G, 0.982, 43; δ = 58),
(33: H, 0.978, 45; δ = 64), (34: B, 0.952, 20), (35: A, 0.944, 7), (36: C, 0.969, 19), (37: F, 0.953, 43; β = 57, γ = 29), (38: G, 0.953, 18; δ = 47),
(39: H, 0.987, 25; δ = 54), (40: A, 0.940, 25), (41: B, 0.962, 43), (42: H, 0.958, 31; δ = 77), (43: A, 0.947, 26), (44: E, 0.984, 48; β = 57),
(45: E, 0.969, 6; β = 87), (46: A, 0.900, 46), (47: C, 0.945, 47), (48: G, 0.967, 8; δ = 52), (49: F, 0.961, 27; β = 64, γ = 32), (50: E, 0.971, 44;
β = 82), (51: B, 0.912, 47),
(52: F, 0.968, 34; β = 52, γ = 26), (53: G, 0.978, 19; δ = 51), (54: E, 0.966, 32; β = 69), (55: B, 0.946, 35), (56: C, 0.983, 32), (57: H, 0.970, 10;
δ = 50),
(58: D, 0.926, 46; α = 0.61), (59: H, 0.975, 30; δ = 77), (60: D, 0.902, 10; α = 0.99), (61: D, 0.982, 33; α = 0.30), (62: A, 0.940, 38), (63: C,
0.922, 37),
(64: F, 0.986, 19; β = 78, γ = 39), (65: G, 0.975, 32; δ = 59), (66: D, 0.938, 30; α = 0.22), (67: B, 0.974, 22), (68: H, 0.958, 22; δ = 70), (69: E,
0.951, 9; β = 75), (70: G, 0.969, 48; δ = 77), (71: D, 0.905, 38; α = 0.21), (72: E, 0.989, 47; β = 64), (73: H, 0.962, 38; δ = 63), (74: B, 0.923,
37), (75: H, 0.976, 36; δ = 53),
(76: A, 0.937, 36), (77: B, 0.942, 2), (78: C, 0.913, 8), (79: E, 0.968, 18; β = 69), (80: C, 0.928, 14), (81: B, 0.962, 16), (82: C, 0.924, 17),
(83: A, 0.913, 42),
(84: A, 0.987, 41), (85: A, 0.960, 22), (86: D, 0.902, 39; α = 0.72), (87: H, 0.953, 24; δ = 54), (88: B, 0.925, 13), (89: H, 0.953, 35; δ = 65),
(90: E, 0.972, 24; β = 86), (91: D, 0.924, 9; α = 0.48), (92: B, 0.971, 46), (93: H, 0.969, 37; δ = 66), (94: D, 0.980, 15; α = 0.11), (95: E, 0.972,
41; β = 80),
(96: B, 0.922, 6), (97: E, 0.988, 44; β = 54), (98: C, 0.955, 7), (99: F, 0.960, 16; β = 90, γ = 45), (100: A, 0.904, 25)

Cns = 2579, C∗ = 3× Cns = 7737

Mathematics 2022, 10, 3698 24 of 33

Table 11. Problem P4 for n = 100 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, γi or as Appropriate, i = 1:n.

(1: D, 0.974, 45; α = 0.98), (2: B, 0.902, 13), (3: C, 0.955, 24), (4: D, 0.958, 21; α = 0.91), (5: E, 0.954, 39; β = 82), (6: A, 0.923, 46), (7: D,
0.952, 8; α = 0.23),
(8: B, 0.900, 33), (9: A, 0.926, 19), (10: D, 0.933, 3; α = 0.55), (11: D, 0.973, 4; α = 0.13), (12: E, 0.976, 2; β = 100), (13: D, 0.912, 12;
α = 0.43),
(14: G, 0.963, 19; δ = 45), (15: B, 0.975, 27), (16: D, 0.985, 11; α = 0.23), (17: C, 0.984, 34), (18: B, 0.940, 47), (19: F, 0.981, 35; β = 79,
γ = 40),
(20: F, 0.961, 20; β = 79, γ = 39), (21: D, 0.929, 17; α = 0.36), (22: H, 0.989, 7; δ = 63), (23: E, 0.977, 1; β = 57), (24: A, 0.943, 44),
(25: F, 0.965, 40; β = 97, γ = 48), (26: E, 0.982, 34; β = 97), (27: F, 0.974, 49; β = 79, γ = 39), (28: H, 0.969, 12; δ = 42), (29: D, 0.949, 45;
α = 0.44),
(30: G, 0.977, 11; δ = 56), (31: D, 0.915, 2; α = 0.48), (32: C, 0.975, 10), (33: A, 0.904, 10), (34: A, 0.928, 16), (35: H, 0.976, 49; δ = 65),
(36: E, 0.958, 25; β = 55), (37: D, 0.962, 47; α = 0.15), (38: B, 0.909, 1), (39: H, 0.960, 37; δ = 44), (40: B, 0.923, 49), (41: C, 0.907, 32),
(42: E, 0.985, 49; β = 63), (43: B, 0.918, 4), (44: F, 0.964, 38; β = 90, γ = 45), (45: A, 0.952, 36), (46: B, 0.945, 41), (47: C, 0.906, 16),
(48: D, 0.915, 24; α = 0.70), (49: B, 0.905, 21), (50: A, 0.902, 20), (51: C, 0.969, 15), (52: H, 0.964, 24; δ = 51), (53: D, 0.916, 44; α = 0.68),
(54: E, 0.973, 37; β = 53), (55: C, 0.945, 13), (56: D, 0.976,38; α = 0.23), (57: D, 0.931, 13; α = 0.09), (58: B, 0.912, 30), (59: F, 0.960, 31;
β = 71, γ = 35),
(60: A, 0.925, 5), (61: B, 0.958, 46), (62: E, 0.954, 46; β = 57), (63: F, 0.968, 38; β = 85, γ = 43), (64: B, 0.955, 8), (65: H, 0.958, 1; δ = 59),
(66: B, 0.988, 44),
(67: D, 0.954, 42; α = 0.19), (68: C, 0.974, 46), (69: G, 0.977, 19; δ = 47), (70: D, 0.958, 3; α = 0.04), (71: A, 0.922, 13), (72: A, 0.975, 33),
(73: C, 0.918, 10), (74: D, 0.946, 36; α = 0.42), (75: C, 0.918, 38), (76: H, 0.968, 18; δ = 70), (77: F, 0.981, 3; β = 93, γ = 46), (78: H, 0.963,
12; δ = 78), (79: A, 0.981, 8),
(80: D, 0.980, 48; α = 0.97), (81: B, 0.967, 19), (82: C, 0.939, 26), (83: F, 0.967, 40; β = 55, γ = 27), (84: C, 0.947, 25), (85: D, 0.982, 46;
α = 0.07),
(86: E, 0.982, 28; β = 84), (87: G, 0.976, 15; δ = 66), (88: D, 0.941, 22; α = 0.44), (89: F, 0.983, 3; β = 97, γ = 49), (90: C, 0.972, 12), (91: A,
0.976, 13),
(92: B, 0.950, 18), (93: D, 0.976, 20; α = 0.07), (94: G, 0.989, 32; δ = 42), (95: H, 0.974, 3; δ = 66), (96: E, 0.989, 36; β = 93), (97: G, 0.967, 11;
δ = 45),
(98: H, 0.974, 46; δ = 68), (99: G, 0.956, 38; δ = 74), (100: G, 0.974, 42; δ = 73)

Cns = 2506, C∗ = 3× Cns = 7518

The numerical results after the two optimization processes described above are pre-
sented in Tables 12–15.

Table 12. Best solutions to problem P3 after first optimization (maximizing reliability under cost
constraint: C∗ = 7737).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA

5, 3, 3, 2, 4, 3, 5, 3, 3, 7, 4, 4, 2, 3, 3, 3, 4, 3, 3, 3, 2, 4, 7, 2, 3,
4, 3, 3, 3, 5, 2, 3, 4, 3, 2, 3, 3, 5, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 3, 2, 4, 3, 3, 2, 2, 4, 5, 3, 3, 3, 3, 3, 3,
3, 5, 3, 3, 5, 2, 3, 3, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 3, 3, 4, 3, 5, 3, 3

7722 0.894261 9.375

RELIVE

3, 4, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 3,
5, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 5, 3, 2, 4, 3, 3,
3, 3, 4, 3, 3, 2, 4, 2, 3, 4, 2, 3, 2, 3, 3, 2, 2, 4, 5, 4, 3, 3, 4, 2, 4,
3, 8, 4, 4, 4, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 4

7737 0.927214 13.619

LP

3, 4, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 3,
4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 3, 4,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 2, 3, 3, 3, 3, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3,
3, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 3

7737 0.947769 18.979

Mathematics 2022, 10, 3698 25 of 33

Table 13. Best solutions to problem P4 after first optimization (maximizing reliability under cost
constraint: C∗ = 7518).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA

2, 3, 3, 3, 4, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 3, 3, 4, 3, 4, 2, 3,
4, 3, 4, 2, 4, 4, 4, 4, 5, 3, 4, 2, 5, 4, 3, 3, 3, 8, 3, 3, 2, 3, 3, 4, 4,
3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 3, 2, 5, 2, 2, 2, 5, 3, 3, 4, 5, 2, 3,
5, 3, 5, 3, 2, 3, 5, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 4, 5, 3, 5, 4, 3, 3

7499 0.930610 14.281

RELIVE

3, 3, 2, 3, 4, 3, 3, 3, 4, 4, 2, 5, 4, 4, 2, 2, 2, 2, 3, 3, 3, 4, 3, 2, 3,
3, 3, 5, 3, 4, 4, 3, 5, 4, 3, 4, 2, 6, 4, 3, 4, 3, 4, 3, 3, 2, 4, 3, 3, 4,
3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 3, 2, 5, 2, 3, 2, 4, 4, 4, 2, 4, 3, 3,
4, 5, 5, 3, 2, 2, 3, 3, 3, 2, 4, 4, 3, 3, 3, 3, 3, 2, 3, 5, 3, 4, 3, 4, 3

7518 0.952116 20.695

LP

2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 5, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 5, 3, 3,
3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4,
3, 4, 3, 4, 3, 2, 3, 3, 3, 4, 2, 4, 3, 3, 5, 2, 2, 2, 4, 3, 4, 2, 3, 3, 3,
4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 4, 4, 4, 3

7518 0.962884 26.699

Table 14. Best solutions to problem P3 after second optimization (minimizing cost under the constraint
of reliability R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R∗ = 0.894261

3, 5, 3, 2, 2, 2, 3, 3, 4, 2, 2, 3, 2, 5, 3, 3, 4, 4, 2, 2, 3, 2, 3, 2, 4,
5, 4, 5, 3, 2, 2, 3, 3, 2, 7, 2, 3, 5, 3, 4, 2, 5, 3, 3, 4, 3, 2, 5, 3, 3,
3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 3, 4, 2, 3, 5, 3, 3, 3, 4, 2, 3,
2, 8, 3, 4, 5, 3, 3, 3, 2, 2, 3, 5, 4, 4, 3, 4, 2, 3, 3, 3, 6, 3, 5, 3, 3

7735 0.896609 9.588

RELIVE
R∗ = 0.927214

3, 4, 3, 2, 3, 4, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 3,
5, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 5, 3, 2, 5, 3, 5,
2, 3, 3, 4, 2, 2, 5, 3, 4, 4, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 3, 3, 4, 2, 3,
2, 3, 5, 5, 3, 3, 3, 3, 2, 3, 3, 4, 3, 4, 5, 4, 2, 3, 2, 3, 3, 3, 5, 3, 3

7622 0.927251 13.626

LP
R∗ = 0.947769

3, 4, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 3,
4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 3, 4,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 2, 3, 3, 3, 3, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3,
3, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 3

7737 0.947769 18.979

Table 15. Best solutions to problem P4 after second optimization (minimizing cost under the constraint
of reliability R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R∗ = 0.930610

2, 3, 5, 2, 4, 3, 4, 4, 2, 4, 2, 5, 3, 4, 4, 3, 3, 3, 5, 3, 3, 5, 4, 3, 3,
3, 3, 3, 3, 5, 4, 5, 6, 5, 5, 5, 2, 8, 3, 3, 3, 3, 8, 3, 3, 2, 5, 4, 4, 4,
5, 4, 3, 3, 4, 3, 2, 4, 3, 4, 2, 3, 3, 5, 5, 2, 2, 3, 5, 3, 4, 2, 4, 2, 3,
4, 5, 5, 3, 4, 2, 5, 3, 4, 2, 5, 3, 2, 5, 4, 2, 5, 2, 4, 3, 3, 5, 4, 3, 3

8213 0.932688 14.722

RELIVE
R∗ = 0.952116

2, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 2, 2, 2, 2, 3, 3, 3, 5, 5, 3, 3,
3, 3, 5, 3, 5, 4, 3, 4, 4, 3, 4, 2, 3, 4, 2, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3,
3, 4, 3, 4, 3, 2, 3, 3, 3, 3, 2, 4, 3, 3, 4, 2, 2, 2, 4, 3, 4, 2, 3, 3, 3,
5, 5, 4, 3, 2, 3, 3, 3, 3, 2, 3, 5, 3, 5, 3, 3, 3, 2, 3, 4, 3, 4, 3, 4, 3

7384 0.952135 20.703

LP
R∗ = 0.962884

2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 5, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 5, 3, 3,
3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4,
3, 4, 3, 4, 3, 2, 3, 3, 3, 4, 2, 4, 3, 3, 5, 2, 2, 2, 4, 3, 3, 2, 4, 3, 3,
4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 4, 4, 4, 3

7518 0.962884 26.699

For each algorithm, the reliability found by maximization was set as the threshold for
the minimization problem. The goal is to find systems with a lower total cost for the same
reliability. During maximization, if there are more candidates with the same reliability

Mathematics 2022, 10, 3698 26 of 33

but different costs, the choice between them is indifferent from the point of view of the
objective function. Therefore, a solution with a higher cost but still less or equal to the cost
threshold can be selected. The second optimization can identify better solutions from both
points of view. This is often the case for SEA, which usually gives suboptimal results for
the first optimization. On the contrary, LP likely finds the optimal solution every time, and
therefore, the results of the second optimization are the same as for the first.

The three optimization algorithms considered in our study generate different solutions.
The following three examples illustrate how we can determine whether one is superior to
the other:

• Consider problem P1 for which the best solutions generated by the three optimization
algorithms are shown in Table 6. All three solutions require 3719 cost units, but the
solution given by SEA achieves lower reliability (0.973398) compared to that given by
RELIVE and LP (0.977724);

• Consider problem P3 for which the best solutions generated by the three optimization
algorithms are shown in Table 12. The solutions given by RELIVE and LP both require
7737 cost units, but the solution generated by LP achieves higher reliability (0.947769)
compared to that given by RELIVE (0.927214);

• Consider problem P4 for which the best solutions generated by the three optimization
algorithms are shown in Table 15. Please note that the solution given by SEA requires
the highest cost and offers the lowest reliability compared to the solutions given by
RELIVE and LP.

For a better comparison of the three proposed optimization algorithms, 1000 randomly
generated problems were considered for both n = 50 and n = 100. The corresponding
results are presented in Figures 8–11. Each graph presents the mean values as the height of
the bars, with the standard deviations represented as two sigmas (one up from the mean,
and one down from the mean).

First, the reliability maximization case for n = 50 was considered. Figure 8 shows some
statistics of the final system reliability obtained by the algorithms. Since the performance
of the evolutionary algorithm greatly depends on the number of generations, two versions
were considered: 1000 and 10,000 generations for SEA, and 100 and 500 generations for
RELIVE.

It must be mentioned that RELIVE performs additional function evaluations during
the hill climbing procedure, therefore it is normal that its number of generations be less
than for SEA. Figure 8a presents the actual efficiency values obtained by the algorithms.
Figure 8b includes a comparison relative to LP, where in each of the 1000 trials the efficiency
found by LP was considered to correspond to 100% and the efficiency found by the other
algorithms is represented as a percentage of that found by LP. It can be seen that the results
of LP and RELIVE are very close, with LP being slightly better, while those of SEA are of a
lower quality.

It can also be seen that there is no significant difference between the results of SEA
and RELIVE with different numbers of generations: most likely, 1000 and 100 generations,
respectively, are sufficient for such problems.

Similar statistics are displayed in Figure 9 for systems with n = 100. In this case,
since the problems are more difficult, there are greater differences between algorithms. LP
remains the best, while the relative average efficiency of RELIVE solutions is around 75%,
and that of SEA is around 45%.

Figures 10 and 11 show the results obtained for the cost minimization problems. Since
an increase in the number of generations does not seem to be a decisive factor, only 100
and 500 generations were considered for SEA and RELIVE, respectively. The relative
performance of algorithms is similar: LP provides the best results, RELIVE results are
comparable, slightly worse especially for n = 100, while SEA gives an average minimum
cost around 120–130% higher than the optimal solution.

In addition, in order to better verify the effectiveness of the proposed algorithms,
for the 2000 problems studied, the results obtained for the initial variant were compared

Mathematics 2022, 10, 3698 27 of 33

with those for two other variants in which the order of the subsystems changed, being
sorted by reliability. The LP algorithm provided the same results for all 2000 problems
checked, which highlights its stability for this type of stress. This is not the case with the
two evolutionary algorithms, RELIVE and SEA, but the differences that occurred were not
statistically significant.

Mathematics 2022, 10, x FOR PEER REVIEW 25 of 31

the solution given by SEA achieves lower reliability (0.973398) compared to that
given by RELIVE and LP (0.977724);

• Consider problem 𝑃 for which the best solutions generated by the three optimiza-
tion algorithms are shown in Table 12. The solutions given by RELIVE and LP both
require 7737 cost units, but the solution generated by LP achieves higher reliability
(0.947769) compared to that given by RELIVE (0.927214);

• Consider problem 𝑃 for which the best solutions generated by the three optimiza-
tion algorithms are shown in Table 15. Please note that the solution given by SEA
requires the highest cost and offers the lowest reliability compared to the solutions
given by RELIVE and LP.
For a better comparison of the three proposed optimization algorithms, 1000 ran-

domly generated problems were considered for both 𝑛 = 50 and 𝑛 = 100. The corre-
sponding results are presented in Figures 8–11. Each graph presents the mean values as
the height of the bars, with the standard deviations represented as two sigmas (one up
from the mean, and one down from the mean).

First, the reliability maximization case for 𝑛 = 50 was considered. Figure 8 shows
some statistics of the final system reliability obtained by the algorithms. Since the perfor-
mance of the evolutionary algorithm greatly depends on the number of generations, two
versions were considered: 1000 and 10,000 generations for SEA, and 100 and 500 genera-
tions for RELIVE.

It must be mentioned that RELIVE performs additional function evaluations during
the hill climbing procedure, therefore it is normal that its number of generations be less
than for SEA. Figure 8a presents the actual efficiency values obtained by the algorithms.
Figure 8b includes a comparison relative to LP, where in each of the 1000 trials the effi-
ciency found by LP was considered to correspond to 100% and the efficiency found by the
other algorithms is represented as a percentage of that found by LP. It can be seen that the
results of LP and RELIVE are very close, with LP being slightly better, while those of SEA
are of a lower quality.

(a) (b)

Figure 8. Comparison between algorithms performance for reliability maximization on systems
with 𝑛 = 50: (a) the average efficiency for 1000 random problem instances; (b) the results relative
to the maximum efficiency found by LP considered as 100%.

Figure 8. Comparison between algorithms performance for reliability maximization on systems with
n = 50: (a) the average efficiency for 1000 random problem instances; (b) the results relative to the
maximum efficiency found by LP considered as 100%.

Mathematics 2022, 10, x FOR PEER REVIEW 26 of 31

(a) (b)

Figure 9. Comparison between algorithms performance for reliability maximization with systems
with 𝑛 = 100 subsystems: (a) average efficiency; (b) results relative to LP.

(a) (b)

Figure 10. Comparison between the performance of the algorithms for cost minimization with sys-
tems of 𝑛 = 50 subsystems: (a) average cost; (b) results relative to LP.

(a) (b)

Figure 11. Comparison between the performance of the algorithms for cost minimization with sys-
tems of 𝑛 = 100 subsystems: (a) average cost; (b) results relative to LP.

Figure 9. Comparison between algorithms performance for reliability maximization with systems
with n = 100 subsystems: (a) average efficiency; (b) results relative to LP.

Mathematics 2022, 10, 3698 28 of 33

Mathematics 2022, 10, x FOR PEER REVIEW 26 of 31

(a) (b)

Figure 9. Comparison between algorithms performance for reliability maximization with systems

with 𝑛 = 100 subsystems: (a) average efficiency; (b) results relative to LP.

(a) (b)

Figure 10. Comparison between the performance of the algorithms for cost minimization with sys-

tems of 𝑛 = 50 subsystems: (a) average cost; (b) results relative to LP.

(a) (b)

Figure 11. Comparison between the performance of the algorithms for cost minimization with sys-

tems of 𝑛 = 100 subsystems: (a) average cost; (b) results relative to LP.

Figure 10. Comparison between the performance of the algorithms for cost minimization with
systems of n = 50 subsystems: (a) average cost; (b) results relative to LP.

Mathematics 2022, 10, x FOR PEER REVIEW 26 of 31

(a) (b)

Figure 9. Comparison between algorithms performance for reliability maximization with systems
with 𝑛 = 100 subsystems: (a) average efficiency; (b) results relative to LP.

(a) (b)

Figure 10. Comparison between the performance of the algorithms for cost minimization with sys-
tems of 𝑛 = 50 subsystems: (a) average cost; (b) results relative to LP.

(a) (b)

Figure 11. Comparison between the performance of the algorithms for cost minimization with sys-
tems of 𝑛 = 100 subsystems: (a) average cost; (b) results relative to LP.
Figure 11. Comparison between the performance of the algorithms for cost minimization with
systems of n = 100 subsystems: (a) average cost; (b) results relative to LP.

9. Discussion

In the mathematical model, we assume that the time to failure of a component follows
a negative-exponential distribution. For electronic components or electronic modules,
especially for integrated circuits, the time to failure is usually considered to have such
a distribution. This means that, for a given operating regime, the average failure rate
is constant (and not a function of time). But for mechanical elements, for example, this
assumption must be accepted with caution because of the physical wear and tear that
can occur during system operation. In this case, a Weibull distribution may be more
appropriate.

This assumption is important only for specifying the reliability of the redundant
system. Only under this assumption the reliability function for most of the redundant
structures we considered can be determined analytically, using Markov models, as pre-
sented in Section 3. For other distributions, the evaluation of subsystem reliability is more
complicated and can be done in other ways, e.g., by using a Monte Carlo simulation.

The optimization methods used in this study are not fundamentally affected by this
simplifying assumption. The only change concerns the calculation of the objective function,

Mathematics 2022, 10, 3698 29 of 33

which otherwise should be done in a different way. Thus, we appreciate that the compara-
tive performance results of the three optimization methods presented in this article are not
significantly affected by this simplifying assumption.

The systems discussed in this paper are all series-aligned subsystems. Our study does
not cover cases where a system component may have a redundant structure composed of
elements other than the base component, as shown in Figure 12.

Mathematics 2022, 10, x FOR PEER REVIEW 27 of 31

It can also be seen that there is no significant difference between the results of SEA
and RELIVE with different numbers of generations: most likely, 1000 and 100 generations,
respectively, are sufficient for such problems.

Similar statistics are displayed in Figure 9 for systems with 𝑛 = 100. In this case,
since the problems are more difficult, there are greater differences between algorithms.
LP remains the best, while the relative average efficiency of RELIVE solutions is around
75%, and that of SEA is around 45%.

Figures 10 and 11 show the results obtained for the cost minimization problems. Since
an increase in the number of generations does not seem to be a decisive factor, only 100
and 500 generations were considered for SEA and RELIVE, respectively. The relative per-
formance of algorithms is similar: LP provides the best results, RELIVE results are com-
parable, slightly worse especially for 𝑛 = 100, while SEA gives an average minimum cost
around 120–130% higher than the optimal solution.

In addition, in order to better verify the effectiveness of the proposed algorithms, for
the 2000 problems studied, the results obtained for the initial variant were compared with
those for two other variants in which the order of the subsystems changed, being sorted
by reliability. The LP algorithm provided the same results for all 2000 problems checked,
which highlights its stability for this type of stress. This is not the case with the two evo-
lutionary algorithms, RELIVE and SEA, but the differences that occurred were not statis-
tically significant.

9. Discussion
In the mathematical model, we assume that the time to failure of a component follows

a negative-exponential distribution. For electronic components or electronic modules, es-
pecially for integrated circuits, the time to failure is usually considered to have such a
distribution. This means that, for a given operating regime, the average failure rate is con-
stant (and not a function of time). But for mechanical elements, for example, this assump-
tion must be accepted with caution because of the physical wear and tear that can occur
during system operation. In this case, a Weibull distribution may be more appropriate.

This assumption is important only for specifying the reliability of the redundant sys-
tem. Only under this assumption the reliability function for most of the redundant struc-
tures we considered can be determined analytically, using Markov models, as presented
in Section 3. For other distributions, the evaluation of subsystem reliability is more com-
plicated and can be done in other ways, e.g., by using a Monte Carlo simulation.

The optimization methods used in this study are not fundamentally affected by this
simplifying assumption. The only change concerns the calculation of the objective func-
tion, which otherwise should be done in a different way. Thus, we appreciate that the
comparative performance results of the three optimization methods presented in this ar-
ticle are not significantly affected by this simplifying assumption.

The systems discussed in this paper are all series-aligned subsystems. Our study does
not cover cases where a system component may have a redundant structure composed of
elements other than the base component, as shown in Figure 12.

Figure 12. Alternative redundant subsystem structure.

In this situation, the optimization problem must be formulated differently, and it in-
volves the inclusion of more types of components than those that form the non-redundant
system.

Figure 12. Alternative redundant subsystem structure.

In this situation, the optimization problem must be formulated differently, and it
involves the inclusion of more types of components than those that form the non-redundant
system.

Such cases are encountered in complex systems, e.g., with a network structure. Unfor-
tunately, the conclusions regarding the performance of the three optimization algorithms
compared in this paper cannot be extended to these more general cases. There is no
evidence to support this.

Another point of discussion is needed about the number of generations used by the two
evolutionary algorithms. The specific number of generations used in the study are powers
of ten so that the reader can have an intuitive view about the results. A fairer comparison
would need to assess their performance, e.g., with the same number of objective function
evaluations, a common setting in the area of biologically-inspired optimization algorithms.
The number of function evaluations is easy to determine in case of SEA. If the population
consists of 50 chromosomes and 10,000 generations are used, then 500,000 evaluations are
needed. However, RELIVE does not have a constant population size. Additional function
evaluations are performed in the hill climbing step, although at most one of these solutions
will be actually used subsequently in the next generation, i.e., the best local improvement.
It was empirically estimated that RELIVE with 100 generations needs about 27 times more
function evaluations than SEA with 1000 generations. Thus, a comparison could be made
with SEA with about 27,000 generations. Still, from the statistical analysis presented above,
we hypothesize that the poorer results of SEA are not caused by a smaller number of
generations than required. The performance in both cases with 1000 and 10,000 generations
is quite similar. Also, the main issue is not execution time, because this is not a real-time
application, but the fact that SEA usually gets stuck into a local optimum because, e.g.,
at the “top” part of the allocation, one cannot include any more components without
exceeding the cost limit. It would require one to add one component to a subsystem and
remove one component from another subsystem in order to improve the optimization.
SEA lacks any mechanisms to do so, and such improvements can come only from “lucky”
mutations and removals of components during the chromosome repairing procedure. On
the other hand, RELIVE has an especially designed mutation for this situation, based on
exchanging a unit between a pair of genes. Because of this, we eventually chose to use the
lower number of generations, i.e., 1000 for SEA and 100 for RELIVE, because in this case
the optimization is faster and it seems to show the hierarchy of the used methods quite
well.

Since evolutionary algorithms are stochastic, more runs may be necessary to obtain a
good solution. In the case studies presented above, we used the following methodology:

• For the results presented in Figures 8–11, each algorithm was run a single time for
a problem and 2000 problems were used, i.e., 1000 problems for n = 50 and another
1000 problems for n = 100. Due to the high number of problems, the results are

Mathematics 2022, 10, 3698 30 of 33

statistically significant to assess the performance of the algorithms. These figures show
this statistical analysis in terms of mean and standard deviation;

• For the results presented in Tables 6–9 and 12–15, the best out of ten runs was selected
for SEA and RELIVE, because we were interested in the best solution. The LP algorithm
was run only once.

10. Conclusions

Extensive experimental studies on the allocation of redundancy in large binary systems
with a hybrid structure, which include a number of optimization problems of the order
of thousands, highlight the difficulty of these optimization problems as the number of
subsystems increases. Three algorithms were used for optimization: zero-one integer
programming, a classic evolutionary algorithm and an original evolutionary algorithm,
RELIVE, which combines global search with local fine tuning and includes a number of
mutation strategies in order to escape from local optima.

The proposed algorithms are compared, but their effectiveness was also verified by
solving two optimization problems, properly correlated. Specifically, a converse problem
of minimizing cost for the reliability threshold found in the first case was also attempted as
a means to verify the optimality of the solution and when the solution was not optimal,
to attempt to improve it from either the cost or reliability perspectives, and possibly both.
Experimental results demonstrate that for large instances of the reliability maximization
problem, zero-one integer programming yields the best results, followed by RELIVE. The
differences become apparent when the number of subsystems is large, e.g., when n = 100.

As future research, the authors intend to extend the study on the optimal allocation of
reliability in hybrid structure binary systems in several directions, as shown below.

For the optimization issues considered in this paper, the type of redundancy is pre-
determined for all subsystems, as shown in Table 4, Table 5, Table 10 or Table 11. But for
certain reliability models this condition may be relaxed. For example, if a redundancy
technique based on majority logic is appropriate for a subsystem, then one of the following
solutions can be adopted: TMR, TMR/Simplex or 5MR, with or without cold-maintained
spare components. The same is true for dynamic redundancy, where active redundancy
or hybrid standby redundancy with a hot component and other passive spare ones can be
adopted. Therefore, the optimization process can be extended to find an optimal solution
that refers to both the type of redundancy and the number of components for each of the n
subsystems.

On the other hand, some redundant structures often adopt the technical solution in
which the components are functionally compatible but different in design to avoid common
errors. For example, this idea applies to majority logic structures (TMR, TMR/Simplex and
5MR) or duplex structure. A future direction of research also refers to these redundant
subsystems with heterogeneous structure.

In reliability engineering the problem of system reliability maximization under two or
more constraints often arises; for example, under cost constraints, but also under weight
and/or volume constraints. We intend to extend the research to also cover this important
problem of maximizing system reliability under two or more constraints.

We also plan to study the transformation of the problem into a multi-objective opti-
mization problem, e.g., maximize the system’s reliability while minimizing the associated
cost. The solutions to be considered would be the solutions around the imposed threshold
for cost or reliability. Previously we saw that an increase in the cost limit of only 5% can lead
to a larger increase in system reliability. By using a multi-objective optimization approach,
such analysis could be more principled.

Another direction of investigation would be to assess the effect of integer-based
representation for the evolutionary algorithms instead of the real-valued representation
used so far.

Author Contributions: Conceptualization, P.C. and F.L.; methodology, P.C. and F.L.; software, F.L.;
validation, P.C.; formal analysis, P.C.; investigation, F.L.; writing—original draft preparation, P.C. and

Mathematics 2022, 10, 3698 31 of 33

F.L.; writing—review and editing, P.C. and F.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used for the experimental studies are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Reliability
The probability that a component or a system works successfully within
a given period of time

Binary system A system in which each component can be either operational or failed

Series-redundant model
A reliability model that reflects a redundant system composed of
subsystems consisting of basic components or redundant structures, and
possibly other spare components

Notations

n
The number of components in the non-redundant system or the number
of subsystems in the redundant system, as appropriate

T A certain period of time for which reliability is assessed

ri
The reliability of a component of type i, i ∈ {1, . . . , n}, for a given
period of time T

ci The cost of a component of type i
λi The failure rate for a component of type i
ki The number of components that make up the redundant subsystem i
Ri The reliability of subsystem i (subsystem with redundant structure)
Ci The cost of subsystem i
tri The type of redundancy for subsystem i

α, 0 < α < 1
The coefficient of reduction of the failure rate for a warm-maintained
reserve compared to the failure rate of the component in operation

β, β > 1
The reduction factor used to express the failure rate of the decision and
control logic of a TMR structure based on the failure rate of the basic
components

γ, γ > 1
The reduction factor used to express the failure rate of the decision and
control logic of a 5MR structure based on the failure rate of the basic
components

δ, δ > 1
The reduction factor used to express the failure rate of the decision,
control and reconfiguration logic of a TMR/Simplex or a TMR/Duplex
structure based on the failure rate of the basic components

Rns
The reliability of the non-redundant system (system with series
reliability model)

Cns The cost of the non-redundant system

Rrs
The reliability of the redundant system (system with series-redundant
reliability model)

Rrs
The reliability of the redundant system (system with series-redundant
reliability model)

Crs The cost of the redundant system
R∗ The required level of reliability of the system
C∗ The maximum allowable cost of the system
CO A component in operation (active component)
WSC A warm-maintained spare component
CSC A cold-maintained spare component

Mathematics 2022, 10, 3698 32 of 33

Note: For notations ri to tri, when the subsystem is not indicated the index is not necessary,
therefore the notations used are r, c, λ and so on.
Assumptions

• For any redundant subsystem, the spare components are considered identical to the basic
one/ones.

• For the components in operating mode or for the spare components maintained in warm
conditions, the time to failure has a negative-exponential distribution.

• The events of failure that may affect the components of the system are stochastically
independent.

References
1. Coit, D.W.; Zio, E. The evolution of system reliability optimization. Reliab. Eng. Syst. Saf. 2019, 192, 106259. [CrossRef]
2. Soltani, R. Reliability optimization of binary state non-repairable systems: A state of the art survey. Int. J. Ind. Eng. Comput. 2014,

5, 339–364. [CrossRef]
3. Kuo, W.; Wan, R. Recent Advances in Optimal Reliability Allocation, Computational Intelligence in Reliability Engineering; Springer:

Berlin/Heidelberg, Germany, 2007; pp. 1–36.
4. Leon, F.; Cas, caval, P.; Bădică, C. Optimization Methods for Redundancy Allocation in Large Systems. Vietnam. J. Comput. Sci.

2020, 7, 281–299. [CrossRef]
5. Kuo, W.; Lin, H.H.; Xu, Z.; Zhang, W. Reliability optimization with the Lagrange-multiplier and branch-and-bound technique.

IEEE Trans. Reliab. 1987, 36, 624–630. [CrossRef]
6. Misra, K.B. Reliability Optimization of a Series-Parallel System, part I: Lagrangian Multipliers Approach, part II: Maximum

Principle Approach. IEEE Trans. Reliab. 1972, 21, 230–238. [CrossRef]
7. Chern, M. On the Computational Complexity of Reliability Redundancy Allocation in Series System. Oper. Res. Lett. 1992, 11,

309–315. [CrossRef]
8. Dobani, E.R.; Ardakan, M.A.; Davari-Ardakani, H.; Juybari, M.N. RRAP-CM: A new reliability-redundancy allocation problem

with heterogeneous components. Reliab. Eng. Syst. Saf. 2019, 191, 106–563. [CrossRef]
9. Gholinezhad, H.; Hamadani, A.Z. A new model for the redundancy allocation problem with component mixing and mixed

redundancy strategy. Reliab. Eng. Syst. Saf. 2017, 164, 66–73. [CrossRef]
10. Hsieh, T.J. A simple hybrid redundancy strategy accompanied by simplified swarm optimization for the reliability–redundancy

allocation problem. Eng. Optim. 2022, 54, 369–386. [CrossRef]
11. Ali Najmi, K.B.; Ardakan, M.A.; Javid, A.Y. Optimization of reliability redundancy allocation problem with component mixing

and strategy selection for subsystems. J. Stat. Comput. Simul. 2021, 91, 1935–1959. [CrossRef]
12. Peiravi, A.; Karbasian, M.; Ardakan, M.A.; Coit, D.W. Reliability optimization of series-parallel systems with K-mixed redundancy

strategy. Reliab. Eng. Syst. Saf. 2019, 183, 17–28. [CrossRef]
13. Feizabadi, M.; Jahromi, A.E. A new model for reliability optimization of series-parallel systems with non-homogeneous compo-

nents. Reliab. Eng. Syst. Saf. 2017, 157, 101–112. [CrossRef]
14. Hsieh, T.-J.; Yeh, W.C. Penalty guided bees search for redundancy allocation problems with a mix of components in series–parallel

systems. Comput. Oper. Res. 2012, 39, 2688–2704. [CrossRef]
15. Sadjadi, S.J.; Soltani, R. An efficient heuristic versus a robust hybrid meta-heuristic for general framework of serial–parallel

redundancy problem. Reliab. Eng. Syst. Saf. 2009, 94, 1703–1710. [CrossRef]
16. Coit, D.W.; Konak, A. Multiple weighted objectives heuristic for the redundancy allocation problem. IEEE Trans. Reliab. 2006, 55,

551–558. [CrossRef]
17. Prasad, V.R.; Nair, K.P.K.; Aneja, Y.P. A Heuristic Approach to Optimal Assignment of Components to Parallel-Series Network.

IEEE Trans. Reliab. 1992, 40, 555–558. [CrossRef]
18. Shi, D.H. A new heuristic algorithm for constrained redundancy optimization in complex system. IEEE Trans. Reliab. 1987, 36,

621–623.
19. Cas, caval, P.; Leon, F. Active Redundancy Allocation in Complex Systems by Using Different Optimization Methods. In

Proceedings of the 11th International Conference on Computational Collective Intelligence (ICCCI 2019), Hendaye, France, 4–6
September 2019; Nguyen, N., Chbeir, R., Exposito, E., Aniorte, P., Trawinski, B., Eds.; Computational Collective Intelligence,
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11683, pp. 625–637.

20. Everett, H. Generalized Lagrange Multiplier Method of Solving Problems of Optimal Allocation of Resources. Oper. Res. 1963, 11,
399–417. [CrossRef]

21. Yalaoui, A.; Châtelet, E.; Chu, C. A new dynamic programming method for reliability & redundancy allocation in a parallel-series
syste. IEEE Trans. Reliab. 2005, 54, 254–261.

22. Shooman, M. Reliability of Computer Systems and Networks; John Wiley & Sons: New York, NY, USA, 2002.
23. Misra, K.B. Dynamic programming formulation of the redundancy allocation problem. Int. J. Math. Educ. Sci. Technol. 1971, 2,

207–215. [CrossRef]

http://doi.org/10.1016/j.ress.2018.09.008
http://doi.org/10.5267/j.ijiec.2014.5.001
http://doi.org/10.1142/S2196888820500165
http://doi.org/10.1109/TR.1987.5222487
http://doi.org/10.1109/TR.1972.5216000
http://doi.org/10.1016/0167-6377(92)90008-Q
http://doi.org/10.1016/j.ress.2019.106563
http://doi.org/10.1016/j.ress.2017.03.009
http://doi.org/10.1080/0305215X.2020.1862826
http://doi.org/10.1080/00949655.2021.1879080
http://doi.org/10.1016/j.ress.2018.11.008
http://doi.org/10.1016/j.ress.2016.08.023
http://doi.org/10.1016/j.cor.2012.02.002
http://doi.org/10.1016/j.ress.2009.05.003
http://doi.org/10.1109/TR.2006.879654
http://doi.org/10.1109/24.106776
http://doi.org/10.1287/opre.11.3.399
http://doi.org/10.1080/0020739710020301

Mathematics 2022, 10, 3698 33 of 33

24. Sahoo, L.; Bhunia, A.K.; Roy, D. Reliability optimization with high and low level redundancies in interval environment via genetic
algorithm. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 513–523. [CrossRef]

25. Tavakkoli-Moghaddam, R.; Safari, J.; Khalili-Damghani, F.; Abtahi, K.; Tavana, A.-R. A new multi-objective particle swarm
optimization method for solving reliability redundancy allocation problems. Reliab. Eng. Syst. Saf. 2013, 111, 58–75.

26. Coelho, L.D.S. Self-organizing migrating strategies applied to reliability-redundancy optimization of systems. IEEE Trans. Reliab.
2009, 58, 501–510. [CrossRef]

27. Agarwal, M.; Gupta, R. Genetic Search for Redundacy Optimization in Complex Systems. J. Qual. Maint. Eng. 2006, 12, 338–353.
[CrossRef]

28. Berkelaar, M.; Eikland, K.; Notebaert, P. lpsolve, Mixed Integer Linear Programming (MILP) Solver. 2021. Available online:
https://sourceforge.net/projects/lpsolve (accessed on 1 September 2022).

29. Leon, F.; Cas, caval, P. 01IP and QUBO: Optimization Methods for Redundancy Allocation in Complex Systems. In Proceedings
of the 2019 23rd International Conference on System Theory, Control and Computing, Sinaia, Romania, 9–11 October 2019;
pp. 877–882.

30. Misra, K.B.; Sharma, U. An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE
Trans. Reliab. 1991, 40, 81–91. [CrossRef]

31. Floudas, C.A. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications; Oxford University Press: New York, NY,
USA, 1995.

32. Trivedi, K.S. Probability and Statistics with Reliability, Queueing, and Computer Science Applications; John Wiley & Sons: New York,
NY, USA, 2002.

33. Misra, K.B. (Ed.) Handbook of Performability Engineering; Springer: London, UK, 2008.
34. McGeoch, C.C.; Harris, R.; Reinhardt, S.P.; Bunyk, P. Practical Annealing-Based Quantum Computing, Whitepaper, D-Wave

Systems. 2019. Available online: https://www.dwavesys.com/media/vh5jmyka/ (accessed on 1 September 2022).
35. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. Available online: http://www.jstor.org/stable/24939139 (accessed

on 1 September 2022). [CrossRef]
36. De Jong, K.A. Evolutionary Computation: A unified Approach; MIT Press: Cambridge, MA, USA, 2006.
37. Dantzig, G.B.L. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 1963.
38. Albert, A.A. A Measure of the Effort Required to Increase Reliability; Technical Report, No. 43; Stanfort University, Applied

Mathematics and Statistics Laboratory: Stanford, CA, USA, 1958.

http://doi.org/10.1007/s13198-013-0199-9
http://doi.org/10.1109/TR.2009.2019514
http://doi.org/10.1108/13552510610705919
https://sourceforge.net/projects/lpsolve
http://doi.org/10.1109/24.75341
https://www.dwavesys.com/media/vh5jmyka/
http://www.jstor.org/stable/24939139
http://doi.org/10.1038/scientificamerican0792-66

Optimization Methods for Redundancy Allocation

in Large Systems

Florin Leon*,‡, Petru Caşcaval*,§ and Costin Bădică†,¶

*Department of Computers

\Gheorghe Asachi" Technical University of Ia»si

Bd. Mangeron 27A, Ia»si 700050, Romania
†Department of Computers and Information Technology

University of Craiova
Bd. Decebal 107, Craiova 200776, Romania

‡florin.leon@tuiasi.ro
§cascaval@tuiasi.ro

¶cbadica@software.ucv.ro

Received 15 January 2020

Accepted 28 February 2020
Published 14 April 2020

This paper addresses the issue of optimal allocation of spare modules in large series-redundant

systems in order to obtain a required reliability under cost constraints. Both cases of active and

standby redundancy are considered. Moreover, for a subsystem with standby redundancy, two

cases are examined: in the ¯rst case, all the spares are maintained in cold state (cold standby
redundancy) and, in the second one, to reduce the time needed to put a spare into operation when

the active one fails, one of the spares is maintained in warm conditions. To solve this optimization

problem, for the simpler case of active redundancy an analytical method based on the Lagrange
multipliers technique is ¯rst applied. Then the results are improved by using Pairwise Hill

Climbing, an original ¯ne-tuning algorithm. An alternative approach is an innovative evolu-

tionary algorithm, RELIVE, in which an individual lives for several generations and improves its

¯tness based on local search. These methods are especially needed in case of very large systems.

Keywords: Reliability allocation; series-parallel reliability models; Lagrange multipliers;

RELIVE algorithm; evolutionary algorithm; Pairwise Hill Climbing.

1. Introduction

The reliability design of a complex system is one of the most studied topics in the

literature. The problems mainly refer to the kind of solution (reliability allocation

and/or redundancy allocation), the kind of redundancy (active, standby, etc.), the

type of system (binary or multi-state), the levels of redundancy (multi-level system

‡Corresponding author.

This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

Vietnam Journal of Computer Science

Vol. 7, No. 3 (2020) 281–299

#.c The Author(s)
DOI: 10.1142/S2196888820500165

281

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

or multiple component choice), etc. All these issues have practical applications and

provide good directions of research. An excellent overview of such problems can be

found in Refs. 1–4.

According to the decision variables,3,4 a reliability optimization problem may

belong to the following types:

(a) reliability allocation, when the decision variables are component reliabilities;

(b) redundancy allocation, when the variable is the number of component units;

(c) reliability-redundancy allocation, when the decision variables include both the

component reliabilities and the redundancies.

In this paper, we address the problem of redundancy allocation in which the

number of redundant units in a series-parallel reliability model is the only decision

variable. This problem belongs to the NP-hard category.5

We have limited ourselves to the binary systems in which each component is

either operational or failed. Regarding the kind of redundancy, for each component of

the system we consider that the reserves can be active or in standby, as necessary

from the technical point of view.

To solve this optimization problem of redundancy allocation, more methods or

techniques can be applied, such as intuitive engineering methods,6 heuristic search

algorithms,7–10 analytical methods based on Lagrange multipliers,11–13 or dynamic

programming.14 Other metaheuristic methods based on genetic algorithms are also

appropriate.15–18 In this work, we focus on metaheuristic methods combined with an

analytical approach based on Lagrange multipliers.

Other distinct approaches for this problem are based on Zero-One Integer Pro-

gramming (01IP) and Quadratic Unconstrained Binary Optimization (QUBO).19

This paper is an extended version of Ref. 20, in which the analytical method is

explained in more detail and an original evolutionary algorithm (EA) is proposed

that, unlike the approach previously used, seems to be able to solve large instances of

the problem under consideration.

The rest of this work is organized as follows: Section 2 presents a brief nomen-

clature, notations and some assumptions, while Sec. 3 describes the optimization

problem we deal with. An analytical approach based on Lagrange multipliers is

presented in Sec. 4. In Sec. 5, we mention the Pairwise Hill Climbing algorithm used

in Ref. 20, while in Sec. 6, we describe a novel evolutionary algorithm, RELIVE, that

combines global and local search. In Sec. 7, we include the experimental results, and

Sec. 8 contains the conclusions of this work.

2. Nomenclature, Notations and Assumptions

2.1. Nomenclature

(a) Reliability — The probability that a component or a system works successfully

within a given period of time.

282 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

(b) Series-redundant model — A reliability model corresponding to a redundant

system consisting of basic components and possibly other active or standby spare

components, as the case may be.

2.2. Notations

(a) n — The number of components in the non-redundant system or the number of

subsystems in the redundant system, as the case may be;

(b) ri — The reliability of a component of type i, i 2 f1; 2; . . . ;ng, for a given period

of time T ;

(c) !i — The failure rate for a component of type i;

(d) xi — Another reliability indicator for a component of type i, i 2 f1; 2; . . . ;ng;

(e) ci — The cost of a component of type i;

(f) Rns — The reliability of the non-redundant system (system with series reliability

model);

(g) Cns — Cost of the non-redundant system;

(h) ki — The number of components that compose the redundant subsystem

i,i 2 f1; 2; . . . ;ng;

(i) Ri — The reliability of subsystem i (a subsystem consisting of a basic compo-

nent and possibly one or more identical spare components);

(j) Ci — The cost of subsystem i;

(k) Rrs — The reliability of the redundant system (system with series-redundant

reliability model);

(l) Crs — The cost of the redundant system;

(m) R# – The required level of reliability for the system;

(n) C# — The maximum allowed cost for the system;

(o) " — A Lagrange multiplier.

2.3. Assumptions

(a) Each component in the system can be either operational or failed (i.e. binary

system).

(b) For any redundant subsystem, the spare components are considered identical to

the basic one.

(c) For a subsystem with standby redundancy, for the component in operating

mode or for the spare maintained in warm conditions, the time to failure has a

negative-exponential distribution law.

(d) The events of failure that may a®ect the components of the system are

stochastically independent.

3. Problem Description

Let us ¯rst consider a non-redundant system composed of n basic components for

which the reliability model is a series one. The reliability of this system without

Optimization Methods for Redundancy Allocation in Large Systems 283

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

redundancy is Rns ¼
Qn

i¼1 ri and for systems with a large number of components this

value is often quite low. To reach a required reliability, spare components are added

so that the reliability model becomes series-redundant as presented in Fig. 1.

For a subsystem, the spare components can be active or passive (in standby), as the

case may be. Moreover, for a subsystem with standby redundancy, in this work, two

cases are considered: in the ¯rst case, all the spares are maintained in cold state (cold

standby redundancy) so that an inactive component does not fail (this failure rate is 0),

or in the second one, in order to reduce the time needed to put a spare into operation

when the active one fails, one of the spares is maintained in warm or even hot condition,

as the case may be; if any, the other spare components are maintained in cold state.

Consequently, in this second case, one inactive component may fail before it is put into

operation and its failure rate is less or equal to the failure rate of the component in active

mode (AC). In Fig. 1, a cold spare is illustrated by a broken line.

Typically, in this allocation process, the criterion is reliability, cost, weight or

volume. One or more criteria can be considered in an objective function, while the

others can be considered as constraints.2,6,14 From a mathematical point of view, one

must solve an optimization problem of an objective function with constraints.

In this work, we address the issue of maximizing system reliability within the cost

constraint. Thus, we have to determine the values ki; i 2 f1; 2; . . . ;ng that maximize

the reliability function

Rrs ¼ fðR1;R2; . . . ;RnÞ ¼
Y

n

i¼1

Ri ð1Þ

under the cost constraint:

X

n

i¼1

Ci ' C#: ð2Þ

For a subsystem i with active redundancy, as the spare components are identical

to the basic one, the reliability function can be expressed by the following equation:

Ri ¼ 1(ð1(riÞ
ki ; i 2 f1; 2; . . . ;ng: ð3Þ

For a subsystem i with cold standby redundancy, composed of one active

component and other ki (1 identical components in cold state, under the assumption

Fig. 1. Reliability model for a series-redundant system with spare components.

284 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

that for the component in AC, the time to failure has a negative-exponential dis-

tribution law, the reliability function Ri can be expressed by the following equation

(see, e.g. p. 111 of Ref. 3):

Ri ¼
X

ki(1

j¼0

ð!iT Þ
j

j!
e
(!iT ; i 2 f1; 2; . . . ;ng: ð4Þ

As ri ¼ e(!iT , the equation becomes

Ri ¼ ri
X

ki(1

j¼0

ð(lnðriÞÞ
j

j!
; i 2 1; 2; . . . ;nf g: ð5Þ

For a subsystem with standby redundancy, in which a spare component is

maintained in a warm state, the reliability function is obtained based on a Markov

chain. Let ! be the failure rate for the component in operating mode, and let $!,

0 < $ ' 1, be the failure rate for the warm spare (WS). To illustrate how the Markov

model is applied, let us consider a subsystem composed of a component in AC, a WS

and a cold one (CS) (i.e. ki ¼ 3). The evolution of this redundant subsystem until

failure is illustrated by the Markov chain presented in Fig. 2.

Let sðtÞ be the state of the subsystem at time t, and piðtÞ = ProbðsðtÞ ¼ SiÞ,

i 2 fS1;S2;S3;S4g. As S1, S2 and S3 are successful states, and S4 is an absorbent

one, the reliability function of this redundant subsystem can be de¯ned as

RðtÞ ¼ p1ðtÞ þ p2ðtÞ þ p3ðtÞ; t * 0. To determine the probability functions piðtÞ, i 2

f1, 2, 3g, the following system of di®erential equations has to be solved:

P 0 ¼ A, P ; ð6Þ

where P ¼ ½p1ðtÞp2ðtÞp3ðtÞ.
T , P 0 ¼ ½p 01ðtÞp

0
2ðtÞp

0
3ðtÞ.

T and A is the matrix of state

transition rates.

In this case, matrix A has the form

A ¼

(ð1þ $Þ! 0 0

ð1þ $Þ! (ð1þ $Þ! 0

0 ð1þ $Þ! (!

2

6

4

3

7

5
: ð7Þ

Thus, the following system of di®erential equations results:

p 01ðtÞ ¼ (ð1þ $Þ!p1ðtÞ;

p 02ðtÞ ¼ ð1þ $Þ!p1ðtÞ (ð1þ $Þ!p2ðtÞ;

p 03ðtÞ ¼ ð1þ $Þ!p2ðtÞ (!p3ðtÞ:

8

>

<

>

:

ð8Þ

Fig. 2. Markov chain for subsystem reliability evaluation (subsystem with a WS and a cold one).

Optimization Methods for Redundancy Allocation in Large Systems 285

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

The initial values are: p1ð0Þ ¼ 1; p2ð0Þ ¼ p3ð0Þ ¼ p4ð0Þ ¼ 0. Thus, by applying

the Laplace transform ðLÞ, the following system of algebraic equations can be written:

sP1ðsÞ (1 ¼ (ð1þ $Þ!P1ðsÞ;

sP2ðsÞ ¼ ð1þ $Þ!P1ðsÞ (ð1þ $Þ!P2ðsÞ;

sP3ðsÞ ¼ ð1þ $Þ!P2ðsÞ (!P3ðsÞ;

8

<

:

ð9Þ

where PiðsÞ ¼ LfpiðtÞg; i 2 f1; 2; 3g, are functions in the frequency domain, and s is

the Laplace operator.

Based on (9), after some algebraic operations, the following equations result:

P1ðsÞ ¼
1

sþ ð1þ $Þ!
;

P2ðsÞ ¼
ð1þ $Þ!

ðsþ ð1þ $Þ!Þ2
;

P3ðsÞ ¼
ðð1þ $Þ!Þ2

ðsþ ð1þ $Þ!Þ2
1

sþ !
:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð10Þ

After a partial-fraction-expansion, the function P3ðsÞ can be expressed in this way

P3ðsÞ ¼ (
ð1þ $Þ2

$2

$!

ðsþ ð1þ $Þ!Þ2
(

1

sþ ð1þ $Þ!
þ

1

sþ !

- .

: ð11Þ

As the function <ðsÞ ¼ LfRðtÞg ¼ P1ðsÞ þ P2ðsÞ þ P3ðsÞ, the following equation

results:

<ðsÞ ¼ (
ð1þ $Þ!

$

1

ðsþ ð1þ $Þ!Þ2
(

1þ 2$

$2

1

sþ ð1þ $Þ!
þ
ð1þ $Þ2

$2

1

sþ !
: ð12Þ

The mean time to failure (MTTF) for the redundant subsystem can be obtain

based on the function <ðsÞ by giving the value 0 to s. Thus,

MTTF ¼ <ð0Þ ¼ (
ð1þ $Þ!

$

1

ðð1þ $Þ!Þ2
(

1þ 2$

$2

1

ð1þ $Þ!
þ
ð1þ $Þ2

$2

1

!

¼
3þ $

ð1þ $Þ!
: ð13Þ

As a check, based on the state transitions presented in Fig. 1, one can write

MTTF ¼
1

ð1þ $Þ!
þ

1

ð1þ $Þ!
þ

1

!
¼

3þ $

ð1þ $Þ!
: ð14Þ

The reliability function RðtÞ can be obtained by applying the inverse Laplace

transform, RðtÞ ¼ L(1f<ðsÞg. Thus, the reliability function has the following form:

RðtÞ ¼
ð1þ $Þ2

$2
e(!t (

1þ 2$

$2
þ

1þ $

$
!t

- .

e(ð1þ$Þ!t: ð15Þ

Let us consider now the subsystem i, where for the operating component the

failure rate is !i and, for a given period of time T ; ri ¼ e(!iT . As !iT ¼ (ln ri, the

286 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

subsystem reliability function is given by the following equation:

Ri ¼
ð1þ $Þ2

$2
ri (

1þ 2$

$2
(

1þ $

$
ln ri

- .

r1þ$
i : ð16Þ

As a check, for T ¼ 0; ri ¼ 1 and

Ri ¼
ð1þ $Þ2

$2
(

1þ 2$

$2
¼

$2

$2
¼ 1: ð17Þ

For a redundancy subsystem i with a di®erent number of components, the reli-

ability function can be obtained based on a Markov chain in the same manner. For

example, if the redundant subsystem is composed of a component in active mode and

a spare maintained in warm conditions (i.e. ki ¼ 2), by applying the method based

the Markov chain, the reliability function is

Ri ¼ ri (r$
i ðri (1Þ: ð18Þ

For another subsystem i composed of a component in active mode (AC), a warm

spare (WS) and two spares in a cold state (2 CS) (i.e. ki ¼ 4Þ, the algebraic opera-

tions are more complicated but one can show in the same manner that the subsystem

reliability function is given by the following equation:

Riðri;$Þ ¼
ð1þ$Þ3

$3
ri(

1þ 3$þ 3$2

$3
(

1þ 3$þ 2$2

$2
ln ri þ

ð1þ$Þ2

2$
ðlnriÞ

2

- .

r1þ$
i :

ð19Þ

Note that, compared to the case of active redundancy (Eq. (3)), the expression of

the reliability function is more complex, therefore an analytical approach to this

optimization problem is more di±cult to apply.

In case of active redundancy, to reduce the computation time, we choose to ¯rst

apply an analytical method based on Lagrange multipliers in order to quickly obtain

an approximate solution, and then, this approximate solution is improved with other

original optimization methods.

4. Analytical Approach for Active Redundancy

As the spares are identical to the basic component, for the series-parallel reliability

model presented in Fig. 1, the reliability function can be expressed by the following

equation:

Rrs ¼
Y

n

i¼1

ð1(ð1(riÞ
kiÞ: ð20Þ

We have to determine the values k1, k2; . . . ; kn that maximize the function Rrs

with the cost constraint:

X

n

i¼1

ciki ' C#: ð21Þ

Optimization Methods for Redundancy Allocation in Large Systems 287

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

Based on (20) and (21), the following Lagrangian function results:

Lðk1; k2; . . . ; kn; "Þ ¼
Y

n

i¼1

ð1(ð1(riÞ
kiÞ þ "

X

n

i¼1

ciki (C#

 !

; ð22Þ

where " is the Lagrange multiplier.

Thus, instead of maximizing the function Rrs given by (20) within the cost con-

straint (21), we have to maximize the Lagrange function given by (22) without

constraints. For this purpose, the following system with partial derivatives must be

solved:

@L

@ki
¼ 0; i ¼ 1; 2; . . . ;n;

@L

@"
¼ 0:

8

>

>

<

>

>

:

ð23Þ

It is easy to observe that by applying the partial derivatives presented in (23), the

system of algebraic equations that results is very di±cult to solve because of the

products that appear. For example, the partial derivative @L
@ki
¼ 0 leads to the com-

plex equation:

(
Y

j 6¼i

ð1(ð1(rjÞ
kjÞ , ð1(riÞ

ki lnð1(riÞ þ "ci ¼ 0: ð24Þ

For this reason, another way to express the reliability of a system is more

appropriate. The reliability of a system can be expressed by the reliability indicator

ðRÞ or the non-reliability indicator ð1(RÞ, i.e. by a point within the unit segment

½0; 1.. Another indicator of reliability can also be used, namely,

x ¼
1(R

R
¼

1

R
(1: ð25Þ

It should be noted that if R! 1 then x! 0, and if R! 0 then x!1. To return

to the initial reliability identi¯er, R, the following equation is applied:

R ¼
1

xþ 1
: ð26Þ

Let us now consider a system with a series reliability model, composed of n

components of reliability xi ¼
1

ri
(1; i ¼ 1; 2; . . . ;n. The system reliability can be

expressed by the following equation:

xsðnÞ ¼
1

RsðnÞ
(1 ¼

1
Qn

i¼1
1

xiþ1

(1 ¼
Y

n

i¼1

ðxi þ 1Þ (1: ð27Þ

This relationship is rather complicated, but for values xi 4 1, which re°ect high

reliability, the resulting products can be neglected and the reliability of the system

288 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

can be approximated with good accuracy by the following equation:

xsðnÞ 5
X

n

i¼1

xi: ð28Þ

In the same manner, one can be shown that for a parallel reliability model with n

components, when x i 4 1, the reliability of the redundant system can be approxi-

mated with good accuracy by the equation

xP ðnÞ 5
Y

n

i¼1

xi: ð29Þ

Based on this reliability indicator and when approximate equations (28) and (29)

can be accepted, the optimization problem reduces to the maximization of the reli-

ability function:

xrs ¼
X

n

i¼1

x
ki
i ð30Þ

with the cost constraint (21). The Lagrangian function in this case is

Lðk1; k2; . . . ; kn; "Þ ¼
X

n

i¼1

x
ki
i þ "

X

n

i¼1

ciki (C#

 !

: ð31Þ

By applying the partial derivatives presented in (23), the following system of

algebraic equations results:

x
ki
i lnxi þ "ci ¼ 0; i ¼ 1; 2; . . . ;n;

X

n

i¼1

ciki ¼ C#;

8

>

<

>

:

ð32Þ

and then

x
ki
i ¼ (

"ci
lnxi

; i ¼ 1; 2; . . . ;n;

X

n

i¼1

ciki ¼ C#:

8

>

>

<

>

>

:

ð33Þ

With the notation $i ¼ (ci= lnxi; i ¼ 1; 2; . . . ;n, and when $i > 0 (i.e. xi < 0

and, consequently, ri * 0:5), by applying the logarithm function, the following

system results:

ki lnxi ¼ ln " þ ln$i; i ¼ 1; 2; . . . ;n;

X

n

i¼1

ciki ¼ C#;

8

>

<

>

:

ð34Þ

Optimization Methods for Redundancy Allocation in Large Systems 289

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

and then

ki ¼
ln "

lnxi

þ
ln$i

ln xi

; i ¼ 1; 2; . . . ;n;

X

n

i¼1

ciki ¼ C#:

8

>

>

>

<

>

>

>

:

ð35Þ

With other two notations,)i ¼ 1= lnxi ¼ ($i=ci and *i ¼)i ln$i, the system

becomes

ki ¼)i ln " þ *i; i ¼ 1; 2; . . . ;n;

X

n

i¼1

cið)i ln " þ *iÞ ¼ C#;

8

>

<

>

:

ð36Þ

and ¯nally,

" ¼ ev; where v ¼
C# (

Xn

i¼1
*ici

Xn

i¼1
)ici

;

ki ¼)i ln " þ *i:

8

>

<

>

:

ð37Þ

The only impediment for solving the problem remains that the values ki obtained

by applying (37) are real values, and the allocation is, by its nature, a discrete

problem. Therefore, it is necessary to determine the optimal allocation in integer

numbers starting from the actual solution.

An approximate solution results by adopting the integers closest to the real

values. But in this case, it is possible that the new solutions for ki no longer satisfy

the cost constraint. Starting from the value of the Lagrange multiplier " given by

(37), a search process is carried out in a neighborhood of this value in order to obtain

a better approximate solution for ki while satisfying the cost constraint. Unfortu-

nately, this approximate solution may not be accurate enough. Consequently, this

approximate solution is further improved by applying other methods of re¯ning the

search process, as shown in the following sections.

The analytical approach is applied only to the case of active redundancy because

for the case of standby spares, the Lagrangian function is more complicated and the

system of partial derivatives is very di±cult to solve. But the following optimization

methods are extended to cover the case in which some subsystems may have active

spares and the other ones may have other forms of redundancy.

5. Pairwise Hill Climbing

The analytical methods described in Sec. 4 only give an approximation of the solu-

tion since the ¯nal result has to contain integer values, and the they provide real

values. In order to obtain the actual correct solution, or at least closer to the global

optimum, one needs to perform an additional local search.

290 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

In Ref. 20, we introduced an original algorithm called \Pairwise Hill Climbing"

(PHC) to address this issue. For our particular problem, a classic hill climbing

method cannot be applied because simply adding components to the subsystems

would likely cause the violation of the cost constraint.

In the proposed PHC algorithm, two candidate solutions are generated for each

pair of subsystems SS1 and SS2. The ¯rst candidate is created by adding one com-

ponent to SS1, i.e. the direct hill climbing operation. The second is created by adding

one component to SS1 and subtracting one from SS2, i.e. a swapping operation.

There is no ordering constraint for the subsystems being paired, so eventually, any

subsystem will have the role of both SS1 and SS2.

Another speci¯c optimization is the generation of the starting points of the search.

Unlike classic hill climbing, which starts from a single initial point, in PHC there are

several intertwined searches. One starting point is the approximate solution provided

by the analytical method, let us call it I0. Another set of starting points are the n

candidate solutions I1i created by subtracting one component from the subsystem i

of I0. Yet another starting point is the candidate solution I2 created by subtracting

one component from each subsystem of I0. Of course, the subtraction procedure is

applied only if the number of components of the targeted subsystem is greater

than two, because a valid allocation requires that each subsystem has at least one

component.

All the searches proceed by means of a priority queue. The initial solutions I0, I1i
and I2 are inserted into the priority queue. At a certain step, the solution with the

best reliability is extracted from the priority queue and expanded using the two

candidate solutions created as explained above. Since each child solution also has the

information about its parent, the generated solutions can also be viewed as the

results of a tree search.

One can reach a balance between the execution time and the quality of the ¯nal

solution by limiting the search to a maximum number of levels in the tree tlmax and to

a maximum number of solutions taken from the queue nsmax.

6. RELIVE | An Innovative Evolutionary Algorithm

In Ref. 20, it was discovered that the best results were given by a hybrid method that

combined the analytical approach and PHC. However, real-valued evolutionary

algorithms (EA) were also investigated to see whether they could provide the opti-

mal solution by themselves. Despite using them in various ways, e.g. optimizing the

o®spring generation process, steady-state evolution, extending the number of gen-

erations and imposing a limit on the search domain by using the estimations of the

analytical method, it was found that the EAs were unable to match or surpass the

results of the hybrid method.

Beside the reported results, several EA libraries available on the Internet were

tried, together with non-evolutionary, di®erential-based methods. Even if they

claimed to be able to handle constraints, they completely failed to provide useful

Optimization Methods for Redundancy Allocation in Large Systems 291

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

solutions (((if not optimal, at least close to the solution discovered by our methods,

likely because of the high dimensionality of the considered problems. Most of the

time, they did not converge at all.

Therefore, in this work, a new evolutionary algorithm called \Cross-Generational

Evolutionary Algorithm with Local Improvements" (RELIVE) is proposed, which

combines the principles of a classic evolutionary algorithm with ideas inspired

by alternative optimization methods, such as hill climbing and particle swarm

optimization.

The encoding of the problem is real-valued, and each chromosome has n real

genes, corresponding to ki. The domain of the genes [1, kmax] depends on the problem.

kmax is the maximum estimated value for any ki.

The ¯tness function is the expression in Eq. (1). Since the genes are real

numbers and ki are integers, the gene values are rounded when computing the

reliability.

The selection method is tournament selection with two individuals. We use

arithmetic crossover and mutation by gene resetting. The stopping criterion is a ¯xed

number of generations.

The main feature of the RELIVE algorithm is that an individual can live for a

certain number of generations, and in each generation it improves its ¯tness by

performing several hill climbing steps. In each generation it can participate in the

selection process in the normal way, in order to have a chance to generate o®spring.

Thus, the size of the population is no longer ¯xed; it can vary as some individuals are

\born" and others \die" in each generation.

More formally, the life length of an individual is initialized when it is created as a

natural number l ¼ lf þ rv, where lf is a ¯xed parameter and rv is a natural random

number uniformly drawn from the f0; 1; . . . ; lf (1g set.

In each generation, l is decremented until it reaches 0, and then the individual is

removed from the population.

A mechanism similar to elitism is also used. It has the goal of saving the best

individual from a generation to the next, so as the best solution is never lost. In the

RELIVE algorithm, the life length of the best chromosome cbest in a generation is set

to lðcbestÞ maxðlðcbestÞ; lfÞ.

In Ref. 20, an additional post-child-generation procedure was considered, where

the ¯tness values of the child, its mother and its father are compared and the best

of the three chromosomes are added to the next generation. This was shown to

improve the algorithm performance.

In this approach, this is no longer necessary because the mother and the father

may survive anyway into the next generation because of their life spans. Thus, the

child is directly inserted into the population.

The proposed algorithm also uses a new method to introduce new genetic infor-

mation into the population. Let s0 be the initial size of the population. In each

generation, a number f 7 s0 of new, randomly generated chromosomes are inserted

292 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

into the population, where f 2 (0, 1). The life span l 0f of these individuals is ini-

tialized in a similar way, but with a slightly smaller value than lf .

As mentioned above, in each generation, an individual performs a hill climbing

procedure in order to improve its ¯tness. Hill climbing is achieved using only

a mutation operator to generate nn potential solution in the neighborhood of

the current one. If a potential solution has a better ¯tness than the current one, the

former becomes the current solution and the process is repeated for ni iterations.

To generate a neighbor solution, three types of mutation are used with di®erent

probabilities as follows:

(1) Gaussian mutation: the new chromosome is generated by changing the value of a

gene to a new one using a normal distribution with the mean in the current

solution and a user-chosen standard deviation +. Since the problems have mul-

tiple dimensions, the new values are generated independently for each dimension

using a univariate Gaussian distribution;

(2) Resetting mutation: the new chromosome is generated by changing the value of a

gene to a randomly generated one using a uniform distribution from the allowed

domain of the gene [1, kmax];

(3) Pairwise mutation: in the new chromosome, two genes g1 and g2 are randomly

selected using a uniform distribution, such as g1 * 2 and g2 < kmax. Then, the

values for these genes change by exchanging one unit: ðg 01; g
0
2Þ ðg1 (1; g2 þ 1Þ,

i.e. the number of components decreases in one subsystem and increases in the other

one. This type of mutation is inspired from the pairwise hill climbing idea, but

simpli¯ed; it proved to be crucial for the success of the new evolutionary algorithm.

Let us call the probabilities for using these types of mutation pmg, pmr and pmp,

respectively, with pmp ¼ 1(ðpmg (pmrÞ. It must be mentioned that these proba-

bilities are only used to choose the type of mutation. The Gaussian and the resetting

mutations also use a mutation probability pm with the same meaning as in a stan-

dard evolutionary algorithm, i.e. the probability of actually changing a speci¯c gene

in the chromosome.

Since the problem has a constraint (Eq. (2)), there must be a way to enforce it in

the evolutionary algorithm. Previous experiments showed that adding a penalty to

the ¯tness function of the chromosomes that do not satisfy the constraint has a

negative impact on the quality of the solution because, in the beginning, very few or

no individuals may satisfy the cost constraint and this often leads to no solution at

all, or to very poor solutions. Therefore, a repairing method was considered for the

chromosomes that violate the cost constraint. In Ref. 20, the repairing procedure for

a chromosome was to randomly remove one redundant component at a time until the

remaining components satis¯ed the constraint. Each subsystem must have at least

one component, so only redundant components may be removed.

In this work, we also optimized the repairing method. The components to be

removed are no longer selected randomly. Instead, the subsystem with the highest

Optimization Methods for Redundancy Allocation in Large Systems 293

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

component cost and the number of components greater than one is chosen. An

alternative method was also tried, i.e. choosing the subsystem with the highest reli-

ability. However, the computational cost of ¯nding such a system for each unfeasible

chromosome proved to be too high for practical purposes. The cost-based repairing

method is fast and it was empirically found to work better than the random choice.

7. Experimental Results

In this section, some numerical results of the previously described methods are

presented. To compare the optimization methods, two experimental studies were

performed. In the ¯rst study, only the active redundancy allocation is considered,

and in the second one, a mixed redundancy strategy is considered, to increase the

system reliability. More precisely, some subsystems use active redundancy, other

ones use cold standby redundancy, and the rest use a warm–cold standby redun-

dancy as presented in Sec. 3. For both studies, a system composed of 50 subsystems

(n ¼ 50) is considered, and two problems are solved. For the ¯rst problem, the values

for reliability and cost (ri and ci) are randomly generated (initial input values),

whereas, for the second one, for some components the values are chosen in such a way

as to make the optimization more di±cult (stressed input values).

7.1. Experiment I. Active redundancy allocation

We ¯rst consider this particular (rather hypothetical) case for which an analytical

approach based on Lagrange multipliers is available, as presented in Sec. 4. This

analytical method gives an approximate solution because the real values are converted

to integer values. Consequently, this approximate solution is further improved by

applying another method of re¯ning the search process, the PHC algorithm, resulting

in a hybrid method: Analyticalþ PHC. The results of the analytical method are a very

good starting point for the PHC, because the component allocation is likely less than

the optimal one and a procedure based on the hill climbing idea can easily add new

components and thus improve the objective function.

Table 1 presents the initial values for randomly generated reliability and cost

(Problem 1), and then the stressed input values, in which for some components, with

a very similar reliability, highlighted in italic font, the cost is much di®erent

(Problem 2).

The best solutions found by the considered methods for these two problems are

presented in Tables 2 and 3, respectively. We include below the parameter values

used in the experiments, organized by algorithm:

(1) Pairwise Hill Climbing (PHC): tlmax ¼ 20 and nsmax ¼ 1000;

(2) Global search in the evolutionary algorithm: kmax ¼ 15, s0 ¼ 30 (this is the initial

population size; throughout the evolution the population size is variable, about

190–200), ngen ¼ 500 (although in our experiments, the algorithm usually

reached the ¯nal value after 200–300 generations), f ¼ 0:25, lf ¼ 4 and l 0f ¼ 3;

294 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

Table 1. The optimization problems considered for Experiment I. Active redundancy allocation.

Problem Component reliability and cost (ri, ci) pairs C#

Problem 1: initial

input values

(0.974, 8), (0.601, 32), (0.928, 44), (0.981, 14), (0.961, 25), (0.979, 17),

(0.972, 26), (0.975, 21), (0.978, 49), (0.770, 13), (0.931, 21), (0.975, 7),

(0.873, 47), (0.995, 28), (0.999, 2), (0.906, 44), (0.999, 4), (0.999, 42),

(0.995, 42), (0.581, 45), (0.890, 22), (0.644, 2), (0.990, 15), (0.557, 5),
(0.971, 25), (0.971, 31), (0.936, 44), (0.972, 6), (0.978, 20), (0.976, 23),

(0.972, 18), (0.964, 17), (0.728, 28), (0.677, 34), (0.954, 4), (0.820, 26),

(0.995, 23), (0.634, 45), (0.943, 49), (0.872, 48), (0.979, 20), (0.842, 8),
(0.999, 10), (0.975, 29), (0.830, 50), (0.990, 22), (0.988, 44), (0.842, 26),

(0.756, 42), (0.986, 7)

4000

Problem 2: stres-

sed input
values

(0.974, 8), (0.601, 32), (0.928, 44), (0.981, 14), (0.961, 25), (0.979, 17),

(0.972, 46), (0.975, 41), (0.978, 49), (0.770, 13), (0.931, 21), (0.975, 7),
(0.873, 47), (0.995, 28), (0.999, 2), (0.906, 44), (0.999, 4), (0.999, 42),

(0.995, 42), (0.557, 45), (0.890, 22), (0.644, 2), (0.990, 15), (0.581, 5),

(0.971, 45), (0.971, 31), (0.936, 44), (0.972, 6), (0.978, 20), (0.976, 23),

(0.972, 8), (0.964, 17), (0.728, 8), (0.677, 44), (0.954, 4), (0.820, 26),
(0.995, 23), (0.634, 45), (0.943, 49), (0.873, 10), (0.979, 20), (0.842, 50),

(0.999, 10), (0.975, 29), (0.830, 50), (0.990, 22), (0.988, 44), (0.842, 8),

(0.756, 42), (0.986, 7)

4000

Table 2. The best solutions found by the considered methods: Experiment I, Problem 1.

Method Optimal allocation: k1, k2; . . . ; kn Crs Rsr E±ciency

Hybrid (Analytical

þ PHC)

3, 7, 3, 2, 2, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 3, 2, 1, 2, 7, 3, 9,

2, 10, 2, 2, 3, 3, 2, 2, 2, 3, 5, 6, 3, 4, 2, 6, 2, 3, 2, 4,

2, 2, 4, 2, 2, 4, 4, 2

4000 0.9629 26.89

RELIVE 3, 7, 3, 2, 2, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 3, 2, 1, 2, 7, 3, 9,
2, 10, 2, 2, 3, 3, 2, 2, 2, 3, 5, 6, 3, 4, 2, 6, 2, 3, 2, 4,

2, 2, 4, 2, 2, 4, 4, 2

4000 0.9629 26.89

Standard EA 3, 6, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 3, 3, 3, 1, 2, 6, 3, 7,

3, 10, 2, 2, 3, 5, 2, 2, 2, 4, 5, 5, 3, 5, 1, 5, 3, 4, 2, 8,
2, 3, 3, 2, 2, 3, 4, 3

4000 0.9410 16.91

Table 3. The best solutions found by the considered methods: Experiment I, Problem 2.

Method Optimal allocation: k1, k2; . . . ; kn Crs Rsr E±ciency

Hybrid (Analytical

þ PHC)

3, 7, 3, 2, 2, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 3, 2, 1, 2, 7, 3, 8,

2, 9, 2, 2, 3, 3, 2, 2, 3, 2, 6, 5, 3, 4, 2, 6, 2, 4, 2, 4,

2, 2, 4, 2, 2, 4, 4, 2

4000 0.9617 26.01

RELIVE 3, 7, 3, 2, 2, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 3, 2, 1, 2, 7, 3, 8,

2, 9, 2, 2, 3, 3, 2, 2, 3, 2, 6, 5, 3, 4, 2, 6, 2, 4, 2, 4,

2, 2, 4, 2, 2, 4, 4, 2

4000 0.9617 26.01

Standard EA 3, 6, 2, 2, 2, 2, 2, 2, 3, 4, 3, 3, 3, 2, 11, 3, 6, 1, 2, 6, 5,

12, 2, 15, 2, 2, 2, 5, 2, 2, 3, 4, 10, 4, 5, 4, 2, 5, 3, 3,

2, 3, 3, 2, 3, 3, 2, 5, 4, 6

3991 0.9331 14.90

Optimization Methods for Redundancy Allocation in Large Systems 295

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

(3) Local search in the evolutionary algorithm: nn ¼ 20, ni ¼ 20, + ¼ 2, pmg ¼ 0:25,

pmr ¼ 0:25, pmp ¼ 0:5 and pm ¼ 0:2.

The settings of the standard evolutionary algorithm are similar to those used for

the global search in RELIVE, but with 50 chromosomes in the population and 1000

generations as a stopping criterion. For all the evolutionary approaches, the best

result out of 10 runs is presented.

Beside the actual reliability value of the redundant system Rrs, we included an

additional, more intuitive measure of the results, namely the redundancy e±ciency

de¯ned as follows:

Ef ¼
1(Rns

1(Rrs

: ð38Þ

The e±ciency shows how many times the risk of a failure decreases for the

redundant system, compared to the baseline, non-redundant one.

The experimental results for the two problems presented in Tables 2 and 3,

respectively, show that proposed method (RELIVE) gives the same solution as

the hybrid method (Analytical þ PHC), which is a reference for this particular case

in which only the active redundancy allocation is used. On the other hand, the

standard EA is not able to reach an optimal solution, neither for Problem 1 nor for

Problem 2.

7.2. Experiment II. Mixed redundancy strategy

In this experiment, a mixed redundancy strategy is considered. More precisely, for

some subsystems an active redundancy (denoted by symbol \¥") is used, for other

ones, a cold standby redundancy (denoted by symbol *") is applied, and for the

rest, a warm–cold standby redundancy (denoted by symbol \W") is preferred, as

presented in Sec. 3.

Table 4 presents the initial values for reliability, cost and type of redundancy

randomly generated (Problem 1), and then with stressed input values (Problem 2).

The best solutions found by the considered methods for these two problems are

presented in Tables 5 and 6, respectively.

These experimental results con¯rm that the proposed method (RELIVE) o®ers

better solutions than those provided by the standard EA. Thus, the innovative

evolutionary algorithm that combines global and local search proves to be a good

choice for these problems. Despite the overhead incurred by local search in each

generation, it is faster and often converges to the optimal solutions.

As a qualitative veri¯cation, the reliability of the redundant system ðRsrÞ is better

when a mixed redundancy strategy is applied than when only the active redundancy

allocation is used.

296 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

8. Conclusions

In this paper, some optimization methods were presented for the problem of maxi-

mizing the reliability of a redundant system, with a series-redundant reliability

model, in the presence of cost-related constraints. For the redundant system, a mixed

Table 5. The best solutions found by the considered methods: Experiment II, Problem 1.

Method Optimal allocation: k1, k2; . . . ; kn Crs Rsr E±ciency

RELIVE 3, 8, 3, 2, 3, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 3, 2, 1, 2, 7, 3, 10, 2,
10, 2, 2, 3, 3, 2, 2, 2, 3, 4, 4, 3, 5, 2, 7, 2, 3, 2, 5, 2, 2, 3,

2, 2, 3, 4, 2

4000 0.9837 61.07

Standard EA 2, 7, 3, 2, 3, 3, 2, 2, 2, 4, 3, 3, 3, 2, 1, 3, 3, 1, 2, 6, 4, 10, 4,

11, 2, 2, 3, 2, 4, 2, 2, 3, 4, 4, 9, 5, 2, 6, 2, 3, 2, 12, 2, 2, 3,
2, 2, 4, 3, 2

3997 0.9737 37.92

Table 4. The optimization problems considered for Experiment II. Mixed redundancy strategy.

Problem Component reliability, cost and type: (ri, ci, tiÞ tuples C#

Problem 1: initial

input values
(0.974, 8, W), (0.601, 32, ¥), (0.928, 44, ¥), (0.981, 14, W), (0.961, 25, ¥),

(0.979, 17, W), (0.972, 26, W), (0.975, 21, W), (0.978, 49, W), (0.770, 13, *),

(0.931, 21, *), (0.975, 7, W), (0.873, 47, ¥), (0.995, 28, W), (0.999, 2, W),

(0.906, 44, ¥), (0.999, 4, W), (0.999, 42, ¥), (0.995, 42, W), (0.581, 45, ¥),

(0.890, 22, *), (0.644, 2, ¥), (0.990, 15, W), (0.557, 5, ¥), (0.971, 25, W),

(0.971, 31, W), (0.936, 44, *), (0.972, 6, W), (0.978, 20, W), (0.976, 23, W),

(0.972, 18, W), (0.964, 17, ¥), (0.728, 28, *), (0.677, 34, *), (0.954, 4, *),

(0.820, 26, ¥), (0.995, 23, W), (0.634, 45, ¥), (0.943, 49, *), (0.872, 48, *),

(0.979, 20, W), (0.842, 8, ¥), (0.999, 10, *), (0.975, 29, W), (0.830, 50, *),

(0.990, 22, W), (0.988, 44, W), (0.842, 26, *), (0.756, 42, *), (0.986, 7, W)

4000

Problem 2: stres-
sed input

values

(0.974, 8, W), (0.601, 32, ¥), (0.928, 44, ¥), (0.981, 14, W), (0.961, 25, ¥),

(0.979, 17, W), (0.972, 46, W), (0.975, 41, W), (0.978, 49, W), (0.770, 13, *),

(0.931, 21, *), (0.975, 7, W), (0.873, 47, ¥), (0.995, 28, W), (0.999, 2, W),

(0.906, 44, ¥), (0.999, 4, W), (0.999, 42, ¥), (0.995, 42, W), (0.557, 45, ¥),

(0.890, 22, *), (0.644, 2, ¥), (0.990, 15, W), (0.581, 5, ¥), (0.971, 45, W),

(0.971, 31, W), (0.936, 44, *), (0.972, 6, W), (0.978, 20, W), (0.976, 23, W),

(0.972, 8, W), (0.964, 17, ¥), (0.728, 8, *), (0.677, 44, *), (0.954, 4, *),

(0.820, 26, ¥), (0.995, 23, W), (0.634, 45, ¥), (0.943, 49, *), (0.873, 10, *),

(0.979, 20, W), (0.842, 50, ¥), (0.999, 10, *), (0.975, 29, W), (0.830, 50, *),

(0.990, 22, W), (0.988, 44, W), (0.842, 8, *), (0.756, 42, *), (0.986, 7, W)

4000

Table 6. The best solutions found by the considered methods: Experiment II, Problem 2.

Method Optimal allocation: k1, k2; . . . ; kn Crs Rsr E±ciency

RELIVE 2, 7, 3, 2, 3, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 3, 2, 1, 2, 8, 3, 9, 2, 10, 2, 2, 3,
3, 2, 2, 3, 3, 4, 4, 3, 4, 2, 6, 2, 3, 2, 4, 2, 2, 3, 2, 2, 4, 4, 2

4000 0.9815 53.77

Standard EA 3, 7, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 4, 2, 2, 3, 1, 1, 1, 7, 3, 13, 2, 13, 2, 2,

2, 3, 3, 2, 3, 2, 6, 4, 9, 4, 2, 7, 2, 3, 2, 3, 3, 4, 3, 2, 2, 5, 5, 2

3996 0.9645 28.10

Optimization Methods for Redundancy Allocation in Large Systems 297

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

redundancy strategy is considered: with active spares, cold standby spares or warm-

cold standby spares. Beside an analytical solution based on Lagrange multipliers,

other general techniques were applied: an original algorithm, PHC, based on the hill

climbing idea, but using swaps and a priority queue in addition to the incremental

greedy improvements, in order to ¯ne-tune the approximate solutions found by the

analytical model and an innovative evolutionary algorithm, RELIVE, that combines

global search, in the same manner as a classic EA, and local search, in the form of an

original hill climbing process used to gradually improve the ¯tness of an individual as

it can survive for a speci¯ed number of generations.

References

1. F. A. Tillman, C. L. Hwang and W. Kuo, Optimization techniques for system reliability
with redundancy, A review, IEEE Trans. Reliab. 26 (1977) 148–155.

2. F. A. Tillman, C. L. Hwang and W. Kuo, Optimization of System Reliability (Marcel
Dekker, New York, 1980).

3. M. Shooman, Reliability of Computer Systems and Networks (John Wiley & Sons, New
York, 2002), pp. 331–383.

4. K. B. Misra (ed.), Optimal reliability design of a system, B. K. Lad, M. S. Kulkarni and
K. B. Misra, Handbook of Performability Engineering (Springer-Verlag, London, 2008),
pp. 499–519.

5. M. Chern, On the computational complexity of reliability redundancy allocation in series
system, Ope. Res. Lett. 11 (1992) 309–315.

6. A. A. Albert, A measure of the e®ort required to increase reliability, Technical Report
No. 43, Stanfort University, Applied Mathematics and Statistics Laboratory (1958).

7. K. B. Misra, A simple approach for constrained redundancy optimization problems, IEEE
Trans. Reliability R-20(3) (1971) 117–120.

8. K. K. Agarwal and J. S. Gupta, On minimizing the cost of reliable systems, IEEE Trans.
Reliab. R-24 (1975) 205–206.

9. V. Rajendra Prasad, K. P. K. Nair and Y. P. Aneja, A heuristic approach to optimal
assignment of components to parallel-series network, IEEE Trans. Reliability 40(5)
(1992) 555–558.

10. E. El-Neweihi, F. Proschan and J. Sethuraman, Optimal allocation of components in
parallel-series and series-parallel systems, J. Appl. Probability 23(3) (1986) 770–777, R10.

11. H. Everett, Generalized lagrange multiplier method of solving problems of optimal allo-
cation of resources, Ope. Res. 11 (1963) 399–417.

12. K. B. Misra, Reliability optimization of a series-parallel system, part i: Lagrangian
multipliers approach, part ii: Maximum principle approach, IEEE Trans. Reliability
R-21 (1972) 230–238.

13. W. R. Blischke and D. N. Prabhakar, Reliability: Modelling, Prediction, and Optimization
(Wiley, New York, 2000).

14. R. Belmann and S. Dreyfus, Dynamic programming and the reliability of multi-component
devices, Ope. Res. 6(2) (1958) 200–206.

15. D. W. Coit and A. E. Smith, Reliability optimization of series-parallel systems using a
genetic algorithm, IEEE Trans. Reliability 45 (1996) 254–260.

16. M. Marseguerra and E. Zio, System design optimization by genetic algorithms, in Proc.
Annual Reliability and Maintainability Symposium, IEEE, Los Angeles, CA, 2000,
pp. 222–227.

298 F. Leon, P. Ca»scaval & C. Ba̧dica̧

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

17. M. Agarwal and R. Gupta, Genetic search for redundacy optimization in complex
systems, J. Qual. Maintenance Eng. 12(4) (2006) 338–353.

18. R. Romera, J. E. Valdes and R. I. Zequeira, Active redundancy allocation in systems,
IEEE Trans. Reliability 53(3) (2004) 313–318. https://ieeexplore.ieee.org/document/
1331673.

19. F. Leon and P. Cascaval, 01IP and QUBO: Optimization methods for redundancy allo-
cation in complex systems, in Proc. 2019 23rd Int. Conf. System Theory, Control and
Computing (ICSTCC 2019), Sinaia, Romania, 2019, pp. 877–882, doi: 10.1109/
icstcc.2019.8885826.

20. P. Caşcaval and F. Leon, Active redundancy allocation in complex systems by using
di®erent optimization methods, in Proc. 11th Int. Conf. Computational Collective In-
telligence (ICCCI 2019), Hendaye, France, eds. N. Nguyen, R. Chbeir, E. Exposito,
P. Aniorte and B. Trawinski, Computational Collective Intelligence, Lecture Notes in
Computer Science, Vol. 11683, 2019, pp. 625–637, doi: 10.1007/978-3-030-28377-3 52.

Optimization Methods for Redundancy Allocation in Large Systems 299

V
ie

tn
am

 J
.
C

o
m

p
.
S

ci
.
2
0
2
0
.0

7
:2

8
1
-2

9
9
.
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

9
3
.2

0
2
.8

2
.1

9
2
 o

n
 0

9
/0

3
/2

0
.
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s
st

ri
ct

ly
 n

o
t

p
er

m
it

te
d
,
ex

ce
p
t

fo
r

O
p
en

 A
cc

es
s

ar
ti

cl
es

.

Microelectronics Journal 93 (2019) 104619
Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo
March test algorithm for unlinked static reduced three-cell coupling faults in
random-access memories

P. Caşcaval a,*, D. Caşcaval b

a
“Gheorghe Asachi” Technical University of Iaşi, Department of Computer Science and Engineering, Bd. D. Mangeron, nr. 27, Iaşi, 700050, Romania

b
“Gheorghe Asachi” Technical University of Iaşi, Department of Industrial Engineering, Bd. D. Mangeron, nr. 27, Iaşi, 700050, Romania
A B S T R A C T

A memory fault model regarding the unlinked static three-cell coupling faults in n� 1 random-access memories is discussed. This model is an extension of the well-
known model of unlinked static two-cell coupling faults. Because this model of three-cell coupling is limited to the physically neighbouring memory cells, it can also be
considered a neighbourhood pattern-sensitive model. An efficient march test algorithm able to cover this reduced model of three-cell coupling is presented in this
letter.
1. Introduction

The fault model of unlinked static three-cell coupling faults in n� 1
random-access memories as presented in Ref. [1] is discussed.

Based on the model of all static simple two-cell coupling faults pre-
sented in Ref. [2], a fault primitive (FP) based-model of three-cell
coupling is defined in Ref. [1]. A set of 72 FPs completely covers this
model of three-cell coupling faults.

It is said that two or more FPs are not linked when they do not in-
fluence each other. According to the fault classification presented in Refs.
[2,3], the class of ‘static faults’ refers to those faults which are sensitized
by performing at most one operation in the memory, whereas the class of
‘dynamic faults’ refers to those faults which can be sensitized by per-
forming more than one operation sequentially. As in Ref. [1], we only
address the class of static coupling faults.

The first test algorithm dedicated to a model of three-cell coupling is
proposed by Nair, Thatte and Abraham [4]. Other two more efficient test
algorithms are given by Cockburn (S3CTEST and S3CTEST2) [5].
Because the authors assume that the coupling cells can be anywhere in
the memory, all these test algorithms are quite long. For example, the test
algorithm S3CTEST needs 5n log2nþ 22:5n operations. To reduce the
length of the tests, Caşcaval and Bennett [6] have limited to the more
realistic case where only the physically neighbouring memory cells may
form a three-cell coupling. For this model, they proposed a march
memory test algorithm (MT) with a length of 38n. An improved algo-
rithm dedicated to this model (MT-R3CF) with a length of 30n is given by
Caşcaval, Bennett and Huţanu [7]. Both test algorithms, MT and
MT-R3CF, assume that a memory fault can be sensitized only by a
* Corresponding author.
E-mail addresses: cascaval@cs.tuiasi.ro (P. Caşcaval), cascaval@tex.tuiasi.ro (D. C

https://doi.org/10.1016/j.mejo.2019.104619
Received 24 March 2019; Received in revised form 27 July 2019; Accepted 16 Sept
Available online 19 September 2019
0026-2692/© 2019 Elsevier Ltd. All rights reserved.
transition write operation into a cell. In Ref. [1], the model of three-cell
coupling is extended by considering other classes of faults, such as the
faults sensitized by a non-transition write or a read operation, namely:
disturb coupling, read destructive coupling, deceptive read destructive
coupling or incorrect read, as defined in Ref. [2] and in other works. This
is the model we consider in this work.

As in Refs. [1,6,7], the authors restricted their study to the case where
only the physically neighbouring memory cells may be affected by a
three-cell coupling fault. As in Ref. [1], six coupling patterns of three
physically neighbouring cells (denoted by CP1, CP2, …, CP6) are
considered in this work, as presented in Fig. 1.

This model is known as ‘reduced three-cell coupling’. For a better
comparison, all the preliminary considerations presented in Ref. [1] are
also accepted in this work. Note that the model we discuss can also be
viewed as a neighbourhood pattern-sensitive fault model (NPSF).
Nevertheless, in this model, any cell in the group may be a victim cell of
the other two aggressor cells, not just the central cell, as it is usually
considered in the NPSF model. As in any work dedicated to NPSFs, we
assume that the scramble map is completely known, so we can run the
test using this physical address information. Naturally, in the memory
under testing, one or more groups of coupled cells may exist. As in
Ref. [1–7], we assume that the groups of coupled cells are disjoint.

For this model, the test algorithm March SR3C with a length of 66n
operations is proposed in Ref. [1]. In this letter, we present a more effi-
cient march test (MT-SR3C) with only 54n operations able to cover this
model of unlinked static three-cell coupling faults.

Notation: The following notations are used to describe a memory test
algorithm:
aşcaval).

ember 2019

mailto:cascaval@cs.tuiasi.ro
mailto:cascaval@tex.tuiasi.ro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2019.104619&domain=pdf
www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
https://doi.org/10.1016/j.mejo.2019.104619
https://doi.org/10.1016/j.mejo.2019.104619

i j

k

i

j k

i

j k

i j

k
i j k

i

j

k

a) CP1 b) CP2 c) CP3 d) CP4 e) CP5 f) CP6

Fig. 1. Coupling patterns of three physically neighbouring cells denoted by i, j,
and k.

Table 1
The expected value at a read operation during data background changes.

BGC1 BGC2 BGC3 BGC4

Ac ½0� Ac½0� � Ar ½0� Ac½0� Ac½0� � Ar ½0�

P. Caşcaval, D. Caşcaval Microelectronics Journal 93 (2019) 104619
r – a read operation from a memory cell; when the expected value is
explicitly indicated, the operation is denoted by r0 or r1 as the case;
w0 (w1) – a write 0 (1) operation into a cell;
0w1 (1w0) – an up (down) transition write operation;
0w0, 1w1 – non-transition write operations;
wt – a transition write operation into a cell when the transition type is
not explicitly indicated (i.e., 0w1 or 1w0 as appropriate);
wnt – a non-transition write operation into a cell when the logical
value of operation is not indicated (i.e., 0w0 or 1w1 as appropriate).

The memory test March MT-SR3C: To detect the faults of this model of
three-cell coupling we propose the march test algorithm presented in
Fig. 2, where BGC1, BGC2, BGC3 and BGC4 are test sequences for memory
checking and background change.

The sequence BGC1 fills the odd columns in the memory with 0 and
the even ones with 1, and BGC3 does it the other way around, whereas
BGC2 and BGC4 perform a checkerboard data background and its com-
plement, respectively. The four patterns used for data background
changes denoted by BP1, BP2, BP3, and BP4 are presented in Fig. 3.

The fourteen test sequences that compose this march algorithm are
identified with the superscript (x), where x2{0, 1, …, 13}. In the second
part of the test, composed of the sequences (5)�(12), before a march
element is applied, the memory data background is changed with a
different pattern. As a remark, this technique allows to apply march tests
even for NPSFs (see, for example [8,9]). An excellent overview on this
topic is presented in Ref. [10]. One can observe in Fig. 2 that any data
background change affects half of the n cells. Because each write oper-
ation for changing the state of a memory cell is preceded by a read
operation (to check the cell state), during a test sequence BGCi, i2{1, 2, 3,
4}, n operations are carried out: n =2 read operations and n =2 write op-
erations. Thus, the memory test MT-SR3C has a length of
{ (w0) (0);

(r0, 0w1, 1w1, r1) (1); (r1, 1w0, 0w0, r0) (2);

(r0, 0w1, 1w1, r1) (3); (r1, 1w0, 0w0, r0) (4);

 BGC1
(5); (r, wt, wnt, r, r, wt, wnt, r) (6);

 BGC2
(7); (r, wt, wnt, r, r, wt, wnt, r) (8);

 BGC3
(9); (r, wt, wnt, r, r, wt, wnt, r) (10);

 BGC4
(11); (r, wt, wnt, r, r, wt, wnt, r) (12);

(r0) (13)}

Fig. 2. Memory test algorithm MT-SR3C.

0 1
0 1

0 1
1 0

1 0
1 0

1 0
0 1

BP1 BP2 BP3 BP4

Fig. 3. Patterns used for data background changes (BP1, BP3 – column stripe;
BP2, BP4 – checkerboard).

2

nþ4� 4� nþ4� (1þ8)� nþn¼54n operations.
These four patterns (BPi, i2{1, 2, 3, 4}) allow easy implementation of

the sequences for data background changes. Specifically, during the
execution of a test sequence BGCi, i2{1, 2, 3, 4}, the memory cells which
must be changed are selected based on the LSB of the column address
(Ac½0�) and on the LSB of the row address (Ar½0�). Also, the expected value
at a read operation which precedes the transition write for changing the
state of the cell is determined based on Ac½0� and Ar½0�, as presented in
Table 1.

Regarding the march elements (6), (8), (10), and (12), the expected
value of a read operation (r) and the value used for a write operation (wt
or wnt) are also determined on the basis of Ac½0� and Ar½0�.
Theorem. The march test algorithm MT-SR3C is able to detect all unlinked
static faults of reduced three-cell coupling.

Proof. To detect a fault in the memory under testing we need to be able
to sensitize the fault by a suitable memory operation, and then to observe
the changed value of the cell affected by the fault. It is well-known that if
a memory test covers all the FPs that define a fault model, it also covers
all unlinked faults of this model. In other words, the set of unlinked faults
dominates the set of FPs. Consequently, we can limit the proof to the set
of FPs that define the model of reduced three-cell coupling. Consider an
arbitrary group G of three neighbouring memory cells that matches to
one of the six coupling patterns presented in Fig. 1. Taking into consid-
eration the order in which these cells are accessed during the memory
testing, we refer to the cells in group G by i, j and k as illustrated in Fig. 1.
As follows, we show that the test algorithm MT-SR3C is able to sensitize
and observe any FP that may affect a cell in the group of coupled cells
G¼ {i, j, k}.

2. MT-SR3C sensitizes any FP in group G of coupled cells

We have to show that during the memory testing, MT-SR3C is able to
perform all possible operations in the group of cells G¼ {i, j, k}. In other
words, we have to show that, during the memory testing, MT-SR3C is
able to entirely cover the graph of states that describes the normal
operation of these cells. The Proof consists of two stages: in the first stage
we focus on the transition write operations, and in the second one, on the
read and the non-transition write operations.

Stage 1. Transition writes: A transition write operation changes the
state of the memory cell. Such an operation is highlighted in boldface in
0, 0, 0

0, 1, 0

1, 0, 1

1, 1, 1

0, 1, 1

0, 0, 11, 0, 0

1, 1, 0

(4)

(4)

(4)

(1)

(1)

(1) (3)

(3)

(3)
(2)

(2)

(2)

0, 0, 1

0, 1, 0

1, 0, 1

1, 1, 1

0, 1, 1

0, 0, 11, 0, 0

1, 1, 0

a) March elements (1) (4) b) March elements: (6), (8), (10), (12)

Fig. 4. The graph of states for a group of cells G¼ {i, j, k} and the transitions
carried out by the test MT-SR3C.

Table 2
The initial states of a group of cells G¼ {i, j, k} after data background changes.

Coupling pattern Background patterns

BP1 and BP3 BP2 and BP4

CP1 (0,1,0), (1,0,1) (0,1,1), (1,0,0)
CP2 (0,0,1), (1,1,0) (0,1,0), (1,0,1)
CP3 (0,1,0), (1,0,1) (0,0,1), (1,1,0)
CP4 (0,1,1), (1,0,0) (0,1,0), (1,0,1)
CP5 (0,1,0), (1,0,1) (0,1,0), (1,0,1)
CP6 (0,0,0), (1,1,1) (0,1,0), (1,0,1)

P. Caşcaval, D. Caşcaval Microelectronics Journal 93 (2019) 104619
the test algorithm description (Fig. 2). With the first memory initialisa-
tion, any group of three cells is brought to the state (0,0,0). By applying
the march elements (1)�(4), the test MT-SR3C performs the transitions
presented in Fig. 4a and highlighted with solid line in each group of cells
G¼ {i, j, k}.

A more detailed analysis is necessary regarding the operations carried
out by the other march elements (6), (8), (10), and (12). After a data
background change, the state of a group G depends both on the pattern
used for memory initialisation and on the coupling pattern of this group
of cells. Fig. 5 illustrates all possible cases.

Table 2 presents the initial states of a group of cells G after data
background changes, depending on the coupling pattern, as highlighted
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

BP1 BP2 BP3 BP4

a) Coupling pattern CP1

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

BP1 BP2 BP3 BP4

b) Coupling pattern CP2

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

BP1 BP2 BP3 BP4

c) Coupling pattern CP3

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

BP1 BP2 BP3 BP4

d) Coupling pattern CP4

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

BP1 BP2 BP3 BP4

e) Coupling pattern CP5

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

BP1 BP2 BP3 BP4

f) Coupling pattern CP6

Fig. 5. The initialisation of a group of cells by changing the memory
data background.

3

in Fig. 5.
As shown in Table 2, any group of cells G¼ {i, j, k} reaches the states

(0,1,0) and (1,0,1) by two data background changes. As highlighted with
solid lines in Fig. 4b, starting with one of the two states, by applying the
march element ⇑(r, wt, wnt, r, r, wt, wnt, r) three neighbouring nodes are
reached, by going back and forth, and finally the group of cells is left in its
initial state. Note that for two neighbouring nodes the states differ by a
single bit, whereas for two non-neighbouring nodes, the states differ by at
least two bits. We can conclude that, by applying the march elements (6),
(8), (10), and (12), the test MT-SR3C assures execution of the transitions
highlighted with solid lines in the graph in Fig. 4b in every group of cells,
regardless of the coupling pattern. As highlighted in the two graphs, MT-
SR3C assures execution of all possible transition write operations in any
group of cells G¼ {i, j, k}.

Stage 2. Reads and non-transition writes: One can observe in the test
description that, after a new state has been reached by a transition write
operation, MT-SR3C performs other two operations without leaving the
current state: a non-transition write operation and a read operation. This
means that, during the memory testing, all normal operations are carried
out in any group of cells G¼ {i, j, k}. Therefore, the test MT-SR3C is able
to sensitize any FP in a group G of coupled cells.

3. MT-SR3C observes any FP sensitized in group G of coupled
cells

We have to show that the test MT-SR3C fulfils two conditions: (a)
after a sensitizing operation into a cell, the test reads the cell to check its
state, before a new transition write operation into the cell is allowed to
happen, and (b) after one or more operations have been carried out on a
cell in group G (a possible aggressor cell), the test reads the other two
cells in group G (possible victim cells) to check if state is changed.

Looking at the test description, one can observe that the test MT-SR3C
satisfies condition (a) because it carries out a read operation before any
transition write operation. Regarding condition (b), note that without the
first memory initialisation, any march element or any sequence for data
background changing starts with a read operation. Taking also into ac-
count the final checking, we can conclude that condition (b) is also
satisfied. In any case we can easily check that this assessment is true if we
write down the operations carried out in the cells of group G during the
memory testing. Therefore, MT-SR3C is able to detect any sensitized FP
in a group G of three coupled cells. This result has also been checked by
means of a simulation study. □

Remark 1. The test MT-SR3C is also able to cover the model of un-
linked static two-cell coupling faults presented in Ref. [2]. Specifically,
the first five march elements of this test completed with a final checking
are sufficient for this two-cell coupling model. That implies a number of
18n operations. Other march tests of the same length dedicated to the
two-cell coupling model can be found in Ref. [11]. Note that the memory
test March SS given by Hamdioui et al. [2] to cover this model has a
length of 22n.

Remark 2. For the coupling patterns CP1, CP3, and CP5, the test se-
quences (7), (8), (11), and (12) are not necessary so that these sequences
can be removed from the memory test algorithm. Likewise for the

 { (w0);

(r0, w1, w1, r1) ; (r1, w0, w0, r0);

(r0, w1, w1, r1); (r1, w0, w0, r0);

 BGC1; (r, wt, wnt, r, r, wt, wnt, r);

 BGC3; (r, wt, wnt, r, r, wt, wnt, r);
(r0) }

Fig. 6. Memory test algorithm MT-SR3C-1.

{ (w0);

(r0, w1, w1, r1) ; (r1, w0, w0, r0);

(r0, w1, w1, r1); (r1, w0, w0, r0);

 BGC2; (r, wt, wnt, r, r, wt, wnt, r);

 BGC4; (r, wt, wnt, r, r, wt, wnt, r);
(r0) }

Fig. 7. Memory test algorithm MT-SR3C-2.

P. Caşcaval, D. Caşcaval Microelectronics Journal 93 (2019) 104619
coupling patterns CP2, CP4, and CP6, the test sequences (5), (6), (9), and
(10) are not necessary. Consequently, for the subset of coupling patterns
{CP1, CP3, CP5}, the test algorithm is composed of the sequences (0)–(6),
(9), (10), and (13), whereas for the subset of coupling patterns {CP2, CP4,
CP6}, the test algorithm is composed of the test sequences (0)�(4), (7),
(8), (11)�(13). These reduced march memory tests, called MT-SR3C-1
andMT-SR3C-2, are explicitly presented in Fig. 6 and Fig. 7, respectively.

Note that to change the data background from BP1 to BP3 (by the
sequence BGC3 in case of test MT-SR3C-1), or from BP2 to BP4 (by the
sequence BGC4 in case of test MT-SR3C-2), the value of each memory cell
must be changed. Both test sequences require 2n operations. Thus, for
4

such a subset of coupling patterns, the memory test is reduced from 54n
to nþ4�4�nþ(1þ8)�nþ(2þ8)�nþn¼ 37n operations. It is important to
note that, except for the operations used to change the data background,
in such a case, any arc in the graph of states is crossed only once during
the memory testing (Fig. 4). That means that for such a subset of coupling
patterns, MT-SR3C-1 and MT-SR3C-2 (of length 37n) are almost optimal
memory tests.

4. Conclusion

Compared to the test March SR3C, the test MT-SR3C is more efficient,
as it is 18.5% shorter. The main idea used in this work for devising a
shorter test is that, between two consecutive write operations of a march
element, a read operation is not necessary when the second write oper-
ation is a non-transition one.

References

[1] P. Caşcaval, D. Caşcaval, March SR3C: a Test for a reduced model of all static simple
three-cell coupling faults in random-access memories, Microelectron. J. 41 (4)
(2010) 212–218.

[2] S. Hamdioui, A.J. van de Goor, M. Rodgers, March SS: a test for all static simple
RAM faults, in: Proceeding of the IEEE Workshop on Memory Technology, Design
and Testing, Isle of Bendor, July 2002, pp. 95–100. France.

[3] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, M. Rodgers, Dynamic faults in random-
access-memories: concept, fault models and tests, J. Electron. Testing Theory and
Appl. 19 (2) (2003) 195–205.

[4] R. Nair, S. Thatte, J. Abraham, Efficient algorithms for testing semiconductor
random-access memories, IEEE Trans. Comput. C- 27 (6) (1978) 572–576.

[5] B.F. Cockburn, Deterministic testing for detecting single V-coupling faults in RAMs,
J. Electron. Testing Theory and Appl. 5 (1) (1994) 91–113.

[6] P. Caşcaval, S. Bennett, Efficient march test for 3-coupling faults in random-access
memories, Microprocess. Microsyst. 24 (10) (2001) 501–509.

[7] P. Caşcaval, S. Bennett, C. Huţanu, Efficient march tests for a reduced 3-coupling
and 4-coupling faults in RAMs, J. of Electron. Testing Theory and Appl. 20 (2)
(2004) 227–243.

[8] K.L. Cheng, M.F. Tsai, C.W. Wu, Neighbourhood pattern-sensitive fault testing and
diagnostics for random-access memories, IEEE Trans. Comput. Aided Des. Integr
Circuits Syst. 21 (11) (2002) 1328–1336.

[9] C. Huzum, P. Caşcaval, ‘March test for static neighborhood pattern-sensitive faults
in random-access memories’, elektronika ir elektrotechnika – section system
engineering, Computer Technol. 119 (3) (2012) 81–86.

[10] I. Mrozek, Multi-run Memory Tests for Pattern Sensitive Faults, Springer Verlag,
2019.

[11] G. Harutunyan, V.A. Vardanian, Y. Zorian, Minimal march tests for unlinked static
faults in random access memories, in: Proceeding of the 23rd IEEE VLSI
Symposium, May 2005, pp. 53–59. Palm Springs, CA, USA.

http://refhub.elsevier.com/S0026-2692(19)30123-5/sref1
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref1
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref1
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref1
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref1
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref1
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref2
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref2
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref2
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref2
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref3
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref3
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref3
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref3
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref4
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref4
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref4
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref5
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref5
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref5
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref6
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref6
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref6
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref6
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref7
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref7
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref7
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref7
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref7
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref7
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref8
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref8
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref8
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref8
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref9
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref9
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref9
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref9
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref9
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref9
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref10
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref10
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref11
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref11
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref11
http://refhub.elsevier.com/S0026-2692(19)30123-5/sref11

Research Article
Approximate Method to Evaluate Reliability of Complex Networks

Petru Caşcaval

Department of Computer Science and Engineering, “Gheorghe Asachi” Technical University of Iaşi, Dimitrie Mangeron Street, 27,
700050 Iaşi, Romania

Correspondence should be addressed to Petru Caşcaval; cascaval@cs.tuiasi.ro

Received 20 April 2018; Revised 12 July 2018; Accepted 31 July 2018; Published 12 November 2018

Academic Editor: Ireneusz Czarnowski

Copyright © 2018 Petru Caşcaval. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the issue of reliability evaluation in complex networks, in which both link and node failures are considered,
and proposes an approximate method based on the minimal paths between two specified nodes. The method requires an algorithm
for transforming the set of minimal paths into a sum of disjoint products (SDP). To reduce the computation burden, in the first
stage, only the links of the network are considered. Then, in the second stage, each term of the set of disjoint link-products is
separately processed, taking into consideration the reliability values for both links and adjacent nodes. In this way, a reliability
expression with a one-to-one correspondence to the set of disjoint products is obtained. This approximate method provides a
very good accuracy and greatly reduces the computation for complex networks.

1. Introduction

The network reliability theory is extensively applied in many
real-world systems that can be modeled as stochastic net-
works, such as communication networks, sensor networks,
social networks, etc. A variety of tools are used for system
modeling and computation of reliability or availability indi-
ces that describe in a certain way the ability of a network to
carry out a desired operation. Most tools are based on algo-
rithms described in terms of minimal path set or minimal
cut set (see, for example, [1–8]). Unfortunately, the problem
of computing the network reliability based on the set of the
minimal paths or cuts is NP-hard [7, 9]. For this reason, in
case of more complex networks, other techniques for approx-
imate reliability evaluation are also applied, such as those
based on network decomposition or on Monte Carlo simula-
tions (see, for example, [10–16]).

In this work, we deal with the problem of evaluation of
two-terminal reliability or availability indices in medium-
to-large networks, based on SDP algorithms, in which both
link and node failures are considered.

Many authors address this problem assuming that the
nodes of the system are perfectly reliable (see, for example,
[1, 4–6]). However, in a communication system, nodes also

have certain probability of failure so that the reliability eval-
uation assuming perfect nodes is not realistic.

The failure of a node inhibits the work of all links con-
nected to it. Based on this concept, starting from the given
network with unreliable nodes, reduced models with perfect
nodes but with links having increased failure probabilities
can be obtained. This method is simple, but not so accurate.
Because the failure of a node inhibits the work of all adjacent
links, the work of the links connected to it depends on the
state of this common node. However, a reduced model is
solved under the hypothesis according to which the failures
that affect the network are independent. For this reason, the
reliability estimation must be accepted with caution. Indeed,
the estimation error of two-terminal network reliability could
be unacceptable in many cases, especially when the failure
probabilities of the nodes have high values.

To highlight this aspect, let us consider a simple network
with unreliable nodes as presented in Figure 1(a). The reli-
ability of the connection between nodes 1 and 4 has to be
evaluated. These two terminal nodes are considered in series
with the rest of the network. Three reduced models with per-
fect nodes and links having increased probabilities of failure
are presented in Figures 1(b)–1(d). With dashed line, it is
indicated that the failure of a node can be modeled by a cut

Hindawi
Complexity
Volume 2018, Article ID 5967604, 11 pages
https://doi.org/10.1155/2018/5967604

http://orcid.org/0000-0001-5382-0940
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/5967604

of the links connected to it. Consequently, in case of a
reduced model with perfect nodes, the reliability of the links
in the network must be adjusted accordingly. It is easy to
observe that other reduced models are also possible.

For the reduced models presented in Figure 1, Table 1
shows how the reliability of each link in the network is
adjusted to capture the fact that the nodes of the given net-
work are also unreliable.

For a numerical evaluation of these approximate models,
let us consider a network with the following reliability values
for the nodes and the links: p1 = 0 99, p2 = 0 98, p3 = 0 97,
p4 = 0 96, pa = 0 99, pb = 0 98, pc = 0 97, pd = 0 96, and pe =
0 95. The numerical results expressing the reliability estima-
tion of the connection between nodes 1 and 4 R1‐4 are
presented in Table 2.

These numerical results show that the reduced models
with perfect nodes might be useful in a way, but the reliability
estimation is not so accurate, even for this simple network.

A better solution that makes a link-based reliability
evaluation algorithm adaptable to communication systems
is given by Aggarwal et al. [2]. Thus, based on a SDP
expression obtained with the assumption of perfect nodes,
the node reliability values are taken into account in a specific
mode for each term of the set of disjoint link-products.
However, the authors do not completely address aspects
of the influence of a node on the links connected to it,
as it will be seen in Section 5. Moreover, the method is
limited to the SDP expressions generated with a so-called
“single variable inversion” (SVI) technique. But, for complex
networks, “multiple variable inversion” (MVI) techniques are
required [1, 4, 14, 16].

In this work, a new approximate method for two-
terminal network reliability evaluation with a much better
accuracy is proposed. The method is based on algorithms
described in terms of minimal path set and covers both SVI
and MVI expressions. Just like in [2], in the first stage, the
method is focused only on the links of the network. For the
any two given nodes, all the minimal paths are enumerated,

and then this set of minimal paths is transformed into a set
of disjoint products. In the second stage, each term of the
sum of disjoint products including state variables associated
to the links is processed distinctly by considering both links
and adjacent node reliability values.

This new approximate method reduces the computa-
tion time for large networks to a great extent, compared with
an exact method. This reduction in computation time is
explained by the fact that the node failures are taken into
account only in the second stage when the computation pro-
cess is simpler, belonging to the O n ×m class of complex-
ity, where n is the number of disjoint link-products and m
is the number of the network components.

The rest of this paper is organized as follows. Section 2
introduces notations, assumptions, and a short nomencla-
ture, while Section 3 presents general issues regarding the
problem of network reliability evaluation. Section 4 provides
a method for exact evaluation of two-terminal network
reliability when both node and link failures are considered.
Section 5, the most extensive one, presents a new approxi-
mate method that reduces the complexity of this problem
in medium-to-large networks. Section 6 presents some
obtained numerical results. The paper ends with some final
remarks presented in Section 7.

2. Notations and Preliminary Considerations

2.1. Nomenclature

(a) Reliability: the two-terminal reliability of a stochastic
network expresses the probability that there exists at
least one path between any two specified nodes (let us
say a source node and a target one) which operate
successfully

(b) Connected nodes: two nodes which can communicate
with each other are connected; otherwise, they are
disconnected

(c) Minimal path: a minimal set of links and their adja-
cent nodes whose good operation ensures that two
given nodes are connected. For a minimal path, any
proper subset is no longer a path

1

2

3

4

c

ba

e

d

(a) Unreliable

nodes

1

2

3

4

c

ba

e

d

(b) Perfect

nodes—model 1

1

2

3

4
c

ba

e

d

(c) Perfect

nodes—model 2

1

2

3

4

c

ba

e

d

(d) Perfect

nodes—model 3

Figure 1: A simple network: (a) initial model; (b–d) reduced
models.

Table 1: Adjusted reliability values for the links in the network.

Reduced
model

New reliability values

Model 1 pa′ = pap2, pb′ = pbp2, pc′ = pcp3, pd′ = pdp3, pe′ = pep2p3

Model 2 pa′ = pap2, pb′ = pb, pc′ = pcp3, pd′ = pd , pe′ = pep2p3

Model 3 pa′ = pa, pb′ = pbp2, pc′ = pc, pd′ = pdp3, pe′ = pep2p3

Table 2: Numerical results R1–4 .

Exact result
Approximate results obtained
based on the reduced models

Model 1 Model 2 Model 3

0.9467 0.9466 0.9477 0.9476

2 Complexity

(d) Uniproduct: Boolean product composed only of
distinct uncomplemented variables

(e) Subproduct: part of a Boolean product that is a com-
plemented or an uncomplemented uniproduct

(f) Mixproduct: product of one uncomplemented sub-
product and one or more complemented subproducts

(g) Disjoint products: a set of products expressing mutu-
ally exclusive states

2.2. Notations

(a) G V , E is a network model with node set V = y1,
y2,… , yk and link set E = x1, x2,… , xm

(b) s, t ∈ V , s ≠ t, are the source and target nodes

(c) px is the reliability of node x ∈ Vor link x ∈ E, and
qx = 1 − px

(d) Rs−t is the two-terminal reliability of networkG V , E
with s and t the source and target nodes (s − t network
reliability)

(e) P A denotes the probability of the event A

2.3. Assumptions

(a) Each component in the network (i.e., node or link)
is either operational or failed, so a logical variable
is used to indicate its state. The same notations
y1, y2,… , yk and x1, x2,… , xm are used to denote
these logical variables

(b) The events of failure that affect the nodes or the links
in network are stochastically independent

3. Considerations on Network
Reliability Evaluation

Consider G V , E the network under study and s, t ∈ V , s ≠ t,
the source and target nodes. For this model, consider the
minimal path set MPS = P1, P2,… , Pnp . Note that a mini-
mal path Pi ∈MPS is expressed by a product of distinct logi-
cal variables associated with some links or nodes of the
network, and the reliability of this path is given by

P Pi =
c∈Pi

pc 1

Starting from this minimal path set, a structure function

S = ⋃
np

i=1
Pi is defined, and the two-terminal network reliability

of this model is calculated by

Rs−t = P S = P ⋃
np

i=1
Pi 2

Efficient methods for enumerating all minimal paths are
presented in [14, 17, 18]. To compute the network reliability

Rs−t based on (2), the well-known rule of sum of disjoint
products is recommended:

P ⋃
n

i=1
Ai = P A1 + P A1 ∩ A2 + P A1 ∩ A2 ∩ A3

+⋯ + P A1 ∩ A2 ∩⋯∩ An−1 ∩ An

3

For this purpose, the structure function S is transformed
into an equivalent form S′, composed only of disjoint prod-
ucts (DP), so that the two-terminal network reliability Rs−t
is given by

Rs−t = P S′ =⋃
j
DPj =〠

j

P DPj 4

Observe that (4) is easy to compute, so that the problem
of computing the two-terminal network reliability essentially
boils down to generating a new set of disjoint products start-
ing from the set MPS of minimal paths. Unfortunately, this
task falls in the NP-hard category.

The first computerized SDP algorithm was proposed by
Aggarwal et al. [3], but one of the best known SDP algorithms
for transforming the structure function to a sum of disjoint
products is given by Abraham [4].

If P and Q are two undisjoint products, and x1, x2,… ,
xs ∈ P \Q, according to Abraham’s theorem, the following
logical expression can be written as follows:

P +Q = P + x1Q + x1x2Q + x1x2x3Q +⋯ + x1x2 ⋯ xs−1xsQ

5

Note that, to ensure that two products are disjoint,
only a single complemented variable is added with each
new term. Abraham’s algorithm is a reference for the so-
called SVI algorithms. Two improved SVI algorithms are
presented in [19, 20].

To reduce the computation time, other approaches based
on the so-called MVI technique have been devised (see, for
example, [5, 6, 21–23]).

When an MVI technique is applied, a product may con-
tain distinct logical variables (complemented or not) but also
one or more complemented subproducts. For instance, take
seven variables representing a network state where links 2
and 4 are not both operational, link 6 is operational, link 7
is in the failed state, and links 1, 3, and 5 are in a do-not-
care state. In an MVI approach, this network state is repre-
sented by the Boolean expression x2x4x6x7, whereas in an
SVI approach, by the expression x2 x6 x7 + x2 x4 x6 x7, so that
the advantage of the MVI approach is obvious.

An excellent survey on MVI techniques can be found in
[16]. A new MVI technique, called NMVI, is proposed by
Caşcaval and Floria in [1].

According to the NMVI method, in order to expand a
product Q in relation to a given uniproduct P, so that any
new generated product to be disjoint with P, the following
two MVI rules are applied.

3Complexity

Rule 1. Type I expansion
If x1, x2,… , xs ∈ P \Q, the following equation can be written
as follows:

P +Q = P + x1x2 ⋯ xsQ + x1x2 ⋯ xsQ 6

When P and Q are both uniproducts, for the new term x1x2
⋯ xsQ, the absorption law is applicable, so that a reduced
logical expression with two disjoint products is obtained:

P +Q = P + x1x2 ⋯ xsQ 7

Rule 2. Type II expansion
Consider P = x1x2 ⋯ xiR1, and Q = x1x2 ⋯ xixi+1 ⋯ xsR2. By
applying the Boolean rule xy = x + xy, the following logical
expression results are as follows:

P +Q = P + x1x2 ⋯ xixi+1 ⋯ xsR2
= P + x1x2 ⋯ xiR2 + x1x2 ⋯ xixi+1 ⋯ xsR2

8

When R1 ∈ R2, the term x1x2 … xixi+1 ⋯ xsR2 is absorbed by
product P, so that a reduced logical expression composed of
two disjoint products is obtained:

P +Q = P + x1x2 ⋯ xiR2 9

As shown in [1], NMVI is an efficient method, providing
fewer disjoint products compared with other well-known
MVI methods, as CAREL [5], VT [6], or KDH88 [21].

In the next two sections, we address the problem of two-
terminal network reliability evaluation, in which both link
and node failures are considered. First, an exact method of
reliability evaluation is discussed. Then, a new approximate
method is presented, with the advantage of being much faster
and able to offer a very good accuracy.

4. Exact Evaluation of Network Reliability

For two given nodes, s and t, an exact evaluation of two-
terminal network reliability can be obtained based on the
set of minimal paths that include both links and adjacent
nodes. Compared with the case in which the study is limited
to the links of the network, when the nodes are also consid-
ered, the number of the minimal paths is unchanged, but
any term is extended by also including the adjacent nodes.
To illustrate this method, let us analyze the network N1 pre-
sented in Figure 2(a), where the source and target nodes are 1
and 5. These two terminal nodes are considered in series with
the rest of the network. For these two given nodes, the set of
minimal paths is

MPS = 3bf , 34beg, 24adg, 23acf ,
234aceg, 234adef , 234bcdg

10

By applying the NMVI method, the following set of dis-
joint products results as follows:

DPS = 3bf , 34begf , 24adf g3b, 24adgf 3be, 23acf b4dg,

 234acegbdf , 234adef bcg, 234bcdgaef

11

Finally, the reliability R1–5 is given by

R1−5 = p1p5 p3pbpf + p3p4pbpepg 1 − pf

+ p2p4papdpg pf 1 − p3pb

+ 1 − pf 1 − p3pbpe

+ p2p3papcpf 1 − pb 1 − p4pdpg

+ p2p3p4 papcpepg 1 − pb 1 − pd 1 − pf

+ papdpepf 1 − pb 1 − pc 1 − pg

+ pbpcpdpg 1 − pa 1 − pe 1 − pf

12

The same network is analyzed in [2], example 2. So, we
compared the numerical result obtained based on this equa-
tion with the result generated with equation (21) presented in
[2]. These results are identical. For example, assuming for all
the nodes a reliability of 0.98 and for all the links a reliability
of 0.95, both methods give a reliability value R1–5 = 0 969611.

To cover both nodes and links, much more logical vari-
ables are used. The problem that arises in this case is that
the number of disjoint products increases to a large extent
when complex networks are evaluated. To highlight this
aspect, comparative results with respect to the network
models N2 and N3 given in Figure 2 are presented in Table 3.

Compared with the case in which the study is limited to
the links of the network, when the adjacent nodes are also
considered, the number of disjoint products increases signif-
icantly. The relative growth with respect to the number of
disjoint products is about 39% for network N2, but for the
more complex network N3, this relative growth reaches 86%.

5. Approximate Approach for Network
Reliability Evaluation

The process of generating the set of disjoint products is a
difficult one, of NP-hard complexity. In order to reduce
the computation time, the process of enumerating the
minimal paths and their development as a sum of disjoint
products is focused only to the links of the network. For
this purpose, for a link xi ∈ E, let Xi be a logical variable
that reflects the event of successful communication
through that branch—that means that the link xi and the
two adjacent nodes are operational. Thus, the structure func-
tion S can be expressed in terms of these logical variables
X1, X2,… , Xm.

4 Complexity

In the second stage, each term of the sum of disjoint
products is processed distinctly by considering both links
and adjacent node reliability values. The node reliability
values are taken into account in a specific mode for each term
of the set of disjoint link-products, when only the adjacent
nodes of the links that compose the current product are con-
sidered. This is the starting point for this approximate
approach.

Based on the set of disjoint products DPS = DP1, DP2,
… , DPn , the two-terminal network reliability is computed
by applying (4).

A term DP in the set of disjoint products is a mixpro-
duct that includes one uniproduct, noted with U , and one
or more complemented subproducts. Figure 3 shows such
a complex mixproduct.

As illustrated in Figure 3, the uniproductU reflects a state
of operability of a part of the network that ensures the con-
nection between the source and target nodes. Let SAN be
the set of all adjacent nodes of the links that compose the

uniproduct U . All these links and all the nodes that belong
to SAN are operational. Consequently, the probability of
the network state described by U is given by

P U =
x∈U

px
y∈SAN

py 13

The main problem is how to compute or at least evaluate
with a good accuracy the probability of a network state
described by a complemented subproduct (such a subprod-
uct is illustrated in Figure 3 with a dashed line).

A complemented subproduct reflects a state of inoper-
ability of a branch or of a bigger portion of the network. To
begin with, consider the case where such a portion of the net-
work is independent of that portions described by the other
complemented subproducts. Under these circumstances,
the current term can be independently evaluated. Two cases
are distinguished.

Case 1 (a single complemented variable (an SVI term)).
Consider a single complemented variable Xi (an SVI term)
associated with the link xi that connects two nodes; let us
say yi and yj (for instance, the variable X11 in Figure 3).
The probability of this event is

P Xi = 1 − pxi′ , 14

Table 3: The number of disjoint products. Comparative results.

Network
models

Number of
minimal
paths

Number of disjoint products
generated by NMVI, including

Only links Both links and nodes

N2 281 2269 3151

N3 16618 1799888 3353457

a

d

c

b
f

e g1

2

3

4

5

(a) 5-node, 7-link network (N1)

7

12

8

9

13

6

10

11

4

5

3

2

1

(b) 13-node, 22-link network (N2)

1

2

5

4

3

6

9

10

7

8

12

11 13

14

15

16

17

18

19

20

(c) 20-node, 40-link network (N3)

Figure 2: Network models with unreliable nodes: (a) 5-node, 7-link network (N1); (b) 13-node, 22-link network (N2); (c) 20-node, 40-link
network (N3).

5Complexity

where

pxi′ =

pxipyi , if yj ∈ SAN, yi ∉ SAN,
pxipyj , if yi ∈ SAN, yj ∉ SAN,

pxipyipyj , if yi, yj ∉ SAN
15

Equations (13) and (14) are found in another form in [2]
where the same problem of network reliability evaluation is
treated. Remember that the method presented in [2] covers
only SDP expressions composed of SVI terms.

Case 2 (anMVI term). Consider a complemented subproduct
X1X2 ⋯ Xk (an MVI term) that describes a state of inoper-
ability of a portion of the network as illustrated in Figure 4.
The probability that this portion of the network to be inoper-
able is

P X1X2 ⋯ Xk = 1 −Q, 16

where the product Q includes not only the reliability of the
corresponding links but also the reliability of the adjacent
nodes that do not belong to SAN, considered only once.
More exactly, the probability Q is computed by the following
sequence of steps presented in Pseudocode 1.

Even though the two portions of the network described
by two complemented subproducts may not have any com-
mon link, they may have one or even more common nodes.
Consequently, the state of inoperability of these two portions
of the network may be due to the failure of such a common
node. Of course, we refer to a common node that does not
belong to SAN.

In the first stage, the analysis of these dependencies
given by the common nodes is limited to the level of pairs
of complemented subproducts. The following three cases
are distinguished.

Case 3 (two SVI terms with a common node). Con-
sider two complemented variables Xi and Xj that describe a
state of inoperability for two branches xi and xj that have

yk as a common node, as illustrated in Figure 5. The node
yk ∉ SAN.

Let us define the probabilities pxi′ and pxj′ associated with

the links xi and xj, given as follows:

pxi′ =
pxi , if yi ∈ SAN,
pxipyi , if yi ∉ SAN,

pxj′ =
pxj , if yj ∈ SAN,

pxjpyj , if yj ∉ SAN

17

By applying the theorem of total probability to the
event space {yk, yk}, the following equation can be written
as follows:

P XiXj = P X = pykP X ∣ yk + 1 − pyk P X ∣ yk 18

y12 y13

y11

x1

x2 x3

x4

x20

y2

s = y1 y10 = t

y3

x19

y20

y21
y22 y23 y25

y9

y24

x23 x24

x9x6

x7

y8
y17

y18y16

y15

x5

y19
x8

x22

y5 y6 y7

y14

y4
U Node ∈ SAN

X21

X11 X12 X13

X14

X16 X17

X15

X18

X19X20

X22X23X24

Figure 3: Illustration of a complex mixproduct: DP = X1X2 ⋯ X9X11X12 ⋯ X18X19X20X21X22X23X24.

y1

x1

y2

x2

yk

xk

yk+1y3

Figure 4: Illustration of a MVI term: X1X2 ⋯ Xk.

Q = 1;
for i = 1 k

Q =Q∗pxi ;
if yi ∉ SAN then Q =Q∗pyi ;

end
if yk+1 ∉ SAN then Q =Q∗pyk+1 ;

Pseudocode 1: Computing the product Q.

6 Complexity

As

P X ∣ yk = 1,

P X ∣ yk = 1 − pxi′ 1 − pxj′ ,
19

finally, the equation becomes

P XiXj = 1 − pyk pxi′ + pxj′ − pxi′ pxj′ 20

Note that this case is not treated in [2].

Case 4 (an MVI term and an SVI one with a common node).
Consider, for example, X1X2X3 and X4 to be two terms inDP
describing a state of inoperability of two portions of the net-
work as illustrated in Figure 6. The common node y2 ∉ SAN.

Let us define the probabilities px1′ , px2′ , px3′ , and px4′
given as follows:

px1′ =
px1 , if y1 ∈ SAN,
px1 py1 , if y1 ∉ SAN,

px2′ =
px2 , if y3 ∈ SAN,
px2 py3 , if y3 ∉ SAN,

px3′ =
px3 , if y4 ∈ SAN,
px3 py4 , if y4 ∉ SAN,

px4′ =
px4 , if y5 ∈ SAN,
px4 py5 , if y5 ∉ SAN

21

By applying the theorem of total probability to the
event space {y2, y2}, the following equation can be written
as follows:

P X1X2X3X4 = P X = py2P X ∣ y2 + 1 − py2 P X ∣ y2

22

As

P X ∣ y2 = 1,

P X ∣ y2 = 1 − px1′ px2′ px3′ 1 − px4′ ,
23

finally, the following equation results in

P X1X2X3X4 = 1 − py2 px1′ px2′ px3′ + px4′ − px1′ px2′ px3′ px4′

24

Note that, if the two events were treated indepen-
dently, the following equation would result in

P X1X2X3 P X4 = 1 − px1′ px2′ px3′ py2 1 − px4′ py2
= 1 − py2 px1′ px2′ px3′ + px4′ − px1′ px2′ px3′ px4′ py2
< P X1X2X3X4

25

Remark 1. Equation (25) shows that when a common node
is not taken into account, the reliability estimation is a
pessimistic one.

Case 5 (two MVI terms with a common node). Consider, for
example, X1X2 and X3X4 to be the twoMVI terms describing
a state of inoperability of two parts of the network, as illus-
trated in Figure 7, where the communication between nodes
1 and 2 and between nodes 3 and 4 is not possible. The com-
mon node y5 ∉ SAN.
Let us define the probabilities px1′ , px2′ , px3′ , and px4′ given by
the following:

pxi′ =
pxi , if yi ∈ SAN,
pxipyi , if yi ∉ SAN,
 i = 1, 2, 3, 4

26

y1

y2

y4y3
X1X2X3

X4

y5

p′x1 p′x2

p′x4

p′x3

Figure 6: Illustration of an MVI term and an SVI one with a
common node.

yk

Xi Xj

yi yj

Figure 5: Illustration of two inoperable links with a common node.

7Complexity

The probability of this state, P X1X2X3X4 , can be
determined by applying the rule of total probability to
the event space y5, y5 .

If X = X1X2X3X4, the following equation can be written
as follows:

P X = py5P X ∣ y5 + 1 − py5 P X ∣ y5 27

Obviously, P X/y5 = 1.

P X ∣ y5 = 1 − px1′ px2′ 1 − px3′ px4′

= 1 − px1′ px2′ − px3′ px4′ + px1′ px2′ px3′ px4′
28

Finally, the equation becomes

P X1X2X3X4 = 1 − py5 px1′ px2′ + px3′ px4′ − px1′ px2′ px3′ px4′

29

To exemplify these 5 rules previously defined, consider
the mixproduct

DP = X1X2 ⋯ X9X11X12 ⋯ X18X19X20X21X22X23X24,
30

as illustrated in Figure 3. The mixproduct DP includes the
uniproduct U = X1X2 ⋯ X9 and for this operable path, the
set of adjacent nodes is SAN = y1, y2,… , y10 .

Taking into account the common nodes for the SVI and
MVI terms, the probability of the mixproduct DP can be
evaluated with a good accuracy by the following:

P DP = P U P X11 P X12X13 P X14X15 P X16

× P X17X18 P X19X20X21 P X22X23X24
31

By applying the rules presented before, the following
equations result in

P U = px1px2 ⋯ px9py1py2 ⋯ py10 ,

P X11 = 1 − py11px11py12 ,

P X12X13 = 1 − py13 px12 + px13′ − px12px13′ ,

32

where px13′ = px13py14 .

P X14X15 = 1 − py15 px14 + px15 − px14px15 ,

P X16 = 1 − py15px16py16 an approximate evaluation ,

P X17X18 = 1 − py18 px17′ + px18′ − px17′ px18′ ,

33

where px17′ = px17py17 and px18′ = px18py19 .

P X19X20X21 = 1 − py20 px19px20 + px21′ − px19px20px21′ , 34

where px21′ = px21py21 .

P X22X23X24 = 1 − py22px22py23px23py24px24py25 35

Observe that, related to the probability of this mixpro-
duct, an approximation is made with respect to the terms
X14, X15, and X16, because the links x14, x15, and x16 have a
common node, y15 ∉ SAN. This case is discussed in more
detail below.

Case 6 (many terms with a common node). Consider three
links x1, x2, and x3 with a common node and the network
state reflected by the SVI terms X1, X2, and X3, as illustrated
in Figure 8.
Suppose that y4 ∉ SAN. Let us first define the probabilities
px1′ , px2′ , and px3′ by the following:

pxi′ =
pxi , if yi ∈ SAN,
pxipyi , if yi ∉ SAN,
 i = 1, 2, 3

36

In order to evaluate the probability P X1X2X3 , the
theorem of total probability is applied to the event space
{y4, y4}. The following equation results in

P X1X2X3 = P X = py4P X ∣ y4 + 1 − py4 P X ∣ y4

37

X1X2

X3X4

y4

p′x1 p′x2

y1 y2

y5

y3

p′x3 p′x4

Figure 7: Illustration of two MVI terms with a common node.

8 Complexity

Obviously, P X/y4 = 1. When the node y4 is opera-
tional, X1, X2, and X3 reflect independent events, so that

P X1X2X3 = P X1 P X2 P X3 38

Consequently, we have

P X ∣ y4 = 1 − px1′ 1 − px2′ 1 − px3′

= 1 − px1′ − px2′ − px3′ + px1′ px2′ + px1′ px3′
+ px2′ px3′ − px1′ px2′ px3′

39

Finally, the equation becomes

P X1X2X3 = 1 − py4 px1′ + px2′ + px3′ − px1′ px2′

− px1′ px3′ − px2′ px3′ + px1′ px2′ px3′
40

Observe that, in case of an exact evaluation, the equa-
tion is composed of 23 = 8 terms. This result can be gener-
alized for the case with more events X1, X2,… , Xm that
depend on the state of a common node. The equation
for computing the probability P X1X2 ⋯ Xm comprises
2m terms. To reduce the computation time, the method
we propose is limited to the pairs of events depending
on the state of a common node, for which the equation
(20, 24, or 29 as is the case) comprises only four terms.

This is the approximation that may slightly affect the
result given by the method we propose. Also, this work does
not treat those cases when two MVI terms have two or more
common nodes, considering that these cases are very rare.
Nevertheless, this method provides a network reliability eval-
uation with a very good accuracy, as can be seen in the next
section. In all the checks we have made, this method has gen-
erated exact values or slightly pessimistic results. So, the reli-
ability value given by this method can be interpreted as a
lower limit and it can be explained on the basis of (25) and
Remark 1. This aspect is very important for a reliability study.

Before ending this section, an answer to the next ques-
tion is required: why did this method focus only on minimal
paths and not on minimal cuts at all? Indeed, it is well known

that for networks with high reliability, the approaches based
on minimal cuts are generally more appropriate for an
approximate evaluation. However, in our case, an approach
similar to that applied to the minimal paths is no longer
appropriate, because when both node and link failures are
considered, one must take into account a set of cuts consist-
ing of nodes, a set of cuts consisting of links, and another one
that comprises both nodes and links. So, when the nodes are
also considered, the number of minimal cuts increases very
much. For this reason, the proposed method is focused only
on minimal paths.

6. Numerical Results

To illustrate the efficiency of this approximate method, we
consider the network models N2 and N3 presented in
Figure 2. For these networks, Table 4 presents comparative
results, by assuming for all the nodes a reliability value of
0.98 and for all the links a reliability value of 0.95.
Observe that the proposed method gives an accurate result
for the network N2, and it gives a slightly approximate
value with five accurate decimal places for the larger net-
work N3.

Computing time for reliability evaluation is presented
in Table 5. Compared to the exact method presented in
Section 5, for network model N3, the proposed approxi-
mate method greatly reduces the computational time, from
57min 17 s to 18min 43 s.

The values presented in Table 5 highlight the rapid
growth of the computation time for the reliability evalua-
tion with an increasing network size. The methods of net-
work reliability evaluation based on SDP algorithms fall in
the NP-hard category and, consequently, are difficult to
apply for very large networks, such as social networks. In
these cases, other techniques for approximate evaluation
can also be applied, especially the Monte Carlo simulation
(see, for example, [24–27]). Even so, the methods based
on SDP algorithms are still necessary for the validation of
simulation programs.

7. Final Remarks

In this work, the problem of two-terminal network reliability
evaluation in which both link and node failures are consid-
ered is discussed. An approximate method that provides a
very good accuracy is proposed. Compared to an exact
method, this approximate method greatly reduces the com-
putation time for complex networks.

The proposed solution can be applied with any SDP algo-
rithm, but the accuracy of the reliability estimation depends
on the method used for transforming the set of minimal
paths into a set of disjoint products. When the number of dis-
joint products is lower, the reliability estimation is better. For
this reason, efficient MVI algorithms as NMVI or the hybrid
algorithm given by Chaturvedi and Misra [23] are recom-
mended. Another approach based on binary decision dia-
grams (BDDs) is also recommended [28].

p′x1 p′x2

y2y1

y4

y3

p′x3
X3

X1 X2

Figure 8: Illustration of three SVI terms with a common node.

9Complexity

Data Availability

The paper presents a method for network reliability evalua-
tion for which mathematical proofs are included. It can be
applied for any network, and therefore, it does not depend
on specific data.

Disclosure

The same issue of two-terminal reliability evaluation in
large networks is addressed by the paper “SDP Algorithm
for Network Reliability Evaluation”, authors P. Caşcaval
and S. A. Floria, presented at the IEEE Conference INISTA
2017 [1]. In that paper, an efficient SDP method (called
NMVI) for transforming algebraically a structure function
(expressed in terms of minimal paths or cuts) into a sum
of disjoint products is proposed. This new method is based
on an MVI technique and provides better solutions, with
fewer disjoint products, compared with other well-known
MVI methods. The author asserts that some general issues,
such as notations, nomenclature, or other general consider-
ations on network reliability evaluation, are similar to those
outlined in [1].

Conflicts of Interest

The author declares that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

The author thanks his colleague Sabina-Adriana Floria for
the useful and fruitful discussions. Also, many thanks are
due to Dr. Florin Leon and Dr. Marius Kloetzer for the
helpful suggestions which helped improve the readability
of this paper.

References

[1] P. Caşcaval and S. A. Floria, “SDP algorithm for network reli-
ability evaluation,” in 2017 IEEE International Conference on
INnovations in Intelligent SysTems and Applications (INISTA),
Gdynia, Poland, July 2017.

[2] K. Aggarwal, J. Gupta, and K. Misra, “A simple method for
reliability evaluation of a communication system,” IEEE
Transactions on Communications, vol. 23, no. 5, pp. 563–566,
1975.

[3] K. K. Aggarwal, K. B. Misra, and J. S. Gupta, “A fast algorithm
for reliability evaluation,” IEEE Transactions on Reliability,
vol. R-24, no. 1, pp. 83–85, 1975.

[4] J. A. Abraham, “An improved algorithm for network reli-
ability,” IEEE Transactions on Reliability, vol. R-28, no. 1,
pp. 58–61, 1979.

[5] S. Soh and S. Rai, “CAREL: computer aided reliability evalua-
tor for distributed computing networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 2, no. 2, pp. 199–
213, 1991.

[6] M. Veeraraghavan and K. S. Trivedi, “An improved algorithm
for symbolic reliability analysis,” IEEE Transactions on Reli-
ability, vol. 40, no. 3, pp. 347–358, 1991.

[7] J. S. Provan and M. O. Ball, “Computing network reliability in
time polynomial in the number of cuts,” Operations Research,
vol. 32, no. 3, pp. 516–526, 1984.

[8] M. O. Ball and J. S. Provan, “Disjoint products and efficient
computation of reliability,” Operations Research, vol. 36,
no. 5, pp. 703–715, 1988.

[9] K. S. Trivedi, Probability and Statistics with Reliability, Queue-
ing and Computer Science Applications, John Wiley & Sons,
New York, NY, USA, 2002.

[10] F. Beichelt and L. Spross, “An effective method for reliability
analysis of complex systems,” Journal of Information Process-
ing and Cybernetics, vol. 23, pp. 227–235, 1987.

[11] P. Caşcaval and B. F. Romanescu, “Complementary
approaches for the network reliability evaluation: network
decomposition and Monte Carlo simulation,” in Bul. Inst.
Polit. Iaşi, Tomul L (LIV), Fasc. 1–4, pp. 123–131, Automatică
şi Calculatoare, 2004.

[12] P. Caşcaval and A. R. Macovei, “Reliability evaluation by net-
work decomposition,” in Bul. Inst. Polit. Iaşi, Tomul XLIX
(LIII), Fasc. 1–4, pp. 56–65, Automatică şi Calculatoare,
2003.

[13] P. Caşcaval and B. A. Botez, “Recursive algorithm for two-
terminal network reliability evaluation,” in Bul. Inst. Polit. Iasi,
LI (LV), Fasc. 1–4, pp. 137–146, Automatică şi Calculatoare,
2005.

[14] K. B. Misra, Reliability Analysis and Prediction: A Methodolog-
ical Oriented Treatment, Elsevier, Amsterdam, Oxford, New
York, Tokyo, 1992.

[15] M. Shooman, Reliability of Computer Systems and Networks:
Fault Tolerance, Analysis, and Design, John Wiley & Sons,
New York, NY, USA, 2002.

[16] S. K. Chaturvedi, Network Reliability: Measures and Evalua-
tion, Scrivener Publishing-Wiley, Hoboken, NJ, USA, 2016.

[17] Y. Shen, “A new simple algorithm for enumerating all minimal
paths and cuts of a graph,”Microelectronics Reliability, vol. 35,
no. 6, pp. 973–976, 1995.

[18] R. Mishra, M. A. Saifi, and S. K. Chaturvedi, “Enumeration
of minimal cutsets for directed networks with comparative
reliability study for paths or cuts,”Quality and Reliability Engi-
neering International, vol. 32, no. 2, pp. 555–565, 2016.

[19] F. Beichelt and L. Spross, “An improved Abraham-method for
generating disjoint sums,” IEEE Transactions on Reliability,
vol. R-36, no. 1, pp. 70–74, 1987.

Table 4: Network reliability evaluation (Rs−t). Comparative results.

Network model
Source and
target nodes

Exact method
based on NMVI

The proposed
method

N2 s = 1, t = 13 0.982883 0.982883

N3 s = 1, t = 20 0.959579 0.959575

Table 5: Computing time for reliability evaluation.

Network model
Exact method
based on NMVI

The proposed
method

N2 0.1 s 0.06 s

N3 57min 17 s 18min 43 s

10 Complexity

[20] M. O. Locks, “A minimizing algorithm for sum of disjoint
products,” IEEE Transactions on Reliability, vol. R-36, no. 4,
pp. 445–453, 1987.

[21] K. D. Heidtmann, “Smaller sums of disjoint products by sub-
product inversion,” IEEE Transactions on Reliability, vol. 38,
no. 3, pp. 305–311, 1989.

[22] T. Luo and K. S. Trivedi, “An improved algorithm for
coherent-system reliability,” IEEE Transactions on Reliability,
vol. 47, no. 1, pp. 73–78, 1998.

[23] S. K. Chaturvedi and K. B. Misra, “A hybrid method to evalu-
ate reliability of complex networks,” International Journal of
Quality & Reliability Management, vol. 19, no. 8/9, pp. 1098–
1112, 2002.

[24] K. F. Tee, L. R. Khan, and H. Li, “Application of subset
simulation in reliability estimation of underground pipelines,”
Reliability Engineering & System Safety, vol. 130, pp. 125–131,
2014.

[25] K. M. Zuev, S. Wu, and J. L. Beck, “General network reliability
problem and its efficient solution by subset simulation,” Prob-
abilistic Engineering Mechanics, vol. 40, pp. 25–35, 2015.

[26] H.-S. Li, Y.-Z. Ma, and Z. Cao, “A generalized subset simu-
lation approach for estimating small failure probabilities of
multiple stochastic responses,” Computers & Structures,
vol. 153, pp. 239–251, 2015.

[27] A. Birolini, Reliability Engineering, Theory and practice,
Springer-Verlag, Berlin Heidelberg, 2014.

[28] X. Zang, H.-R. Sun, K. S. Trivedi, and D. R. Avresky, Eds., “A
BDD approach to dependability analysis of distributed com-
puter systems with imperfect coverage,” in Dependable Net-
work Computing, pp. 167–190, Kluwer Academic Publishers,
Amsterdam, Netherlands, 1999.

11Complexity

1

SDP Algorithm for Network Reliability Evaluation

Petru Caşcaval1, Sabina-Adriana Floria2

1,2Department of Computer Science and Engineering

“Gheorghe Asachi” Technical University of Iaşi

Dimitrie Mangeron Street, 27, 700050, Iaşi, Romania

cascaval@cs.tuiasi.ro, sabina.floria@cs.tuiasi.ro

Abstract—This paper addresses the issue of the two-terminal

reliability evaluation of medium-to-large networks and proposes

a new method to solve the problem of ‘sum of disjoint products’

(SDP) algebraically. This method uses a ‘multiple variables

inversion’ (MVI) technique for transforming a structure function

into a sum of disjoint products which has a one-to-one

correspondence with the reliability expression. The results of our

method for several network models are compared with those

obtained by means of other well-known MVI techniques. For

large-scale networks, our method offers a better solution.

Keywords— two-terminal network reliability; SDP algorithm;

minimal paths; minimal cuts; multiple variable inversion

I. INTRODUCTION

The network reliability theory is applied extensively in
many real-word systems, which can be modeled as stochastic
networks, such as computer and communications systems,
distributed systems, networks of sensors, social networks etc.
The reliability evaluation approaches use a variety of tools for
system modeling and computation of reliability or availability
indices that, in a certain way, describe the ability of a network
to carry out a desired operation. Most tools are based on
algorithms described in terms of minimal path set or minimal
cut set (see, for example, [1]-[5]). Unfortunately, the problem
of computing the network reliability based on the set of
minimal paths or cuts is NP-hard [4], [6]. For this reason, in
case of complex networks, other techniques for approximate
reliability evaluation must be applied, such as those based on
network decomposition or Monte Carlo simulation (see, for
example, [7]-[10]).

In this work, we deal with the problem of exact evaluation
of two-terminal reliability or availability indices in medium-
to-large networks, and we propose an efficient SDP algorithm
able to compute the two-terminal network reliability based on
the minimal path set or the minimal cut set.

In order to reduce the computation burden, as in most such
works, we assume that each node of the network is perfectly
reliable. Because the failure of a node inhibits the work of all
arcs connected to it, starting from the given network with
unreliable nodes, an equivalent reliability model with perfect
nodes but with links that have greater failure probabilities can
be obtained [11, 12]. For example, let us consider two adjacent
nodes denoted by 1 and 2. Let p1 and p2 be the reliabilities of
these nodes, and p12 be the reliability of the link between

them. Fig. 1 presents two equivalent reliability models: one
model with unreliable nodes, and another one with perfect
nodes.

1p

12p
2p

1 12 2p p p

 a) unreliable nodes b) perfect nodes

Fig. 1. Equivalent reliability models.

Moreover, to reduce the computation time for the minimal
paths or cuts enumeration, once the source and destination
nodes are known, the study can be simplified by artificially
transforming the reliability graph into a directed one, as
though only the communication from the source to the target
node were of interest.

II. NOTATIONS AND PRELIMINARY CONSIDERATIONS

A. Nomenclature

a) Reliability. The two-terminal reliability of a stochastic
network expresses the probability that there exists at least
one path between any two specified nodes (let’s say a
source node and a target one), which operates successfully.

b) Connected nodes. Two nodes which can communicate with
each other are connected, otherwise they are disconnected.

c) Minimal path. A minimal set of links (arcs) whose
operation ensures that two given nodes are connected. For
a minimal path, any proper subset is no longer a path.

d) Minimal cut. A set of links whose failure disconnects two
given nodes. For a minimal cut, any proper subset is no
longer a cut.

e) Uniproduct. A Boolean product composed only of distinct
uncomplemented variables.

f) Subproduct. A part of a Boolean product which is a
complemented or an uncomplemented uniproduct.

g) Mixproduct. A product of one uncomplemented
subproduct and one or more complemented subproducts.

h) Disjoint products. A set of products expressing mutually
exclusive states.

i) Cube. A vector of symbols representing a Boolean product.

1 2 1 2

mailto:cascaval@cs.tuiasi.ro

2

B. Notations

a) (,)G V E is a network model with node set

{1, 2, , }V n and arc set { , , , }kE x x x 1 2 ;

b) , ,s t V s t , are the source and target nodes;

c)
xp is the reliability of arc x E and 1x xq p ;

d)
s tR

is the two-terminal reliability of network (,)G V E

with s and t the source and target nodes (s t network

reliability).

C. Assumptions

a) Each node is perfect, as mentioned in section 1;

b) Each arc is either operational or failed, so a logical
variable can be used to denote its state (the same notations

, , , kx x x1 2 are used to denote these logical variables);

c) All failures that may affect the network under study are
stochastically independent.

III. PROBLEM DESCRIPTION

Consider (,)G V E the network under study and

, ,s t V s t , the source and target nodes. For this model,

consider the minimal path set { , , , } 1 2 mMPS P P P . Note that,

a minimal path
iP MPS is expressed by a product of distinct

logical variables associated with the arcs of this network, and
the reliability of this path is given by the following equation:

()
i

i c
c P

Prob P p

 (1)

 Starting from this minimal path set, a structure function
m

i
i

S P

1

 is defined, and the two-terminal network reliability

of this model,
s tR

, is computed by applying the equation:

() .
m

s t i
i

R Prob S Prob P

 1

 (2)

When working with minimal cuts, let

{ , , , }mMCS C C C 1 2 be the cut set for the two-terminal

network under study. The structure function in this case is
m

i
i

S C

1

, and the network reliability
s tR

is computed by

applying the equation:

1 () 1 .
m

s t i
i

R Prob S Prob C

 1

 (3)

Note that, for a minimal cut
iC MCS :

()
i

i c
c P

Prob C q

 . (4)

An efficient algorithm for enumerating all minimal paths
and cuts of a graph is presented in [13]. Another method for
the enumeration of minimal cuts in large network models and
a comparative study for paths and cuts are presented in [14].

To compute the network reliability
s tR

, based on (2) or

(3), the well-known rule of sum of disjoint products is
recommended:

() () ()
m

i 1 1 2 1 2 3
i

Prob A Prob A Prob A A Prob A A A

 1

 ()1 2 m-1 mProb A A A A . (5)

For this purpose, the structure function S must be
transformed to an equivalent form S', composed only of
disjoint products (DP), so that the network reliability Rs-t is
computed by applying the equation:

()
m

s t i

i

R Prob S Prob P

 1

=

 () ().
n n

i i

ii

Prob S' Prob DP Prob DP

11

 (6)

Observe that (6) is much easier to compute than (2) or (3).
In conclusion, the problem of computing the two-terminal
network reliability essentially boils down to finding the
disjoint products that define an equivalent structure function
S'. Unfortunately, this task falls in the NP-hard category [4, 6,
12]. The space of solutions for this kind of functions is very
large, so that the aim of an SDP algorithm is to identify the
best possible solution for an equivalent function S'. That
means that the number of disjoint products and the computing
time for determining them should be as small as possible.

One of the best known SDP algorithms for expanding a
structure function to another one, composed only of disjoint
products, is given by Abraham [1]. Let us consider two

undisjoint products, P and Q, and { , , , }kX x x x 1 2 be the

set of logical variables included in P that do not belong to Q.
Notice that P is an uniproduct whereas Q can also be a
mixproduct. According to Abraham’s theorem, the following
logical expression can be written:

1 1 2 1 2 3 1 2 1k kP Q P x Q x x Q x x x Q x x x x Q . (7)

To ensure that two products are disjoint, only a single
complemented variable is added with each new term.
Abraham’s algorithm is a reference for the so-called ‘single
variable inversion’ (SVI) algorithms. Remember that a
product comprises a set of distinct variables, complemented or
not. Two SVI products are disjoint if both contain at least one
variable which reflects, in the two cases, complementary

logical states (for example, x1 and x1). Improved SVI

methods are presented in [15] and [16].

To reduce the computation burden, other approaches based
on the so-called MVI technique have been devised (see, for
example, [2], [3], [17], and [18]). An excellent survey on MVI
methods can be found in [12]. A new SDP algorithm based on
an MVI technique is presented in the following section.

3

IV. A NEW MVI METHOD (NMVI)

A. Preliminaries

The method we propose uses the following laws from
Boolean algebra:

 1x x (Complementation law);

 x xy x (Absorption law);

 x xy x y (Idempotent law);

 xy x xy x y (De Morgan’s law).

When an MVI technique is applied, a product may contain
distinct logical variables (complemented or uncomplemented)
but also one or more complemented groups of logical
variables (complemented subproducts). For instance, a
Boolean expression of six variables representing link 1 or 4 in
the failed state, link 5 operational, link 6 in the failed state and

links 2 and 3 in a don’t care state is represented by 1 4 5 6x x x x .

Note that in an SVI approach, the same network state is

represented by the Boolean expression 1 4 5 6 1 4 5 6x x x x x x x x .

The advantage of an MVI approach is obvious.

 To describe a product, we use a vector of length k (also
called a cube) with the following meanings:

 an uncomplemented variable is indicated in cube by the
symbol ‘1’;

 a complemented variable is indicated by ‘-1’;

 the absence of a variable is indicated by the symbol ‘’;

 a complemented subproduct is indicated by using a
negative number smaller or equal to ‘-2’, as illustrated
in TABLE I.

To illustrate this new method, let us consider two
undisjoint products, P and Q, for which the absorption law is
not applicable (i.e., P Q). Note that, to verify that P Q it

is necessary to check that at least one variable from P
(indicated in cube by ‘1’) does not belong to Q in the same

form (indicated in cube by any symbol ≠ ‘1’). Also, P and Q

are two undisjoint products if there is no complemented
subproduct in Q (indicated in cube by ‘-1’, ‘-2’, ‘-3’, etc.) that
also belongs to P in an uncomplemented form (indicated in
cube by ‘1’ in the same positions). Examples of two undisjoint
products are presented in TABLE II. As illustrated in this table,
three cases must be taken into account.

 In order to expand a product Q in relation to a given
uniproduct P, so that any new generated product to be disjoint
with P, we propose the following two rules.

 Rule 1. Let { , , , }kX x x x 1 2 be the set of logical

variables included in P that do not belong to Q.

TABLE I. PRODUCT DESCRIPTION

Product

Cube

Comment
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x x x3 5 8
 1 1 1 Uniproduct

x x x x x1 3 5 7 9
 -1 1 -1 1 1 SVI product

x x x x x x x1 2 4 5 6 7 10
 -1 -2 - -2 -2 1 -3 -3 MVI product

TABLE II. EXAMPLES OF UNDISJOINT PRODUCTS

Two undisjoint

products

(P and Q)

Cube

Comment
x1

 x2

x3

x4

x5
 x6

x7
 x8

 x9
 x10

P x x x 2 5 8
 1 1 1

Case 1
Q x x x x 3 4 5 7

 1 1 1 1

P x x 1 9
 1 1

Case 2

Q x x x x x 2 5 8 9 10
 -2 -2 -3 -3 1

P x x x x 1 3 7 8
 1 1 1 1

Case 3
Q x x x x x x x 2 3 5 6 7 8 10

 1 -2 -2 -3 -3 -3 1

4

The following logical expression can be written based on

the complementation law:

 . 1 2 1 2k k
P x x x Q x x x Q (8)

 As follows, we will refer to the rule presented in (8) as the
“type I expansion”. When P and Q are both uniproducts (case

1 in TABLE II), the new product
kx x x Q1 2 includes all the

variables from P so that the absorption law is applicable. A
reduced logical expression composed of two disjoint products
is obtained:

.
k

P Q P x x x Q 1 2 (9)

 Otherwise, the new product
kx x x Q1 2 must be expanded

again until all the new generated products are disjoint with P
and also between them.

 Rule 2. Consider again two products, P and Q, in which

kP x x x R 1 2 1 , and
k k mQ x x x x x R 1 2 1 2 . By applying

the Boolean rule xy x xy , the following logical expression

can be written:

k k mP Q P x x x x x R 1 2 1 2

= ()k k k mP x x x x x x x x R 1 2 1 2 1 2

 k k k mP x x x R x x x x x R 1 2 2 1 2 1 2 (10)

We will refer to the rule presented in (10) as the “type II

expansion”. Observe that, when R R1 2 the product

k k mx x x x x R1 2 1 2 is absorbed by product P, so that a

reduced logical expression composed of two disjoint products
is obtained:

kP Q P x x x R 1 2 2
 (11)

 When R R1 2 , the new mixproduct k k mx x x x x R1 2 1 2

must be expanded again until all the new generated products
are disjoint with P and also between them.

 Remark 1. Based on (9) and (11), during the process of
generating equivalent disjoint products, the absorption law is
applicable in fewer cases. This is the main idea we have had in
view for accelerating this time-consuming process.

 Remark 2. When both type I and type II expansion rules
are applicable (case 3 in TABLE II), we propose that the type II
expansion rule be applied prior to the type I expansion.

 The method we propose implies the following steps:

 The initial products (uniproducts) are sorted by length in
ascending order;

 The first term is left unchanged;

 The second term is expanded with respect to the variables
that appear only in the first one, by applying one or both
rules previously defined (type I or type II expansion), as
applicable.

 The operation is repeated for all other initial terms so that
all the newly generated products are disjoint from each
other and are also disjoint with all the terms already
obtained in the previous steps.

For an efficient implementation of this method, we use
three arrays, namely:

 the first one with the initial terms (uniproducts);

 a working array to store and process the terms generated
by expanding a certain uniproduct;

 a collector array to store the final terms (disjoint products).

This method is illustrated by the following example. Take

a set of uniproducts { , , , , }MPS adk bfl cek adgl cegl . The

process of expanding these terms by applying this method
until all the products are disjoint from each other is presented
in Fig. 2. Finally, the set of disjoint products obtained by this

method is { , , , , }DPS adk bfl adk cekad bfl adgl k bf ceglad k bf .

Based on this set of disjoint products, by applying (6), the
following two-terminal reliability expression is obtained:

 () 1s t a d k b f l a d kR p p p p p p p p p

 ()() 1 1c e k a d b f lp p p p p p p p

 () 1a d g l k b fp p p p q p p

 () () 1 1c e g l a d k b fp p p p p p q p p . (12)

V. COMPARATIVE STUDIES

A. Comparison with Abraham’s method

To demonstrate the correctness of the new method we
propose comparative results related to two-terminal network
reliability evaluation obtained by applying NMVI and the SVI
method given by Abraham [1] are presented in this section. On
the other hand, the aim of this first comparative study is to
illustrate the ability of the new MVI method to anticipate well
enough the terms for which the absorption law could be
applicable (see Remark 1), and to neglect them in order to
reduce the number of terms that must be processed.

 For this comparative study, four medium-to-large
stochastic network models have been considered. To check the
implementation of the two methods, the numerical results for
the case with all the links having the same reliability
(e.g., 0.95p) are computed. The comparative results are

presented in TABLE III.

() 1 2 1 2k k
P Q P Q x x x x x x

5

bfl bfladk cek cekad cekad bfl adgl adglk adglk bf cegl cegladk cegladk bf ceglk bf ceglkad bf ceglk bf ad

adk bfl cek adgl cegl

()adk ()ad ()bfl ()k ()bf ()adk ()k()bf
absorbed

by cek

adk bfladk cekad bfl adglk bf ceglad k bf
 type I expansion

 type II expansion

Initial products

Expanding process

Disjoint produscts

Fig. 2. Example of applying the method NMVI.

TABLE III. COMPARATIVE RESULTS: ABRAHAM’S METHOD VERSUS NMVI

Network model

Number of

minimal

paths

Applied

method

Number of

DPs

Processed

terms

Absorption

cases

s t
R

(0.95p)

87

Abraham 2012 5472 675

0. 9994239

NMVI 545 3458 546

993

Abraham 39395 174728 35687

0. 9997488

NMVI 15502 136043 20384

 5543

Abraham 897373 3961978 941589

0. 9997475

NMVI 239101 2399387 456521

8716

Abraham 1835413 8057515 1817042

0. 9997488

NMVI 574274 5318472 894473

 As shown in TABLE III, NMVI gives better solutions with
fewer disjoint products. Also, the number of processed
terms decreases significantly. Observe that the absorption
rule is applicable in fewer cases (for the large networks, to
less than half). This is an important merit for NMVI.

B. Comparison with other MVI methods

In this section our method is compared with other well-
known MVI methods. For this comparative study the
following MVI methods are considered:

 the method given by Veeraraghavan and Trivedi [3] (VT
in this paper);

6

 CAREL method (PII option) given by Soh and Rai [2];

 KDH88 algorithm given by Heidtmann [17];

 The hybrid method (HM) given by Chaturvedi and
Misra [19] that combines the best features of KDH88
and CAREL;

 NMVI.

The comparison criterion is the number of disjoint
products generated, able to cover all the cases in which the
two given nodes (s and t) are connected.

The network models we have considered for this
comparative study are presented in Fig. 3. This selection
includes network models typically used for comparing the
efficiency of the methods dedicated to the problem of two-
terminal network reliability evaluation. More exactly, we
have considered those network models which are presented
in at least two articles dedicated to the MVI techniques ([2],
[3], [17] or [19]). Note that, another MVI algorithm
dedicated to coherent-system reliability is presented in [18],
but the paper does not report the number of disjoint products
generated for the evaluated cases.

The comparative results are presented in TABLE IV. As
shown in this table, compared to VT, CAREL or KDH88,
NMVI gives better solutions with fewer disjoint products.
When comparing NMVI with HM, their efficiency is found
to be quite close.

VI. CONCLUSIONS

 In this paper, the process of algebraically extracting the
disjoint products from a sum of products is discussed, and a
new MVI method (NMVI) is proposed. In comparison with
other well-known MVI methods (VT, CAREL or KDH88),
NMVI gives better solutions with fewer disjoint products.
At the same time, NMVI seems to be comparable with the
hybrid method HM.

 In case of complex networks, two or more such methods
should be considered to obtain the best results. The hybrid
methods that combine the best features of different MVI
techniques must be taken into account.

 Unfortunately, all the algorithms for exact reliability
evaluation in network models fall in the NP-hard category,
being difficult to apply for large networks, such as social
networks. In these cases, other techniques for approximate
evaluation can be applied, especially the Monte Carlo
simulation (see, for example, [20]-[22]). Even so, the SDP
algorithms for exact evaluation of two-terminal network
reliability are still necessary for the validation of simulation
programs.

 Another approach for this SDP problem is based on
binary decision diagrams (BDDs), as presented in [12], [23]
[24]. This is a subject for a future work.

a) 7-node, 15-link network

b) 9-node, 13-link network

c) 11-node, 21-link network

d) 8-node, 12-link network

e) 8-node, 13-link network

f) 9-node, 14-link network

g) 10-node, 21-link network

h) 13-node, 21-link network

i) 20-node, 30-link network

Fig. 3. Network models for a comparative study of the MVI methods.

7

TABLE IV. COMPARATIVE RESULTS FOR SOME MVI METHODS

Network models

presented in Fig. 3

Number

of minimal

paths

Number of disjoint products

VT [3] CAREL [2] KDH88 [17] HM [19] NMVI

a) 7-node, 15-link 14 23 27 23

b) 9-node, 13-link 18 27 30 31 25

c) 11-node, 21-link 18 82 94 101 82

d) 8-node, 12-link 24 41 39 41 38 38

e) 8-node, 13-link 29 77 76 75 77 77

f) 9-node, 14-link 44 90 82 87 80 82

g) 10-node, 21-link 64 305 309 298

h) 13-node, 21-link 281 2491 2302 2269

i) 20-node, 30-link 780 54032 46707 48696

REFERENCES

[1] J.A. Abraham, “An improved algorithm for network reliability”,
IEEE Trans. Reliability, vol. 28, pp. 58-61, April 1979.

[2] S. Soh, S. Rai, “Carel: Computer aided reliability evaluator for
distributed computing networks”, IEEE Trans. Parallel and
Distributed Systems, vol 2, No. 2, pp. 199-213, April 1991.

[3] M. Veeraraghavan, K.S. Trivedi, “An improved algorithm for
sysmbolic reliability analysis”, IEEE Trans. Reliability, vol. 40, pp.
347-358, August 1991.

[4] J.S. Proven, M.O. Ball, “Computing network reliability in time
polynomial in the number of cuts”, Operations Research, vol. 32,
pp. 516–526, 1984.

[5] M.O. Ball, J. S. Proven, “Disjoint products and efficient
computation of reliability”, Operations Research, vol. 36, pp. 703-
715, 1988.

[6] K. S. Trivedi, Probability and Statistics with Reliability, Queueing
and Computer Science Applications, John Wiley & Sons, New
York, 2002.

[7] F. Beichelt, L. Spross, “An efficient method for reliability analysis
of complex systems”, J. Information Processing and Cybernetics
EIK, vol. 23, pp. 227-235, 1987.

[8] P. Caşcaval, B.F. Romanescu, “Complementary Approaches for the
Network Reliability Evaluation: Network Decomposition and
Monte Carlo Simulation”, Bul. Inst. Polit. Iaşi, Tomul L (LIV),
Fasc. 1-4, Automatică şi Calculatoare, pp. 123-131, 2004.

[9] P. Caşcaval, A.R. Macovei, “Reliability Evaluation by Network
Decomposition”, Bul. Inst. Polit. Iaşi, Tomul XLIX (LIII), Fasc. 1-
4, Automatică şi Calculatoare, pp. 56-65, 2003.

[10] P. Caşcaval, B.A. Botez, “Recursive Algorithm for Two-Terminal
Network Reliability Evaluation”, Bul. Inst. Polit. Iasi, LI (LV),
Fasc.1-4, Automatică şi Calculatoare, pp. 137-146, 2005.

[11] M. Shooman, Reliability of computer systems and networks, John
Wiley & Sons, New York, 2002, pp. 297-301.

[12] S.K. Chaturvedi, Network Reliability: Measures and Evaluation,
Scrivener Publishing - Wiley, New Jersey, 2016.

[13] Y. Shen, “A new simple algorithm for enumerating all minimal
paths and cuts of a graph”, Microelectronics Reliability, vol. 35 (6),
pp. 973–976, 1995.

[14] R. Mishra, M.A. Saifi, S.K. Chaturvedi, “Enumeration of minimal
cutsets for directed networks with comparative reliability study for
paths or cuts”, Quality and Reliability Engineering International,
vol. 32, pp. 555–565, February 2016.

[15] F. Beichelt, L. Spross, “An improved Abraham-method for
generating disjoint products”, IEEE Trans. Reliability, vol. 36, pp.
70-74, April 1987.

[16] M. O. Locks, “A minimizing algorithm for sum of disjoint
products”, IEEE Trans. Reliability, vol. 36, pp. 445-453, October
1987.

[17] K. Heidtmann, “Smaller sums of disjoint products by subproduct
inversion”, IEEE Trans. Reliability, vol. 38, No. 3, pp. 305-311,
August 1989.

[18] T. Luo, K.S. Trivedi, ”An improved algorithm for coherent-system
reliability”, IEEE Trans. Reliability, vol. 47, pp. 73-78, March
1998.

[19] S.K. Chaturvedi, K.B. Misra, “A hybrid method to evaluate
reliability of complex networks”, International Journal of Quality &
Reliability Management, vol. 19, pp. 1098–1112, December 2002.

[20] K.F. Tee, L.R. Khan, H. Li, “Application of subset simulation in
reliability estimation of underground pipelines”, Reliability
Engineering & System Safety, vol. 130, pp. 125–131, October
2014.

[21] K. Zuev, S. Wu, J. Beck, “General network reliability problem and
its efficient solution by subset simulation”, Probabilistic
Engineering Mechanics, vol. 40, pp. 25–35, April 2015.

[22] H.-S. Li, Y.-Z. Ma, Z. Cao, “A generalized subset simulation
approach for estimating small failure probabilities of multiple
stochastic responses”, Computers & Structures, vol. 153, pp. 239–
251, June 2015.

[23] X. Zang, H.-R. Sun, and K.S. Trivedi, “A BDD approach to
dependability analysis of distributed computer systems with
imperfect coverage”, Dependable Network Computing, D. R.
Avresky (ed.), Kluwer Academic Publishers, Amsterdam,
December 1999, pp. 167-190.

[24] A. Birolini, Reliability engineering. Theory and practice, Springer-
Verlag, Berlin Heidelberg, 2014, pp. 57-60.

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Sanjay+K.+Chaturvedi
http://eu.wiley.com/WileyCDA/Section/id-819969.html
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Sanjay+K.+Chaturvedi
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Sanjay+K.+Chaturvedi
http://www.sciencedirect.com/science/journal/09518320
http://www.sciencedirect.com/science/journal/09518320
http://www.sciencedirect.com/science/journal/02668920
http://www.sciencedirect.com/science/journal/02668920
http://www.sciencedirect.com/science/journal/00457949

81

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2012. No. 3(119)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

A Multibackground March Test for Static Neighborhood Pattern-
Sensitive Faults in Random-Access Memories

C. Huzum, P. Cascaval
Department of Computer Science and Engineering,"Gheorghe Asachi" Technical University of Iași,
Prof. dr. doc. Dimitrie Mangeron Str., no. 27, Iași, România, phone: +40-232-231343, e-mail: chuzum@cs.tuiasi.ro

 http://dx.doi.org/10.5755/j01.eee.119.3.1369

Introduction

Rapid increase of density in the integrated circuits has

an immediate effect upon memory testing. On one hand,
the capacity of random-access memories chips enhances,
thus increasing the test time and cost; on the other hand,
the density of memory circuits grows, therefore more
failure modes and faults need to be taken into account in
order to obtain a good quality product. Accordingly, there
are two conflicting constraints that need to be dealt with
when considering a test algorithm: reducing the number of
memory operations in order to permit large capacity
memories to be tested in an appropriate period of time and
covering a larger variety of memory faults [1, 2].

As a result of the increasing coupling effect triggered
by the growing density of memory circuits, the pattern-
sensitive fault (PSF) is becoming an important fault model
[3–5]. The PSF model is a type of coupling fault, with
several aggressor cells (4, 9 etc.) and only one victim cell.
In this work, the neighborhood PSF (NPSF) has been
considered. This is a particular PSF, in which the aggressor
cells are located in the physical neighborhood of the victim
cell. The NPSF model was first defined by Hayes in 1980
[3]. He also devised a memory test for this model [3]. Soon
after that, Suk and Reddy have proposed a new memory
test [6] based on a bipartite method. This test divides the
memory cells into two partitions and applies a sequence of
transitions to cover all possible victim-aggressor
combinations. Unfortunately, for the memory chips
currently used, the test proposed by Suk and Reddy needs a
long time to perform. In 2002, other more efficient March
tests were given by Cheng, Tsai, and Wu, namely: CM-
79N and March-100N [7]. More recently, Julie, Wan Zuha
and Sidek use a modified version of March-100N for
diagnosis of SRAM [8]. In all these papers the authors
have limited themselves only to the class of simple faults.
In this work, we have also focused on the problem of
testing the linked neighborhood pattern-sensitive faults.

Notations, definitions and fault classifications

An operation sequence that results in a difference
between the observed and the expected memory behaviour
is called a sensitizing operation sequence (S). The
observed memory behaviour that deviates from the
expected one is called faulty behaviour (F). In order to
specify a certain fault, one has to specify the S, together
with the corresponding faulty behaviour F, and the read
result (R) of S, in case it is a read operation. The
combination of S, F and R for a given memory failure is
called a Fault Primitive (FP), and is usually denoted as
<S/F/R>. The concept of FPs allows for establishing a
complete framework of all memory faults. Some
classifications of FPs can be made based on different and
independent factors of S [9]:

a) Depending on the number of simultaneous
operations required in the S, FPs are classified into single-
port and multi-port faults:

 single-ports faults: These are FPs that require at
the most one port in order to sensitize a fault.
Note that single-port faults can be sensitized in
single-port as well as in multi-port memories,

 multi-port faults: These are FPs that can only
sensitize a fault by performing two or more
operations simultaneously via different ports.

b) Depending on the number of sequential operations
required in the S, FPs are classified into static faults and
dynamic faults. Let #O be the number of different
operations carried out sequentially in a S:

 static faults: These are FPs which sensitize a
fault by performing at most one operation in the
memory (#O=0 or #O=1),

 dynamic faults: These are FPs that perform more
than one operation sequentially in order to
sensitize a fault (#O>1).

c) Depending on the way FPs manifest themselves,
they can be divided into simple faults and linked faults:

82

 N NW N NE
 W B E W B E
 S SW S SE

 a) b)
Fig. 1. Common types of neighborhood pattern sensitive faults:
a – Type-1 NPSF; b – Type-2 NPSF

Table 1. List of NPSF Primitives
Fault primitives Fault type

<x y z t; 0 / 1>
x, y, z, t {0, 1} SNPSF <x y z t; 1 / 0>

<x y z t; / 0>
x, y, z, t {0, 1} PNPSF

<x y z t; / 1>
<x y z ; 0 / 1>

x, y, z {0, 1} ANPSF

<x y z ; 0 / 1>
<x y z ; 1 / 0>
<x y z ; 1 / 0>
<x y z; 0 / 1>
<x y z; 0 / 1>
<x y z; 1 / 0>
<x y z; 1 / 0>
<x y z; 0 / 1>
<x y z; 0 / 1>
<x y z; 1 / 0>
<x y z; 1 / 0>
< x y z; 0 / 1>
< x y z; 0 / 1>
< x y z; 1 / 0>
< x y z; 1 / 0>

 simple faults: These are faults which cannot be
influenced by another fault. That means that the
behaviour of a simple fault cannot change the
behaviour of another one; therefore masking
cannot occur,

 linked faults: These are faults that do influence
the behaviour of each other. That means that the
behaviour of a certain fault can change the
behaviour of another one such that masking can
occur. Note that linked faults consist of two or
more simple faults.

In this work, single-port, static faults are considered.
From here on, the term ‘fault’ refers to a single-port, static,
simple fault and the term ‘linked fault’ means single-port,
static, linked fault.

The following notations are usually used to describe
operations on RAMs:

 r0 (r1) denotes a read 0 (1) operation from a
cell;

 w0 (w1) denotes a write 0 (1) operation into a
cell;

 () denotes an up (down) transition due to a
certain sensitizing operation.

The neighborhood pattern-sensitive fault model

RAM faults can also be divided into single-cell and
multi-cell faults. Single-cell faults consist of FPs involving
a single cell, while multi-cell faults consists of FPs
involving more than one cell. In this work, we consider a
particular class of multi-cell faults (also called coupling
faults), namely the pattern sensitive faults (PSF). The PSF
is a coupling fault, which affects the content of a memory
cell (called the victim cell or the base cell), or the ability to
change its content, when other memory cells (called
aggressor cells) have certain patterns. It is unnecessary and
unrealistic to consider all possible patterns of all the
memory cells, therefore simplified models of
neighborhood pattern sensitive faults (NPSF) have been
introduced. In these models, the aggressor cells are limited
to the physical neighborhood of the victim cell. Depending
on the number of aggressor cells, NPSF can be divided into
several types, but only two of those are more commonly
used: Type-1 NPSF and Type-2 NPSF, with four and eight
aggressor cells, respectively, as illustrated in Fig. 1 [10].

Like in the most previous works, in this paper only the
Type-1 NPSF has been considered.

 Due to the features of the NPSF model, the general
notation for a FP is particularized, thus in the rest of this
paper a FP is denoted as <N W E S; B/Bf > [7], where:

 N, W, E, S describes the sensitizing value or
operation in the aggressor cells, placed as
presented in Fig. 1a;

 B describes the correct value or transition in the
base cell;

 Bf shows the faulty value or transition of the
base cell.

Note that N, W, E, S, B and Bf {0, 1, , }.
Depending on the behavior of the fault, the NPSFs can

be divided into three classes [10], namely:

 Static NPSF (SNPSF): the base cell is forced to a
certain value when the aggressor cells have a
certain pattern. An example of a static NPSF is
FP1=<0100; 0/1>, where the base cell is forced
to 1 when the aggressor cells have the pattern
0100;

 Passive NPSF (PNPSF) reflects the impossibility
of the base cell to execute a transition due to the
existence of a certain pattern in the aggressor
cells. An example of a PNPSFs is FP2=<1100;
/1>, where the base cell cannot switch from 1
to 0 because the aggressor cells have the pattern
1100;

 Active NPSF (ANPSF): a certain transition in
one of the aggressor cells forces the victim cell
to change its value when the other aggressor
cells (also called enabling cells) have a certain
pattern. An example of this class of faults is
FP3=<100; 0/1>, where a transition in the E
cell causes the base cell to flip from 0 to 1 when
the N, W and S cells have the pattern 100.

The model of NPSFs we have considered can be
entirely described by the set of FPs presented in Table 1.
There are 192 fault primitives of which 32 SNPSFs, 32
PNPSFs, and 128 ANPSFs.

The linked neighborhood pattern-sensitive faults are
NPSFs that influence the behavior of each other, such that
masking can occur. Therefore, they are more difficult to
detect.

83

A linked fault consists of two or more FPs (even
number) with contrary effects on the same victim (base)
cell. For example, take a NPSF fault in which an up
transition into cell W changes the state of cell B from 1 to
0, when the enabling cells have the pattern 100, whereas an
up transition into cell S changes the state of cell B from 0 to
1, when the enabling cells have the pattern 011. This is a
linked fault that can be modeled by two FPs: FP1=<100;
1/ 0>, and FP2=<011; 0/1>.

Even though there are many papers that deal with the
issue of linked faults, such as [11] for two-cell linked faults,
or [14] for three-cell linked faults, we do not know any
work treating this model of linked NPSFs.

A new memory test – March-76N

In order to describe the memory test, first some
notations regarding the March tests are given. Usually, a
complete March test is delimited by ‘{…}’ bracket pair,
while a March element is delimited by the ‘(…)’ bracket
pair. March elements are separated by semicolons, and the
operations within a March element are separated by
commas. Note that all operations of a March element are
performed at a certain address, before proceeding to the
next address. The whole memory is checked
homogeneously in either one of two orders: ascending
address order () or descending address order (). When
the address order is not relevant, the symbol is used.

As stated in [7], if a certain March element is applied
to a solid background (all ones or all zeros), when we are
reading from or writing to a cell C, then all the cells with
higher address than C have the same state, while those with
lower address than C also have the same state. So, most of
the NPSF faults cannot be activated by applying March
elements to these solid backgrounds. Therefore, the
necessity of a March test that runs under several different
backgrounds arises. These are called multibackground
March tests [12, 13].

The test we propose, called March-76N, uses sixteen
different backgrounds, denoted by BG0, BG1, …, BG15, as
presented in Fig. 2. For a certain cell, let a be the value
within the background, and b the complement of a. For
example, when initializing the memory with BG1, a is 0
for the lines 1, 3, 4, 6, 7, 9 etc. of the memory, and 1 for
lines 2, 5, 8 etc. These backgrounds were selected for the
test in order to create all victim-aggressor combinations
necessary for activating all the faults in the NPSF model.

March-76N forms an alternating series of March
elements and background changes (as Cockburn proposed
in [15]) and has the following structure:

 { (w0); [(ra, wb); (rb, wa); CBGi], i =1, 2, …, 16 }, (1)

where CBGi is a sequence for checking and changing from
the current background to the next. More exactly, the
sequence CBGi has the following meaning:

 CBGi, i =1, 2, …, 15, changes the background
from BGi-1 to BGi. Note that when changing
from one background to the next, only the cells
that must change states are written. Each write
operation is also preceded

(for checking) by a read operation. We can
observe in Fig. 2 that the backgrounds were
ordered such as the difference between every
two successive backgrounds consists of three
out of the nine cells so that all background
changes affect only a trinity of the cells.

 CBG16 reads the whole memory for the finally
checking (CBG16

 =(ra)).

Consequently, March-76N comprises the following
operations:

 N operations for the first initialization;
 [2N +2N + 2×3N/9] ×15 = 70N operations, for

the first fifteen series of March elements and
background changes;

 2N+2N+N=5N, for the sixteenth series of

March elements and final checking.

Therefore, the length of March-76N is N +70N +5N =
76N.

A simulation study has been made in order to
determine whether March-76N covers all simple and also
all linked NPSFs. Taking into account that the patterns of
the backgrounds used by this test are composed of 33
cells, for the simulation study, the memory cells have been
divided into nine mutually disjoint subsets. These are
denoted by S1, S2, …, S9, depending on their location. Let r
and c be the row address and the column address,
respectively, of a memory cell. The cell with the address
(r, c) belongs to a certain subset according to the following
rule:
 S1,, if c % 3 = 0 and r % 3 = 0,
 S2, if c % 3 = 0 and r % 3 = 1,
 S3, if c % 3 = 0 and r % 3 = 2,
 S4, if c % 3 = 1 and r % 3 = 0,
 the cell (r,c) S5, if c % 3 = 1 and r % 3 = 1, (2)
 S6, if c % 3 = 1 and r % 3 = 2,
 S7, if c % 3 = 2 and r % 3 = 0,
 S8 , if c % 3 = 2 and r % 3 = 1,
 S9, if c % 3 = 2 and r % 3 = 2,

where “%” denotes the modulo operation.

0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 1 1 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0

BG0 BG1 BG2 BG3

0 1 1 1 0 0 1 0 0 1 1 0
1 0 0 1 0 0 0 1 1 0 0 1
1 0 0 1 0 0 1 0 0 1 1 0

BG4 BG5 BG6 BG7

0 0 1 1 0 1 0 1 0 0 1 0
0 0 1 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 0 0 1 0

BG8 BG9 BG10 BG11

1 1 0 0 0 1 1 0 1 1 1 1
1 1 0 1 1 0 0 1 0 0 0 0
1 1 0 1 1 0 0 1 0 0 0 0

BG12 BG13 BG14 BG15

Fig. 2. The 16 backgrounds for the test March-76N

84

 0 1 2 3 4 5 6 7

0 S1 S4 S7 S1 S4 S7 S1 S4

1 S2 S5 S8 S2 S5 S8 S2 S5

2 S3 S6 S9 S3 S6 S9 S3 S6

3 S1 S4 S7 S1 S4 S7 S1 S4

4 S2 S5 S8 S2 S5 S8 S2 S5

5 S3 S6 S9 S3 S6 S9 S3 S6

6 S1 S4 S7 S1 S4 S7 S1 S4

7 S2 S5 S8 S2 S5 S8 S2 S5

Fig. 3. The cell subsets for an 8×8 memory chip array

For a memory array with 8 rows and 8 columns, these
nine subsets of cells are illustrated in Fig. 3.

Note that every memory cell that belongs to the same
cell subset will support the same operations during the test
March-76N. Moreover, if two base cells belong to the
same subset, their aggressor cells will support,
respectively, the same initializations. Hence, for the
simulation study, only nine locations (one for each subset)
have to be considered for the base cell.

For the linked fault coverage evaluation, the linked
faults consisting of two simple faults have been
considered. There are 96 NPSFs that flip the base cell from
0 to 1 and 96 that flip it from 1 to 0. Consequently, a total
of 96 96 = 9216 linked faults have been considered for
the simulation study.

The conclusion of the study is that March-76N covers
entirely the model of simple and linked NPSFs.

Theorem: March-76N is able to detect all simple and
linked NPSFs in our model.

 Table 2. Bit sequence for each background and for each subset of base cell

 S1 S2 S3 S4 S5 S6 S7 S8 S9

BG0
0 0 0
0 0 0
0 0 0

 0
0 0 0
 0

I1
 0

0 0 0
 0

I1
 0

0 0 0
 0

I1
0

0 0 0
0

I1
0

0 0 0
0

I1
0

0 0 0
0

I1
0

0 0 0
0

I1
 0

0 0 0
 0

I1
0

0 0 0
0

I1

BG1
0 0 0
1 1 1
0 0 0

 0
0 0 0
 1

I2
 0
1 1 1
 0

I16
 1

0 0 0
 0

I3'
0

0 0 0
1

I2
0

1 1 1
0

I16
1

0 0 0
0

I3'
0

0 0 0
1

I2
 0
1 1 1
 0

I16
1

0 0 0
0

I3'

BG2
1 1 1
1 1 1
0 0 0

 0
1 1 1
 1

I3
 1
1 1 1
 0

I2'
 1

0 0 0
 1

I16'
0

1 1 1
1

I3
1

1 1 1
0

I2'
1

0 0 0
1

I16'
0

1 1 1
1

I3
 1
1 1 1
 0

I2'
1

0 0 0
1

I16'

BG3
0 1 1
0 1 1
1 0 0

 1
1 0 1
 0

I4
 0
1 0 1
 1

I7'
 0

0 1 0
 0

I5'
0

0 1 1
1

I9'
1

0 1 1
0

I8
1

1 0 0
1

I14
0

1 1 0
1

I10
 1
1 1 0
 0

I11'
1

0 0 1
1

I15'

BG4
0 1 1
1 0 0
1 0 0

 1
1 0 1
 1

I5
 0

0 1 0
 1

I4'
 1

0 1 0
 0

I7
0

0 1 1
0

I14'
1

1 0 0
0

I9
0

1 0 0
1

I8'
0

1 1 0
0

I15
 1

0 0 1
 0

I10'
0

0 0 1
1

I11

BG5
1 0 0
1 0 0
1 0 0

 1
0 1 0
 1

I6
 1

0 1 0
 1

I6
 1

0 1 0
 1

I6
0

1 0 0
0

I13'
0

1 0 0
0

I13'
0

1 0 0
0

I13'
0

0 0 1
0

I12
 0

0 0 1
 0

I12
0

0 0 1
0

I12

BG6
1 0 0
0 1 1
1 0 0

 1
0 1 0
 0

I7
 1
1 0 1
 1

I5
 0

0 1 0
 1

I4'
0

1 0 0
1

I8'
0

0 1 1
0

I14'
1

1 0 0
0

I9
0

0 0 1
1

I11
 0
1 1 0
 0

I15
1

0 0 1
0

I10'

BG7
1 1 0
0 0 1
1 1 0

 1
0 1 1
 0

I8
 1
1 0 0
 1

I14
 0

0 1 1
 1

I9'
1

1 1 0
0

I11'
1

0 0 1
1

I15'
0

1 1 0
1

I10
0

1 0 1
1

I7'
 0

0 1 0
 0

I5'
1

1 0 1
0

I4

BG8
0 0 1
0 0 1
1 1 0

 1
1 0 0
 0

I9
 0
1 0 0
 1

I8'
 0

0 1 1
 0

I14'
1

0 0 1
0

I10'
0

0 0 1
1

I11
0

1 1 0
0

I15
0

0 1 0
1

I4'
 1

0 1 0
 0

I7
1

1 0 1
1

I5

B9
1 0 1
1 0 1
0 1 0

 0
1 1 0
 1

I10
 1
1 1 0
 0

I11'
 1

0 0 1
 1

I15'
1

1 0 1
0

I4
0

1 0 1
1

I7'
0

0 1 0
0

I5'
0

0 1 1
1

I9'
 1

0 1 1
 0

I8
1

1 0 0
1

I14

BG10
0 1 0
1 0 1
0 1 0

 0
0 0 1
 1

I11
 0
1 1 0
 0

I15
 1

0 0 1
 0

I10'
1

0 1 0
0

I7
1

1 0 1
1

I5
0

0 1 0
1

I4'
0

1 0 0
1

I8'
 0

0 1 1
 0

I14'
1

1 0 0
0

I9

BG11
0 1 0
0 1 0
0 1 0

 0
0 0 1
 0

I12
 0

0 0 1
 0

I12
 0

0 0 1
 0

I12
1

0 1 0
1

I6
1

0 1 0
1

I6
1

0 1 0
1

I6
0

1 0 0
0

I13'
 0
1 0 0
 0

I13'
0

1 0 0
0

I13'

BG12
1 1 0
1 1 0
1 1 0

 1
0 1 1
 1

I13
 1

0 1 1
 1

I13
 1

0 1 1
 1

I13
1

1 1 0
1

I12'
1

1 1 0
1

I12'
1

1 1 0
1

I12'
0

1 0 1
0

I6'
 0
1 0 1
 0

I6'
0

1 0 1
0

I6'

BG13
0 0 1
1 1 0
1 1 0

 1
1 0 0
 1

I14
 0

0 1 1
 1

I9'
 1

0 1 1
 0

I8
1

0 0 1
1

I15'
0

1 1 0
1

I10
1

1 1 0
0

I11'
0

0 1 0
0

I5'
 1
1 0 1
 0

I4
0

1 0 1
1

I7'

BG14
1 0 1
0 1 0
0 1 0

 0
1 1 0
 0

I15
 1

0 0 1
 0

I10'
 0

0 0 1
 1

I11
1

1 0 1
1

I5
0

0 1 0
1

I4'
1

0 1 0
0

I7
0

0 1 1
0

I14'
 1
1 0 0
 0

I9
0

1 0 0
1

I8'

BG15
1 1 1
0 0 0
0 0 0

 0
1 1 1
 0

I16
 1

0 0 0
 0

I3'
 0

0 0 0
 1

I2
0

1 1 1
0

I16
1

0 0 0
0

I3'
0

0 0 0
1

I2
0

1 1 1
0

I16
 1

0 0 0
 0

I3'
0

0 0 0
1

I2

Admin
Highlight

Admin
Highlight

Admin
Highlight

Admin
Highlight

85

Proof:
A. March-76N is able to detect all simple NPSFs.
When the memory is initialized with a certain

background, this causes the appearance of different bit
sequences in neighborhoods that have the base cell in
different subsets. For example, when the memory is
initialized with BG2, if the base cell belongs to S1, its
neighborhood contains the bit sequence presented in Fig.
4a, and if the base cell belongs to S5, its neighborhood
consists of the bit sequence presented in Fig. 4b.

Table 2 presents for each background, the bit
sequences that appear in the neighborhood of the base cell
when it belongs to each subset. Note that, whichever subset
the base cell belongs to, the initialization of the memory
cells with all backgrounds will determine the appearance
of all 16 possible bit sequences or their complements
(denoted by I1, I2,...,I16, and I1', I2', ... I16', respectively, as
shown in Table 3) in a different order.

On the other hand, another simulation study has been
made in order to determine which faults are detected by
applying each March element of the memory test on each
of the 16 bit sequences.

Table 3 shows these faults grouped by the test
sequence that detects them. Each of the sixteen series of
our test is composed of three test sequences (two March
elements and a test sequence for changing the background)
identified with a superscript (x), where x{1, 2, 3}, as
follows:

[(ra, wb)(1); (rb, wa)(2); CBGi
(3)], i =1, 2, …, 16. (3)

To simplify the writing in Table 3, the ‘<’ and ‘>’
symbols usually used to denote a fault primitive have been
neglected. Moreover, a bit sequence from a neighborhood
is written as NWBES and it contains, respectively, the
values in the north, west, base, east, and south cell.

Table 3 includes all 192 fault primitives of this NPSF
model. Note that, by applying the two March elements (1)
and (2) on a bit sequence or on their complement, the same
operations are carried out in the memory, and
consequently, the same memory faults are detected.
Therefore, when the three test sequences in March-76N are
applied to all of the 16 bit sequences I1, I2, …, I16, or to
their complements, all NPSF simple faults are detected.

 Note that Table 2 shows that whichever subset the
base cell belongs to, applying all of the 16 backgrounds to
the memory will determine the appearance in the
neighborhood of the base cell of all 16 bit sequences or
their complements in a different order. In conclusion,
wherever the base cell is located, March-76N covers the
whole model of simple NPSFs.

B. March-76N is able to detect all linked NPSFs.
Let us consider the pairs of simple faults that can

mask their effects while running the March-76N memory
test. The simple faults that belong to such pairs have
opposite effect upon the base cell and are both activated
between two consecutive read operations of the base cell.
For example, when running the test on bit sequence I1, the
simple faults pairs shown in Table 4 can mask their effects,
hiding an incorrect behaviour of the memory. All the pairs
composed of two active and/or passive simple faults that

can be activated between two consecutive reading
operations have been considered.

Table 3. Faults detected by each bit sequence within March-76N

Bit
sequence

Notation
NPSF faults (grouped by the test

sequences that detect them)
(1) (2) (3)

00000 I1
↑000;0/1
1↑00;0/1

1100;↑/0
1100; -/0
11↑0;1/0
111↑;1/0

↓111;1/0
0↓11;1/0

0011;↓/1
0011; -/1
00↓1;0/1
000↓;0/1

00001 I2 ↑001;0/1
1↑01;0/1

1101;↑/0
1101; -/0
11↑1;1/0
111↓;1/0

↓110;1/0
0↓10;1/0

0010;↓/1
0010; -/1
00↓0;0/1
000↑;0/1

01111 I3 ↑111;1/0
1↓11;1/0

1011;↓/1
1011; -/1
10↓1;0/1
100↓;0/1

↓000;0/1
0↑00;0/1

0100;↑/0
0100; -/0
01↑0;1/0
011↑;1/0

11010 I4 ↓110;0/1
0↓10;0/1

0010;↑/0
0010; -/0
00↓0;1/0
000↑;1/0

↑001;1/0
1↑01;1/0

1101;↓/1
1101; -/1
11↑1;0/1
111↓;0/1

11011 I5 ↓111;0/1
0↓11;0/1

0011;↑/0
0011; -/0
00↓1;1/0
000↓;1/0

↑000;1/0
1↑00;1/0

1100;↓/1
1100; -/1
11↑0;0/1
111↑;0/1

10101 I6 ↓001;1/0
0↑01;1/0

0101;↓/1
0101; -/1
01↑1;0/1
011↓;0/1

↑110;0/1
1↓10;0/1

1010;↑/0
0101; -/0
10↓0;1/0
100↑;1/0

10100 I7 ↓000;1/0
0↑00;1/0

0100;↓/1
0100; -/1
01↑0;0/1
011↑;0/1

↑111;0/1
1↓11;0/1

1011;↑/0
1011; -/0
10↓1;1/0
100↓;1/0

10110 I8 ↓010;1/0
0↑10;1/0

0110;↓/1
0110; -/1
01↓0;0/1
010↑;0/1

↑101;0/1
1↓01;0/1

1001;↑/0
1001; -/0
10↑0;1/0
101↓;1/0

11000 I9 ↓100;0/1
0↓00;0/1

0000;↑/0
0000; -/0
00↑0;1/0
001↑;1/0

↑011;1/0
1↑11;1/0

1111;↓/1
1111; -/1
11↓1;0/1
110↓;0/1

01101 I10 ↑101;1/0
1↓01;1/0

1001;↓/1
1001; -/1
10↑1;0/1
101↓;0/1

↓010;0/1
0↑10;0/1

0110;↑/0
0110; -/0
01↑0;1/0
010↑;1/0

00011 I11 ↑011;0/1
1↑11;0/1

1111;↑/0
1111; -/0
11↓1;1/0
110↓;1/0

↓100;1/0
0↓00;1/0

0000;↓/1
0000; -/1
00↑0;0/1
001↑;0/1

00010 I12 ↑010;0/1
1↑10;0/1

1110;↑/0
1110; -/0
11↓0;1/0
110↑;1/0

↓101;1/0
0↓01;1/0

0001;↓/1
0001; -/1
00↑1;0/1
001↓;0/1

10111 I13 ↓011;1/0
0↑11;1/0

0111;↓/1
0111; -/1
01↓1;0/1
010↓;0/1

↑100;0/1
1↓00;0/1

1000;↑/0
1000; -/0
10↑0;1/0
101↑;1/0

11001 I14 ↓101;0/1
0↓01;0/1

0001;↑/0
0001; -/0
00↑1;1/0
001↓;1/0

↑010;1/0
1↑10;1/0

1110;↓/1
1110; -/1
11↓0;0/1
110↑;0/1

01100 I15 ↑100;1/0
1↓00;1/0

1000;↓/1
1000; -/1
10↑0;0/1
101↑;0/1

↓011;0/1
0↑11;0/1

0111;↑/0
0111; -/0
01↓1;1/0
010↓;1/0

01110 I16 ↑110;1/0
1↓10;1/0

1010;↓/1
1010;-/1
10↓0;0/1
100↑;0/1

↓001;0/1
0↑01;0/1

0101;↑/0
0101;-/0
01↑1;1/0
011↓;1/0

Table 4. Simple fault pairs that can mask their effect when
applying March-76N on bit sequence I1
↑000;0/1
1↑00;1/0

1100;↑/0
11↑0;0/1

1100;↑/0
111↑;0/1

1100;↑/0
↓111;0/1

1100;↑/0
0↓11;0/1

11↑0;1/0
111↑;0/1

11↑0;1/0
↓111;0/1

11↑0;1/0
0↓11;0/1

111↑;1/0
↓111;0/1

111↑;1/0
0↓11;0/1

↓111;1/0
0↓11;0/1

0011;↓/1
00↓1;1/0

0011;↓/1
000↓;1/0

00↓1;0/1
000↓;1/0

86

 0 1 2 3 4 5 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 2 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 1 1 1 1 1 1 4 1 1 1 1 1 1
5 0 0 0 0 0 0 5 0 0 0 0 0 0

 a) b)
Fig. 4. Bits sequences that appear in BG2: a – Base cell belongs
to S1; b – Base cell belongs to S5

Note that the second fault in each pair in Table 4 is
detected by applying the test on bit sequence I5 (see Table
3). I1 and I5 have the same value for the base cell and
complementary values for the aggressor cells (I1 is 00000,
and I5 is 11011). Thus, for each of the pairs in Table 4, by
applying March-76N to the bit sequence I5, only the
second fault in each of the pairs is activated, such that the
masking will not occur.

In the same way, the linked NPSFs that can appear
while applying March-76N on a certain bit sequence will

be detected by applying the test on another bit sequence
that has the same value for the base cell and opposite
values for the aggressor cells.

Therefore, every linked NPSF consisting of a pair of
simple NPSFs that mask their effect while applying the
memory test on a certain background (denoted by BGm)
will be detected when applying the test on another
background (denoted by BGd). Let Im be the bit sequence
that appears in the neighborhood of the base cell when the
memory is initialized with BGm. Then, BGd is the
background that causes the appearance of the pair of bit
sequence Im (as can be found in Table 5) in the
neighborhood of the base cell.

Conclusions

The test we propose improves the performance of the

test March-76N given by Cheng, Tsai, and Wu [7], which
is the shortest published memory test dedicated to this
NPSF model. In comparison with CM-79N, March-76N is
shorter with 3.33N. Moreover, March-76N is able to detect
all linked faults whereas, as presented in [16], March-76N
cannot cover entirely the set of linked NPSFs.

References

1. Adams R. D. High performance memory testing: design

principles, fault modelling and self–test – USA: Kluwer
Academic Publishers, 2003 – 247 p.

2. Hamdioui S. Testing static random access memories: defects,
fault models and test patterns – The Netherlands: Kluwer
Academic Publishers, 2004. – 240 p.

3. Hayes J. P. Testing memories for single–cell pattern–
sensitive fault // IEEE Trans. Comput., 1980. – Vol. 29. – P.
249–254.

4. Kang D. C., Cho S. B. An efficient build–in self–test
algorithm for neighborhood pattern sensitive faults in high–
density memories” // Proc. 4th Korea–Russia Int. Symp.
Science and Technology, 2000. – Vol. 2. – P. 218–223.

5. Cockburn B. F. Deterministic tests for detecting scrambled
pattern–sensitive faults in RAMs // Proc. IEEE Int. Workshop
Memory Technology, Design and Testing (MTDT), 1995. –
P. 117–122.

6. Suk D. S., Reddy M. Test procedures for a class of pattern–
sensitive faults in semiconductor random–access memories //
IEEE Trans. Comput., 1980. – Vol. 29. – P. 419–429.

7. Cheng K. L., Tsai M. F., Wu C. W. Neighborhood pattern–
sensitive fault testing and diagnostics for random–access
memories // IEEE Trans. On CAD, 2002. – Vol. 21. – No. 11.
– P. 1328–1336.

8. Julie R. R., Wan Zuha W. H., Sidek R. M. 12N test
procedure for NPSF testing and diagnosis for SRAMs // Proc.
IEEE Int. Conf. on Semiconductor Electronics, 2008. – P.
430–435. DOI: 10.1109/SMELEC.2008.4770357.

9. Hamdioui S., van de Goor A. J., Rodgers M. March SS: A
test for all static simple RAM faults // Proc. of IEEE Int’l
Workshop on Memory Technology, Design and Testing,
2002. – P. 95–100.

10. Van de Goor A. J. Testing semiconductor memories: theory
and practice – John Wiley & Sons Inc, 1991. – 512 p.

11. Benso A., Bosio A., Di Carlo S., Di Natale G., Prinetto P.
A 22n March Test for Realistic Static Linked Faults in
SRAMs // Proceedings of the Eleventh IEEE European Test
Symposium, 2006. – P. 49–54.

12. Yarmolik V., Klimets Y., Demidenko S. March PS(23N)
test for DRAM pattern–sensitive faults // Proc. Seventh IEEE
Asian Test Symp.(ATS), 1998. – P. 354–357.

13. Cheng K. L., Tsai M. F., Wu C. W. Efficient neighborhood
pattern–sensitive fault test algorithms for semiconductor
memories // Proc. IEEE VLSI Test Symp. (VTS), 2001. – P.
225–237.

14. Caşcaval P., Bennett S., Hutanu C. Efficient March Tests
for a Reduced 3–Coupling and 4–Coupling Faults in
Random–Access Memories // J. Electronic Testing: Theory
and Applications, 2004. – Vol. 20(3) – P. 227–243.

15. Cockburn B. F. Deterministic tests for detecting single V–
coupling faults in RAMs // J. Electronic Testing. Theory and
Applications, 1994. – Vol. 5(1). – P. 91–113.

16. Huzum C., Cașcaval P. Linked Neighborhood Pattern–
Sensitive Faults in Random–Access Memories. A Fault
Coverage Evaluation // Proc. of 14th ICSTC, 2010. – P. 241–
245.

Received 2011 03 10
Accepted after revision 2011 09 15

C. Huzum, P. Cascaval. A Multibackground March Test for Static Neighborhood Pattern-Sensitive Faults in Random-Access Memories // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2012. – No. 3(119). – P. 81–86.

A multibackground March test (March-76N) for a model of static neighborhood pattern sensitive faults (NPSFs) in N 1 random-access memories is
presented. March-76N is able to cover both simple and linked NPSFs. As any other test dedicated to the NPSFs, March-76N assumes that the storage cells are
arranged in a rectangular grid and the mapping from logical addresses to physical cell locations is known completely. With a length of 76N, this March test is more
efficient than other published tests dedicated to this model. Ill. 4, bibl. 16, tabl. 4 (in English; abstracts in English and Lithuanian).

C. Huzum, P. Cascaval. Daugiafonis operatyviosios atminties statinių kaimyninių struktūrų klaidų testas // Elektronika ir elektrotechnika. – Kaunas:
Technologija, 2012. – Nr. 3(119). – P. 81–86.

Pateikiamas daugiafonis March testas (March-76N), skirtas statinių kaimyninių struktūrų klaidų (SKSK) aptikimo operatyviojoje atmintyje modeliui. March-
76N gali aptikti tiek paprastas, tiek susijusias minėto tipo klaidas. Kaip ir kituose testuose, skirtuose SKSK aptikti, March-76N daroma prielaida, kad elementai yra
išrikiuoti stačiakampiame tinklelyje ir kreipimasis iš loginių adresų į fizinę elemento vietą yra visiškai žinomas. March testas yra efektyvesnis už kitus skelbtus
šiam modeliui skirtus testus. Il. 4, bibl. 16, lent. 4 (anglų kalba; santraukos anglų ir lietuvių k.).

ARTICLE IN PRESS

Microelectronics Journal 41 (2010) 212–218
Contents lists available at ScienceDirect
Microelectronics Journal
0026-26

doi:10.1

� Corr

E-m

doina.ca
1 Te
journal homepage: www.elsevier.com/locate/mejo
March SR3C: A Test for a reduced model of all static simple three-cell
coupling faults in random-access memories
Petru Cas-caval a,�, Doina Cas-caval b,1

a Department of Computer Engineering, ‘‘Gheorghe Asachi’’ Technical University of Ias-i, Bd. D. Mangeron, 53A, Ias-i, 700050, Romania
b Department of Industrial Engineering, ‘‘Gheorghe Asachi’’ Technical University of Ias-i, Bd. D. Mangeron, 53A, Ias-i, 700050, Romania
a r t i c l e i n f o

Article history:

Received 14 December 2008

Received in revised form

11 February 2010

Accepted 19 February 2010
Available online 9 March 2010

Keywords:

Memory testing

Static fault model

Three-cell coupling fault

Fault primitive

March test
92/$ - see front matter & 2010 Elsevier Ltd. A

016/j.mejo.2010.02.004

esponding author. Tel./fax: +40 232 232430.

ail addresses: cascaval@cs.tuiasi.ro, pcascav

scaval@yahoo.com (D. Cas-caval).

l./fax: +40 232 230491.
a b s t r a c t

A fault primitive-based analysis of all static simple (i.e., not linked) three-cell coupling faults in n�1

random-access memories (RAMs) is discussed. All realistic static coupling faults that have been shown

to exist in real designs are considered: state coupling faults, transition coupling faults, write disturb

coupling faults, read destructive coupling faults, deceptive read destructive coupling faults, and

incorrect read coupling faults. A new March test with 66n operations able to detect all static simple

three-cell coupling faults is proposed. To compare this test with other industrial March tests, simulation

results are also presented in this paper.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Semiconductor memories are an integral part of modern ULSI
circuits. With each new generation of ULSIs, the memory share of
the chip area increases and is expected to be about 94% in 2014
[1]. New memory technologies and processes introduce new
defects that significantly impact on the defect-per-million (DPM)
level and yield [2]. With increasing densities, certain types of
faults, such as multi-cell coupling faults or pattern-sensitive
faults, which are harder to detect, are becoming more important.
In addition, more time is required to test memories because of
their increasing size thus it is necessary to identify more efficient
tests, with the ability to detect complex faults, tests that require
test time on the order of n.

Many Functional fault models (FFMs) for memories have been
introduced in the past; some well-known FFMs which date back
to before 1999 are: stuck-at fault, decoder fault, data retention
fault, stuck open fault, read destructive fault, deceptive read
destructive fault, and coupling fault [3]. After 1999, experimental
results by applying a large number of tests to a large number of
chips indicated that many functional tests do detect faults in
memories, which cannot be explained using the well-known set
ll rights reserved.

al@yahoo.com (P. Cas-caval),
of FFMs [4,5]. This has led to the introduction of new FFMs, based
on defect injection and circuit simulation: write disturb fault,
incorrect read fault, transition coupling fault, read destructive
coupling fault etc. [6]. Taking into consideration all these new
FFMs, Hamdioui, van de Goor, and Rodgers [7] have defined a
large model of all static simple two-cell coupling faults and have
proposed the memory test March SS to cover it. Based on this
model, in this article we extend the analysis to the more complex
model of all static simple three-cell coupling faults.

Many test algorithms dedicated to the model of three-cell
coupling faults have been reported. Thus, a memory test that
requires n+32nlog2n operations is given by Nair, Thatte, and
Abraham (Algorithm B) [8]. A new test of length n+24nlog2n is
proposed by Papachristou and Sahgal [9]. Two more efficient test
algorithms, S3CTEST and S3CTEST2, are given by Cockburn [10]. These
are tests of approximate length 5nlog2n+22.5n and 5nlog2n+5n

[log2(1+log2n)]+11n, respectively. For the memory chips currently
available, all these tests take a long time to perform because the
authors have assumed that the coupled cells can be anywhere in the
memory. For example, to test a 64 Mb memory chip assuming a
cycle time of 60 ns, S3CTEST takes about 10 min 54 s.

To reduce the length of the test, Cas-caval and Bennett have
restricted the model to the more realistic coupling faults that
affect only the physically adjacent memory cells [11]. Under this
hypothesis and for the cases in which the mapping from logical
addresses to physical cell locations is known completely, they
have devised a March test of length 38n, which covers entirely
this reduced model of three-cell coupling faults. A new more

www.elsevier.com/locate/mejo
dx.doi.org/10.1016/j.mejo.2010.02.004
mailto:cascaval@cs.tuiasi.ro
mailto:pcascaval@yahoo.com
mailto:pcascaval@yahoo.com
mailto:doina.cascaval@yahoo.com
mailto:doina.cascaval@yahoo.com

ARTICLE IN PRESS

P. Cas-caval, D. Cas-caval / Microelectronics Journal 41 (2010) 212–218 213
efficient March test with 30n operations (MT-R3CF) dedicated to a
reduced model of three-cell coupling faults is reported by
Cas-caval, Bennett, and Huţanu [12].

All these test algorithms assume that a memory fault can be
sensitized only by a transition write operation into a cell. In this
paper, the model of three-cell coupling faults is extended by
considering other classes of faults, such as the faults sensitized by
a read or a non-transition write operation, namely: disturb
coupling fault, read destructive coupling fault, deceptive read
destructive coupling fault, and incorrect read coupling fault. For
this large fault model, a new efficient March test is proposed.

The remainder of this paper is organized as follows. Section 2
introduces notations and preliminary considerations, and section 3
defines a reduced model of all static simple three-cell coupling
faults. Section 4 presents a new memory test, March SR3C, able to
cover this fault model. Section 5 contains simulation results and
compares the new March test with other published tests. Finally,
some conclusions are drawn regarding this work.
2. Notations and memory fault classification

Following the notations and definitions as given in [6], we give
first the concept of a fault primitive that will be used to define the
targeted FFMs. Second, a classification of memory faults will be
given and the scope of the paper will be shown.

2.1. Fault primitive concept

An operation sequence that results in a difference between the
observed and the expected memory behavior is called a sensitizing

operation sequence (S). The observed memory behavior that
deviates from the expected one is called faulty behavior (F). In
order to specify a certain fault, one has to specify the S together
with the corresponding faulty behavior F and the read result (R) of
S, in case S is a read operation or a sequence of operations with a
read as last one in the sequence. The combination of S, F and R for
a given memory failure is called a Fault Primitive (FP).

The following notations are usually used to describe opera-
tions on RAMs:
�
 r0 (r1) denotes a read 0 (1) operation from a cell;

�
 r (ri) denotes a read operation from a cell (cell i) when the

expected value is not specified;

�
 w0 (w1) denotes a write 0 (1) operation into a cell;

�
 0w0 (1w1) denotes a write 0 (1) operation to a cell which

contains a 0 (1)—a non-transition write operation when the
logical value of the cell does not change;

�
 w (wi) denotes a non-transition write operation into a cell (cell

i) when the logical value of the cell is not specified;

�
 0w1 (1w0) denotes an up (down) transition write operation;

�
 wc (wc

i) denotes a transition write operation into a cell (cell i)
when the old logical value of the cell and its complement are
not specified;

�
 m (k) denotes an up (down) transition due to a certain

sensitizing operation.

A FP is a mathematical notation describing a single fault [6] and
is usually represented as oS/F/R4 where
�
 S describes the value/operation sensitizing the fault, SA{0, 1,
r0, r1, 0w0, 1w1, 0w1, 1w0} (e.g., write 1 to a cell containing 0
(i.e., 0w1));

�
 F describes the value of the faulty (victim) cell (v-cell), F A {0, 1,

m, k} (e.g., the cell flips from 0 to 1 (i.e., m));
�
 R describes the logical value which appears at the output of the
memory if the sensitizing operation applied to the v-cell is a
read operation or a sequence of operations with a read as last
one in the sequence, R A {0, 1, �}. The symbol ‘� ’ in R means
that the output data are not applicable; for example, if S=0w1,
then no data will not appear at the memory output, and therefore
R is replaced by a ‘� ’; this FP can be written as ‘o0w1/m/�4 ’.

The concept of FPs allows for establishing a complete frame-
work of all memory faults, since for all allowed operation
sequences in the memory, one can derive all possible types of
faulty behavior. In addition, the concept of FPs makes it possible
to give a precise definition of a FFM as it has to be understood for
memory devices [6], namely: a FFM is a non-empty set of fault
primitives.

2.2. Classification

Some classifications of FPs can be made based on different and
independent factors of S.
a)
 Depending on the number of simultaneous operations re-
quired in the S, FPs are classified into single-port and multi-port

faults.
� Single-ports faults: These are FPs that require at the most

one port in order to sensitize a fault. Note that single-port
faults can be sensitized in single-port as well as in multi-
port memories.
� Multi-port faults: These are FPs that can only sensitize a

fault by performing two or more simultaneous operations
via the different ports.
b)
 Depending on the number of sequential operations required in
the S, FPs are classified into static and dynamic faults. Let #O
be the number of different operations carried out sequentially
in a S.
� Static faults: These are FPs which sensitize a fault by

performing at the most one operation in the memory
(#O=0 or #O=1). For example, the state of the cell is always
stuck-at 0 (#O=0), a read operation to a certain cell causes
the cell to flip (#O=1), etc.
� Dynamic faults: These are FPs that perform more than one

operation sequentially in order to sensitize a fault (#O41).
For example, two successive read operations cause the cell
to flip; however, if only one operation is performed, the cell
will not flip.
c)
 Any fault of the FFM can be modeled as a set of distinct FPs
simultaneously present in the memory. Depending on the way
FPs manifest themselves, they can be divided into simple faults

and linked faults.
� Simple faults: These are faults which cannot be influenced

by another fault. That means that the behavior of a simple
fault cannot change the behavior of another one; therefore
masking cannot occur. For example, a cell j is a victim cell of
two aggressor cells i and k. A transition write operation into
cell i (i.e., wc

i) or cell k (i.e., wc
k) changes the state of cell j

from 0 to 1. This is a simple fault that can be modeled by
two FPs,

FP1 ¼ owi
c=m=�4 ; and FP2 ¼ owk

c=m=�4 :

� Linked faults: These are faults that do influence the behavior
of each other. That means that the behavior of a certain
fault can change the behavior of another one such that
masking can occur. A linked fault consists of two ore more
FPs with contrary effects on the same victim cell. For
example, take a two-cell coupling fault with cell i the

ARTICLE IN PRESS

Table 1
List of three-cell FPs.

Fault primitives FFM # Fault primitives FFM

1 /0; 0; 0; /1/-S CFst 37 /0; 0; 1w0;/1/-S CFtr

2 /0; 1; 0; /1/-S 38 /0; 1; 1w0;/1/-S

P. Cas-caval, D. Cas-caval / Microelectronics Journal 41 (2010) 212–218214
aggressor cell and cell j the victim cell. The transition 0w1
into cell i changes the state of cell j from 0 to 1, whereas the
transition 1w0 into cell i changes the state of cell j from 1 to
0. This is a linked fault that can be modeled by two FPs,

FP1 ¼ o0w1=m=�4 ; and FP2 ¼ o1w0=k=�4 :
3 /1; 0; 0; /1/-S 39 /1; 0; 1w0;/1/-S

4 /1; 1; 0; /1/-S 40 /1; 1; 1w0;/1/-S

5 /0; 0; 1; /0/-S 41 /0; 0; 0w0; /m/-S CFwd

6 /0; 1; 1; /0/-S 42 /0; 1; 0w0; /m/-S
7 /1; 0; 1; /0/-S 43 /1; 0; 0w0; /m/-S
8 /1; 1; 1; /0/-S 44 /1; 1; 0w0; /m/-S

9 /r0; 0; 0; /m/-S CFds 45 /0; 0; 1w1; /k/-S
10 /r0; 0; 1; /k/-S 46 /0; 1; 1w1; /k/-S
11 /r0; 1; 0; /m/-S 47 /1; 0; 1w1; /k/-S
12 /r0; 1; 1; /k/-S 48 /1; 1; 1w1; /k/-S

13 /r1; 0; 0; /m/-S 49 /0; 0; r0; /m/1S CFrd

14 /r1; 0; 1; /k/-S 50 /0; 1; r0; /m/1S
15 /r1; 1; 0; /m/-S 51 /1; 0; r0; /m/1S
16 /r1; 1; 1; /k/-S 52 /1; 1; r0; /m/1S
17 /0w0; 0; 0; /m/-S 53 /0; 0; r1; /k/0S
18 /0w0; 0; 1; /k/-S 54 /0; 1; r1; /k/0S
19 /0w0; 1; 0; /m/-S 55 /1; 0; r1; /k/0S
20 /0w0; 1; 1; /k/-S 56 /1; 1; r1; /k/0S
Remark 1. If a test procedure detects all the FPs that define a
FFM, it also detects all the simple faults of this model. In other
words, the set of simple faults dominates the set of FPs. However,
for the linked faults the combined effects of some simple faults
may cancel each other out before the victim cell is read again. In
this way a linked fault can escape even if the test procedure
detects all the simple faults.

In this work, single-port, static, simple faults are considered.
From here on, the term ‘fault’ refers to a single-port, static, simple
fault.

RAM faults can also be divided into single-cell and multi-cell

faults. Single-cell faults consist of FPs involving a single cell, while
multi-cell faults consists of FPs involving more than one cell. As
concerns the multi-cell faults (also called coupling faults), we
restrict our analysis to the class of three-cell FPs (i.e., three-cell
coupling faults).
21 /1w1; 0; 0; /m/-S 57 /0; 0; r0; /m/0S CFdrd

22 /1w1; 0; 1; /k/-S 58 /0; 1; r0; /m/0S
23 /1w1; 1; 0; /m/-S 59 /1; 0; r0; /m/0S
24 /1w1; 1; 1; /k/-S 60 /1; 1; r0; /m/0S
25 /0w1; 0; 0; /m/-S 61 /0; 0; r1; /k/1S
26 /0w1; 0; 1; /k/-S 62 /0; 1; r1; /k/1S
27 /0w1; 1; 0; /m/-S 63 /1; 0; r1; /k/1S
28 /0w1; 1; 1; /k/-S 64 /1; 1; r1; /k/1S

29 /1w0; 0; 0; /m/-S 65 /0; 0; r0;/0/1S CFir

30 /1w0; 0; 1; /k/-S 66 /0; 1; r0;/0/1S
31 /1w0; 1; 0; /m/-S 67 /1; 0; r0;/0/1S
32 /1w0; 1; 1; /k/-S 68 /1; 1; r0;/0/1S

33 /0; 0; 0w1;/0/-S CFtr 69 /0; 0; r1;/1/0S
34 /0; 1; 0w1;/0/-S 70 /0; 0; r1;/1/0S
35 /1; 0; 0w1;/0/-S 71 /1; 0; r1;/1/0S
3. A reduced model of three-cell coupling faults

Based on the notations previously defined, a three-cell FP is
presented as oS/F/R4 = oSa1;Sa2;Sv/F/R4a1,a2,v, where Sa1, Sa2

and Sv are the sensitizing operation (or state) sequences
performed on the a1-cell and a2-cell (aggressor cells), and on the
v-cell (victim cell), respectively. The a1-cell and a2-cell are the
cells to which the sensitizing operation (or state) should be
applied in order to sensitize the fault, while the v-cell is the cell
where the fault appears. Note that Sa1, SvA{0, 1, r0, r1, 0w0, 1w1,
0w1, 1w0}, whereas Sa2A{0, 1}. As presented in Table 1, there are
72 FPs compiled into seven FFMs, as defined in [7], namely
36 /1; 1; 0w1;/0/-S 72 /1; 1; r1;/1/0S
a)
 State coupling faults (CFst);

b)
 Disturb coupling faults (CFds);

c)
 Transition coupling faults (CFtr);

d)
 Write destructive coupling faults (CFwd);

e)
 Read destructive coupling faults (CFrd);

f)
 Deceptive read destructive coupling faults (CFdrd);
i j i j
g)
 Incorrect read coupling faults (CFir).
k P1 P4 k

i

P5 i j k j P6

k

i P2 P3 i

j k j k

Fig. 1. Patterns for three physically adjacent cells.
For example, three cells are said to have a disturb coupling fault
if an operation (i.e., read, transition write or non-transition write)
performed on the a1-cell causes the v-cell to flip, when a2-cell is
in a given state; the FP defined in the row 9 shows that a read 0
operation performed on a1-cell causes the v-cell to flip from
0 to 1, when the a2-cell is in 0 state.

To reduce the length of the test, we assume that only the
physically adjacent cells can be three-coupled. For a set of three-
coupled cells, six patterns denoted by P1, P2, P3, P4, P5 and P6 are
accepted, as shown in Fig. 1.

We call this model of three-cell coupling faults, which
comprises only physically adjacent cells, reduced three-cell

coupling.
In the memory, one or more sets of coupled cells may exist. As

in [8] and [9], we assume that the pairs of sets of coupled cells are
disjoint.

Remark 2. Because the three-coupled cells are physically adjacent,
our model can also be considered a type of neighborhood

ARTICLE IN PRESS

P. Cas-caval, D. Cas-caval / Microelectronics Journal 41 (2010) 212–218 215
pattern-sensitive faults (NPSFs) with two aggressor cells and a
victim cell. But in our model any cell in a set of three-coupled cells
can be a victim cell, not only the central base cell as is usually
considered in the NPSFs model (see for example [13]).

To minimize the silicon area and critical path delay, a RAM’s
internal address lines are frequently scrambled (called address

scrambling), so that the physical address is not identical to the
logical address. Also, memory cell arrays are invariable repaired
by using redundant rows and/or columns, therefore any repair
operation changes the mapping from logical addresses to physical
cell locations. If we do not have the scramble map, the real
neighborhood cannot be identified. As in previous works related
to NPSFs, we assume that we have the physical address
information (i.e., the scramble map) from the memory designers,
so we can run test algorithm using the physical address.
4. The memory test March SR3C

The March tests are the most popular and widely accepted
deterministic test algorithms because of their low temporal
complexity, regular structures and their ability to detect a wide
variety of memory faults. Usually, a complete March test is
delimited by ‘{y}’ bracket pair, while a March element is
delimited by the ‘(y)’ bracket pair. March elements are separated
by semicolons, and the operations within a March element are
separated by commas. Note that all operations of a March element
are performed at a certain address, before proceeding to the next
address. The whole memory is checked homogeneously in either
Fig. 2. Memory test March SR3C.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

I1

1
1
1
1
1
1
1
1
1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

I2

Fig. 3. Memory initialization (data backgro
one of two orders: ascending address order (*) or descending
address order (+). When the address order is not relevant, the
symbol { is used.

A new March test, March SR3C, dedicated to the reduced model
of three-cell coupling faults, is presented in Fig. 2, where I1, I2, I3,
and I4 are sequences which initialize the memory as follows: I1

initializes the odd columns with 0 and the even columns with 1,
and I3 vice versa (column-stripe data background); I2 and I4

initialize the memory with a checkerboard data background and
its complement, as illustrated in Fig. 3.

This March test contains fourteen sequences as identified with
a superscript (x), where xA{0, 1, y, 13}. The test sequences
(5)–(12) form an alternating series of background changes and
March elements (as Cockburn proposed in [10]). Note that when
changing from one background to the next, only the cells that
must change states are written. Also, each write operation is
preceded by a read operation. We can observe in Fig. 3 that any
background change affects only half of the cells. Each test
sequence I1, I2, I3 or I4 performs n/2 read operations and n/2
write operations. Consequently, March SR3C has a length of 66n.
Regarding this March test, symbol * denotes an increasing
address order, from address 0 to n�1, as long as symbol +
denotes a reverse address order, from address n-1 to 0. Other
permutations of the set of memory cell addresses decrease the
effectiveness of the March test.

Theorem 1. March SR3C detects all FPs of this reduced three-cell

coupling.

Proof. To test and find a fault in a memory we need to be able to
sensitize the fault by a proper memory operation, and to observe
the fault by reading the changed value of the cell affected by the
fault.

Proposition 1. The next three conditions are necessary and
sufficient for a test to detect any FP that affects a cell in a set S of
coupled cells:

Condition 1. The test must perform all the possible cell

operations in the set of coupled cells in order to sensitize any

fault.
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

I3

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

I4

und) for the memory test March SR3C.

ARTICLE IN PRESS

Table 2
The initial states for a set of cells S={i, j, k}.

I1 and I3 I2 and I4

P1 /1,0,1S, /0,1,0S /0,1,1S, /1,0,0S
P2 /1,1,0S, /0,0,1S /1,0,1S, /0,1,0S
P3 /1,0,1S, /0,1,0S /1,1,0S, /0,0,1S
P4 /0,1,1S, /1,0,0S /1,0,1S, /0,1,0S
P5 /1,0,1S, /0,1,0S /0,1,0S, /1,0,1S
P6 /0,0,0S, /1,1,1S /1,0,1S, /0,1,0S

0,0,0

0,0,1

1,0,0

1,1,0

0,1,1 1,1,1

0,1,0

1,0,1

Fig. 5. The transitions carried out in a set of cells S={i, j, k} by the March element

* (r, r, w, r, wc, r, r, w, r, wc) for the initial states o0,1,04 and o1,0,14 .

P. Cas-caval, D. Cas-caval / Microelectronics Journal 41 (2010) 212–218216
Condition 2. After any operation into a cell, the test must read

the cell to check its state, before another write operation into the

cell is allowed to occur.

Condition 3. For each possible victim cell c in S, after one or more

operations in other cells in the set, the test must read cell c, prior

to a write operation into cell c, to check if the state has been

changed by a memory operation in other possible aggressor cell.

Consider an arbitrary triple set of cells S={i, j, k} that
corresponds with one of the patterns P1, P2, P3, P4, P5 and P6 as
illustrated in Fig. 1. We refer to the cells in S by i, j and k taking
into account the order in which these cells are checked during the
memory testing. Cells i, j and k are checked in this order when the
memory is tested in ascending order (*), and in reverse order,
when the memory is tested in descending order (+). We must
show that March SR3C is able to sensitize and to observe any FP
that affects the set of cells S.

4.1. March SR3C sensitizes any fault in the set of cells S

According to Condition 1 previously defined in Proposition 1,
we must prove that March SR3C performs all the possible cell
operations in the set of coupled cells S. The proof comprises two
steps: in the first step we prove that March SR3C performs all
possible transition write operations and, based on this result, in
the second one we prove that March SR3C also performs all
possible read and non-transition write operations.

Step 1. Take all the transition writes of March SR3C denoted by
wc and marked with bold face in Fig. 2. By applying these
operations, March SR3C covers the Eulerian graph of states for a
set of cells S, regardless of the pattern. Indeed, the initialize
sequence {(w0) loads into any triple set of cells the initial state
o0,0,04 . Applying the March elements (1)–(4), March SR3C

forces the transitions marked with solid lines in the Eulerian
graph presented in Fig. 4, in every set of cells in the memory
under test, regardless of the pattern.

On the other hand, the test sequences I1, I2, I3 and I4 ensure in a
set of cells S, depending on the pattern (see Figs. 1 and 3), the
initial states presented in Table 2.

As highlighted in Table 2, the test sequences ensure the initial
states o0,1,04 and o1,0,14 for all the six patterns. In the
Eulerian graph, two adjacent nodes (states) have only one bit
0,0,0

0,0,1

1,0,0

1,0,1

0,1,0

0,1,1 1,1,1

(1)

(1)

(1)

(2)(3)

(3)

(3)

(2)

(2)

(4)

(4)

(4)

1,1,0

Fig. 4. The Eulerian graph of states for a set of cells S={i, j, k} and the transitions

carried out by the March elements (1)–(4).
changed and two non-adjacent nodes have at least two bits
changed. Consequently, by applying the March element * (r, r, w,
r, wc, r, r, w, r, wc), three adjacent nodes are visited and, finally, the
set of cells returns to the initial state (the state that the sequence
started with). The transitions forced by this March element in a
set of cells S, initialized with o0,1,04 and o1,0,14 respec-
tively, are highlighted (marked with solid line) in Fig. 5.

The transitions marked with solid lines in Figs. 4 and 5 show
that the Eulerian graph of states is completely covered in all the
six cases.

As follows, we will show that March SR3C also performs all
possible read operations and non-transition write operations in
the set of cells S.

Step 2. For both March elements used by March SR3C, (r, r, w, r,
wc) and (r, r, w, r, wc, r, r, w, r, wc), every transition write operation
(wc) is preceded by three reads and one non-transition write
operation. Thus, before changing the state of a cell, March SR3C

checks if the read operation and the non-transition write
operation applied to this cell are performed properly. For every
state in a set of cells S, Table 3 presents the March elements in
which the read and the non-transition write operations applied to
each cell of S are carried out.
4.2. March SR3C observes any FP activated in the set of cells S

Table 4 presents the operations carried out in a set of cells
S={i, j, k} during the memory testing, except on the writes for the
first initialization. The cell in which the operation is carried out is
identified with a superscript x, where xA{i, j, k}. The operations
enclosed inside brackets sometimes are made, or sometimes are

ARTICLE IN PRESS

Table 4
The operations carried out in a set of cells S={i, j, k} by the memory test March

SR3C.

Operations Comments

y ririwiriwc
i
yrjrjwjrjwc

j
y rkrkwkrkwc

k
y March elements (1) and (2)

y ririwiriwc
i
y rjrjwjrjwc

j
y rkrkwkrkwc

k
y

y rkrkwkrkwc
k
y rjrjwjrjwc

j
y ririwiriwc

i
y March elements (3) and (4)

y rkrkwkrkwc
k
y rjrjwjrjwc

j
y ririwiriwc

i
y

y [riwc
i] y [rjwc

j] y [rkwc
k] y Change to 2nd background (I1)

y ririwiriwc
iririwiriwc

i
y rjrjwjrjwc

jrjrjwjrjwc
j
y March element (6)

y rkrkwkrkwc
krkrkwkrkwc

k
y

y [riwc
i] y [rjwc

j] y [rkwc
k] y Change to 3rd background(I2)

y ririwiriwc
iririwiriwc

i
y rjrjwjrjwc

jrjrjwjrjwc
j
y March element (8)

y rkrkwkrkwc
krkrkwkrkwc

k
y

y [riwc
i] y [rjwc

j] y [rkwc
k] y Change to 4th background (I3)

y ririwiriwc
iririwiriwc

i
y rjrjwjrjwc

jrjrjwjrjwc
j
y March element (10)

y rkrkwkrkwc
krkrkwkrkwc

k
y

y [riwc
i] y [rjwc

j] y [rkwc
k] y Change to 5th background (I4)

y ririwiriwc
iririwiriwc

i
y rjrjwjrjwc

jrjrjwjrjwc
j
y March element (12)

yrkrkwkrkwc
krkrkwkrkwc

k
y

y ri
y rj

y rk
y Final read sequence

Table 3
The March elements in which the read and the non-transition write operations are

carried out in S.

State of S={i, j, k} Read and non-transition write operations

ri, wi rj, wj rk, wk

/0, 0, 0S (1) (6) or (10) (3)

/0, 0, 1S (8) or (12) (3) (2)

/0, 1, 0S (6) or (10) (6) or (10) (6) or (10)

/0, 1, 1S (3) (2) (6) or (10)

/1, 0, 0S (4) (1) (8) or (12)

/1, 0, 1S (8) or (12) (8) or (12) (8) or (12)

/1, 1, 0S (6) or (10) (4) (1)

/1, 1, 1S (2) (8) or (12) (4)

Table 5
BDS for 8-bit word.

Sequence

0 00000000

1 11111111

2 01010101

3 10101010

4 00110011

5 11001100

6 00001111

7 11110000

P. Cas-caval, D. Cas-caval / Microelectronics Journal 41 (2010) 212–218 217
not made, depending on the set of cells. We can easily check in
Table 4 that Conditions 2 and 3, previously defined in Proposition
1, are also satisfied.

Remark 3. For the patterns P1, P3 and P5, the test sequences (7),
(8), (11) and (12) are not necessary (so they can be removed),
whereas for the patterns P2, P4 and P6, the sequences (5), (6), (9)
and (10) are not necessary (see Fig. 3 and Table 2).

Let us consider the set of the patterns {P1, P2, P3, P4, P5, P6}
divided into two parts (to say halves), H1={P1, P3, P5} and H2={P2,
P4, P6}. Based on the proof of Theorem 1, we derive a lower bound
on the length of any test that covers half of patterns, H1 or H2, of
reduced three-cell coupling. For the six patterns, the minimum
required length of any test that detects all simple faults remains
still to be found out.

Corollary. A memory test needs at least 42n operations to detect all

simple faults for half of patterns, H1 or H2, of reduced three-cell

coupling.

Proof. Take the March elements (1)–(4), (6) and (10) or (1)–(4),
(8) and (12), by case. Because in every set of cells S={i, j, k} all
24 transitions are carried out exactly once, these March elements
perform a minimal number of transition write operations. In order
to sensitizing all the faults, these March elements also perform a
minimal number of reads and non-transition write operations. On
the other hand, all reads of these March elements used for
observing the faults, as well as the reads of the final sequence, are
necessary to satisfy Conditions 2 and 3, previously defined in
Proposition 1. Consequently, for half of patterns, H1 or H2, a
memory test needs at least 42n operations (including n operations
for memory initialization) to detect all simple three-cell coupling
faults.

Remark 4. With 43.5n operations, a March test composed of the
sequences (0)–(6), (9), (10) and (13) is a near-optimal memory
test for the patterns P1, P3 and P5, whereas the March test
composed of the sequences (0)–(4), (7), (8), (11)–(13) is a near-
optimal one for the patterns P2, P4 and P6. Nevertheless, March

SR3C is not an optimal test for the model we have considered, so
such a test remains still to be worked out.

To cover this reduced model of three-cell coupling, March SR3C

uses different data backgrounds as presented in Fig. 3. To generate
data backgrounds, only the LSB of the row and column addresses
are necessary. For example, the I2 data can be represented as
Ar[0]�Ac[0], where Ar[0] is the LSB of the r-bit row address Ar

[r-1y0], and Ac[0] is the LSB of the c-bit column address Ac[c-1y0].
Consequently, generation of all data backgrounds can be done by a
simple circuit. Any typical March-based built-in self-test (BIST)
circuit can easily be modified to run the proposed test algorithm.

To make the test even shorter than 66n operations, may be data
backgrounds based on 3�3 cell patterns should be used, instead of
data backgrounds based on 2�2 cell patterns (see Fig. 3). But, such a
March test is not so suitable for BIST implementation; if imple-
mented in hardware, the data generator for such a test would be
more complicated than that for March SR3C.

Modern RAMs are mostly word oriented, i.e., they are accessed
word-by-word instead of bit-by-bit. In general, each bit from a
different block contributes to a word. In [14], van de Goor and Tlili
describe a method for efficiently converting a bit-oriented
memory March test to word-oriented memory (WOM) test.
WOM March tests can detect inter-word faults (i.e., faults among
words) and intra-word faults (i.e., faults within words). In order to
sensitize intra-word coupling faults a sequence of bits that is
called a background data sequence (BDS) can be used. Table 5
shows a BDS for 8-bit word. This sequence can be applied to all
words in an address location. As concerns the inter-word faults,
testing such a word-oriented memory can be considered as
testing m smaller bit-oriented memories in parallel, where m is
the number of blocks. As any March test, the proposed algorithm
can be easily converted from a bit-oriented test to a word-
oriented memory test.
5. Simulation results

To compare March SR3C with other published tests, we present
in this section simulation results regarding the ability of the tests
to detect simple faults of this model. The following March tests
have been considered for the simulation study:
�
 MT-R3CF [12]: {(w0); * (r0, w1); * (r1, w0); + (r0, w1);
+ (r1, w0); I1;* (r, wc, r, wc); I2;* (r, wc, r, wc); I3;* (r, wc, r, wc);

ARTICLE IN PRESS

Table 6
Fault coverage of three-cell coupling faults.

Memory test Test length Fault coverage (%)

1 March SR3C 66n 100

2 MT_R3CF 30n 56.73

3 Algorithm A 30n 46.30

4 March G 24n 44.91

5 March SS 22n 53.94

6 March LA 22n 42.82

7 March B 17n 32.18

8 March LR 14n 43.52

9 March SR 14n 42.36

10 March U 13n 42.59

11 PMOVI 13n 39.58

12 March C- 10n 36.81

P. Cas-caval, D. Cas-caval / Microelectronics Journal 41 (2010) 212–218218
I4;* (r, wc, r, wc); {(r)}, where I1, I2, I3 and I4 are sequences that
initialize the memory as presented in Fig. 3.

�
 Algorithm A [8]: {* (w0); * (r0,w1); * (r1); * (r1, w0); * (r0);
+ (r0,w1); + (r1); + (r1,w0); + (r0); * (r0,w1,w0); * (r0); + (r0,
w1,w0); + (r0); * (w1); * (r1, w0, w1); * (r1); + (r1, w0, w1);
+ (r1) }.

�
 March G [15]: {{(w0); * (r0, w1, r1, w0, w1); * (r1, w0, r0,

w1); + (r1, w0, w1, w0); + (r0, w1, r1, w0); * (r0, w1, r1);
+ (r1, w0, r0)}.

�
 March SS [7]: {{(w0); * (r0, r0, w0, r0, w1); * (r1, r1, w1, r1,

w0); + (r0, r0, w0, r0, w1); + (r1, r1, w1, r1, w0); {(r0); }.

�
 March LA [16] : {{(w0); * (r0, w1, w0, w1, r1); * (r1, w0, w1,

w0, r0); + (r0, w1, w0, w1, r1); + (r1, w0, w1, w0, r0); + (r0)}.

�
 March B [17]: {{(w0); * (r0, w1, r1, w0, r0, w1); * (r1, w0,

w1); + (r1, w0, w1, w0); + (r0, w1, w0)}

�
 March LR [18]: {{(w0); + (r0, w1); * (r1, w0, r0, w1); * (r1,

w0); * (r0, w1, r1, w0); * (r 0)}.

�
 March SR [4]: {+ (w0); * (r0, w1, r1, w0); * (r0, r0); * (w1);
+ (r1, w0, r0, w1); + (r1, r1)}.

�
 March U [19]: {{(w0);* (r0, w1, r1, w0); * (r0, w1); + (r1, w0,

r0, w1); + (r1, w0)}.

�
 PMOVI [20]: {+ (w0); * (r0, w1, r1); * (r1, w0, r0); + (r0, w1,

r1); + (r1, w0, r0) }.

�
 March C [21,15]: {{(w0);* (r0, w1); * (r1, w0); + (r0, w1);
+ (r1, w0); {(r0)}.

All the six patterns illustrated in Fig. 1 and all FPs presented in
Table 1 have been considered in this simulation study. Moreover,
for each group of coupled cells, composed of two aggressor cells
(a1-cell and a2-cell) and a victim cell (v-cell), six distinct
permutations on the set {a1, a2, v} have been considered.
Consequently, 2952 FPs (6�6�72) have been simulated in order
to evaluate the fault coverage of the memory tests. Table 6
summarizes the fault coverage of all three-cell coupling faults in
our model.

As shown in Table 6, March SR3C is able to detect all three-cell
coupling faults.
6. Conclusions

A reduced model of all static simple three-cell coupling faults
that includes state coupling fault, transition coupling fault, write
disturb coupling fault, read destructive coupling fault, deceptive
read destructive coupling fault, and incorrect read coupling fault
is discussed, and a new memory test of length 66n able to cover it
is proposed. To reduce the length of the test, only the coupling
faults between physically adjacent memory cells have been
considered. The test assumes that the storage cells are arranged
in a rectangular grid and that the mapping from logical addresses
to physical cell locations is known completely.

Simulation results demonstrate the effectiveness of this March
test when compared with other published tests. To cover this
reduced model of three-cell coupling, the March test uses
different data backgrounds: a solid, column-stripes and checker-
boards. These data backgrounds can be generated by using the LSB
of the row and column addresses. Consequently, generation of
data backgrounds can be done by a simple circuit. Any typical
March-based BIST implementation can easily be modified to run
the proposed test algorithm.
References

[1] A. Allan, et al., 2001 The international technology roadmap for semiconduc-
tors, Computers 35 (1) (2002) 42–53.

[2] S. Hamdioui, Z. Al-Ars, J. Jimenez, J. Calero, PPM Reduction on Embedded
Memories in System on Chip, in: IEEE Proceedings of the European Test
Symposium, Freiburg, Germany, May 2007, pp. 85–90.

[3] A.J. van de Goor, Testing Semiconductors Memories. Theory and Practice,
ComTex Publishing, Gouda, The Netherlands, 1998.

[4] S. Hamdioui and A.J. van de Goor, Experimental Analysis of Spot Defects in
SRAM. Realistic Fault Models and Tests, in: Proceeding of the Ninth Asian Test
Symposium, Taipei, Taiwan, December 2000, pp. 131–138.

[5] V.K. Kim, T. Chen, On comparing functional fault coverage and defect
coverage for memory testing, IEEE Trans. CAD 18 (11) (2000) 1676–1683.

[6] A.J. van de Goor, Z. Al-Ars, Functional Faults Models: A Formal Notation and
Taxonomy, in: Proceeding of the 18th IEEE VLSI Test Symposium, Montreal,
Canada, May 2000, pp. 281–289.

[7] S. Hamdioui, A.J. van de Goor, M. Rodgers, March SS: A Test for All Static
Simple RAM Faults, in: Proceeding of the IEEE International Workshop on
Memory Technology, Design and Testing, Isle of Bendor, France, July 2002,
pp. 95–100.

[8] R. Nair, S. Thatte, J. Abraham, Efficient algorithms for testing semiconductor
random access memories, IEEE Trans. Comput. C-27 (6) (1978) 572–576.

[9] C. Papachristou, N. Sahgal, An improved method for detecting functional
faults in semiconductor random access memories, IEEE Trans. Comput. C-34
(2) (1985) 110–116.

[10] B.F. Cockburn, Deterministic tests for detecting single V-coupling faults in
RAMs, J. Electron. Testing Theory Appl. 5 (1) (1994) 91–113.

[11] P. Cas-caval, S. Bennett, Efficient march test for 3-coupling faults in random
access memories, Microprocessors and Microsystems 24 (10) (2001)
501–509.

[12] P. Cas-caval, S. Bennett, C. Huţanu, Efficient march tests for a reduced
3-coupling and 4-coupling faults in RAMs, J. Electron. Testing. Theory Appl.
20 (2) (2004) 227–243.

[13] K.-L. Cheng, M.-F. Tsai, C.-W. Wu, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 21 (11) (2002) 1328–1336.

[14] A. J. van de Goor, I. B. S Tlili, March Tests for Word-Oriented Memories, in:
Proceeding Design, Automation and Test in Europe, Paris, France, February
1998, pp. 501–508.

[15] A.J. van de Goor, Using march tests to test SRAMs, IEEE Des. Test Comput. 10
(1) (1993) 8–14.

[16] A.J. van de Goor, et al., March LA: A Test for Linked Memory Faults, in:
Proceedings of the European Design Test Conference, Paris, France, March
1999, pp. 627–634.

[17] D. Suk, S. Reddy, A march test for functional faults in semiconductor random
access memories, IEEE Trans. Comput. C-30 (12) (1981) 982–985.

[18] V.N. Yarmolik, A.J. van de Goor, G.N. Gaydadjiev, V.G. Mikitjuk, March LR: A
Test for Realistic Linked Faults, in: Proceeding of VLSI Test Symposium,
Princeton, USA, March 1996, pp. 272–280.

[19] A.J. van de Goor, G.N. Gaydadjiev, March U: A Test for all unlinked memory
faults, IEE Proc. Circuits Devices Syst. 144 (3) (1997) 155–160.

[20] J.H. de Jonge, A.J. Smeulders, Moving inversion test pattern is thorough, yet
speedy, Comput. Syst. Des., ACM 19 (5) (1976) 169–173.

[21] M. Marinescu, Simple and Efficient Algorithms for Functional RAM Testing,
Digest of Papers, 1982 International Test Conference, Philadelphia, USA,
November 1982, pp. 236–239.

ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number 4, 2009, 440–454

A BIST Logic Design for MarchS3C
Memory Test BIST Implementation

1Petru CAŞCAVAL, 2Radu SILION, 3Doina CAŞCAVAL

Gheorghe Asachi Technical University of Iaşi, Romania
E-mail: {1cascaval, 2rsilion}cs.tuiasi.ro,

3cascaval@tex.tuiasi.ro

Abstract. A logic design for a possible built-in self-testing implementation

of a march test able to detect all static simple three-cell coupling faults in n

× 1 random-access memories (RAMs) is presented. Single–array single bit and

multiple–array single bit test architectures have been considered. The memory

test (MarchS3C [1]) needs 66n operations and is able to detect all realistic

simple (i.e. not linked) static three-cell coupling faults that have been shown to

exist in real designs, namely: state coupling faults, transition coupling faults,

write disturb coupling faults, read destructive coupling faults, deceptive read

destructive coupling faults, and incorrect read coupling faults. To reduce the

length of the test, only the coupling faults between physically adjacent memory

cells have been considered. The test assumes that the storage cells are arranged

in a rectangular grid and that the mapping from logical addresses to physical

cell locations is known completely.

Key words: Memory testing, static faults, fault primitive, three-cell cou-

pling faults, built-in self-testing.

1. Introduction

This article focuses on high performance memory testing having in view system
on chip (SoC) dedicated to critical applications, with high reliability and safety re-
quirements, in which the test confidence degree regarding to normal operation of
the embedded memory must be very high. In recent years, embedded memories are
the fastest growing segment of SoC. According to the 2001 International Technology
Roadmap for Semiconductor [2], today’s SoC are moving from logic dominant chips

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 441

to memory dominant chips, since future applications require a lot of memory. The
same idea is reiterated in [3]. The memory shared on the chip is expected to be about
94% in 2014. For this reason, the importance of memory testing increases.

Rapid developments in semiconductor technology have resulted in continuing growth
of larger and denser random-access memories on a single chip. With increasing den-
sities, certain types of faults harder-to-detect such as three-cell or even four-cell cou-
pling faults can not be ignored any more [4, 5]. Consequently, the test algorithms
are constrained by two conflicting requirements: to cover a wide variety of memory
faults harder-to-detect, and to reduce the number of memory operations in order to
allow large memories to be tested in an acceptable period of time. In addition, more
time is required to test memories because of their increasing size thus it is necessary
to identify more efficient tests, with the ability to detect complex faults, tests that
require test time on the order of n, where n denotes the number of locations of the
memory. In this work, the class of faults harder-to-detect that includes coupling faults
with three adjacent coupled cells has been considered.

BIST is a design-for-testability technique that places test functions physically on
chip with the circuit under test. System designers use BIST for periodic testing. This
requires incorporating a test process that guarantees the detection of all target faults
within a fixed time. Designers also implement on-line BIST with the goals of large
fault coverage and low fault latency. For critical or highly available systems, a com-
prehensive online-testing approach that covers all expected permanent, intermittent,
and transient faults is essential [6].

Two kinds of testing methods exist: random testing and deterministic testing.
Random testing is based on linear-feedback shift registers (LFSR) for pattern gen-
eration. An LSFR can also serve as a response monitor by counting the responses
produced by the tests. After receiving a sequence of test responses, an LSFR response
monitor forms a fault signature which is compared with a known good signature to
determine whether a fault is present. Deterministic testing is especially suited to
highly regular chips.

Since the RAM circuit has a regular structure, a deterministic testing is more
adequate than a random one. Taking into account the number of simultaneously
tested arrays and the number of simultaneously accessed bits within an array, Franklin
and Saluja [6] classified all the RAM-BIST test architectures into one of the four test
architectures: single-array single bit, single-array multiple bit, multiple-array single
bit, and multiple-array multiple bit. In this work only single-array single bit (SASB)
test architectures and multiple-array single bit test architectures (MASB) have been
considered. SASB test architectures are those in which a single array of the RAM
chip is tested at a time and a single bit of the tested array is accessed at a time.
MASB test architectures can be used if a memory chip is organized as a number of
independent arrays, allowing multiple arrays to be tested simultaneously. Ensuring
that fault coverage is sufficiently high and the number of tests is sufficiently low are
the main problems with a BIST implementation [5].

In this paper we focus on the model of all static simple three–cell coupling faults,
as defined in [1]. This is the largest model of three-cell coupling that includes all the
faults that have been shown to exist in real designs, namely: state coupling faults,

442 P. Caşcaval et al.

transition coupling faults, write disturb coupling faults, read destructive coupling
faults, deceptive read destructive coupling faults, and incorrect read coupling faults
[4, 7]. For a BIST-RAM logic design, the memory test MarchS3C that covers entirely
this fault model has been considered [1].

The remainder of this paper is organized as follows. Section 2 presents a memory
fault classification based on the concept of fault primitives. The fault primitives for
the model of all static three-cell coupling are presented in Section 3. The memory
test MarchS3C is presented briefly in Section 4. To compare MarchS3C with other
published memory tests, simulation results are also presented in Section 5. A logic
design for a possible implementation of this march test in a BIST-RAM device is
discussed in Section 6. Final remarks regarding this work are presented in Section 7.

2. Primitives and a Memory Fault Classification

An operation sequence that results in a difference between the observed and the ex-
pected memory behaviour is called a sensitizing operation sequence (S). The observed
memory behaviour that deviates from the expected one is called faulty behaviour (F).
In order to specify a certain fault, one has to specify the S, together with the corre-
sponding faulty behaviour F, and the read result (R) of S in case it is a read operation.
The combination of S, F and R for a given memory failure is called a Fault Primitive
(FP). The concept of FPs allows for establishing a complete framework of all memory
faults. Some classifications of FPs can be made based on different and independent
factors of S.
a) Depending on the number of simultaneous operations required in the S, FPs are
classified into single-port and multi-port faults.

• Single-ports faults: These are FPs that require at the most one port in order to
sensitize a fault. Note that single-port faults can be sensitized in single-port as
well as in multi-port memories.

• Multi-port faults: These are FPs that can only sensitize a fault by performing
two or more simultaneous operations via the different ports.

b) Depending on the number of sequential operations required in the S, FPs are
classified into static and dynamic faults. Let #O be the number of different operations
carried out sequentially in a S.

• Static faults: These are FPs which sensitize a fault by performing at the most
one operation in the memory (#O=0 or #O=1);

• Dynamic faults: These are FPs that perform more than one operation sequen-
tially in order to sensitize a fault (#O > 1).

c) Depending on the way FPs manifest themselves, they can be divided into simple
faults and linked faults.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 443

• Simple faults: These are faults which cannot be influenced by another fault.
That means that the behaviour of a simple fault cannot change the behaviour
of another one; therefore masking cannot occur.

• Linked faults: These are faults that do influence the behaviour of each other.
That means that the behaviour of a certain fault can change the behaviour of
another one such that masking can occur. Note that linked faults consists of
two ore more simple faults.

In this work, single-port, static, simple faults are considered. From here on, the
term ‘fault’ refers to a single-port, static, simple fault.

The following notations are usually used to describe operations on RAMs :

• r0 (r1) denotes a read 0 (1) operation from a cell;

• r denotes a read operation from a cell when the expected value is not specified;

• w0(w1) denotes a write 0 (1) operation into a cell;

• 0w0 (1w1) denotes a write 0 (1) operation to a cell which contains a 0(1) – a
non-transition write operation when the logical value of the cell does not change;

• w denotes a non-transition write operation into a cell when the logical value of
the cell is not specified;

• 0w1 (1w0) denotes an up (down) transition write operation;

• w c denotes a transition write operation into a cell when the old logical value of
the cell and its complement are not specified;

• ↑ (↓) denotes an up (down) transition due to a certain sensitizing operation.

A FP is usually denoted as < S/F/R > [6], where:

• S describes the value/operation sensitizing the fault, S ∈ {0, 1, r0, r1, 0w0,
1w1, 0w1, 1w0};

• F describes the value of the faulty (victim) cell (v-cell), F ∈ {0, 1, ↑, ↓};
• R describes the logical value which appears at the output of the memory if the

sensitizing operation applied to the v-cell is a read operation, R ∈ {0, 1, −}.
The symbol ‘−’ in R means that the output data is not applicable; for example,
if S=0w0, then not data will appear at the memory output, and therefore R is
replaced by a ‘−’.

RAM faults can also be divided into single-cell and multi-cell faults. Single-cell
faults consist of FPs involving a single cell, while multi-cell faults consists of FPs
involving more than one cell. As concerns the multi-cell faults (also called coupling
faults), we restrict our analysis to the class of three-cell FPs (i.e. three-cell coupling
faults).

444 P. Caşcaval et al.

3. All Static Three-Cell Coupling Faults

Based on the notations previously defined, a three-cell FP is presented as
< S/F/R > =< Sa1 ; Sa2 ;Sv/F/R >a1, a2, v, where Sa1, Sa2 and Sv are the sen-
sitizing operation (or state) sequences performed on the a1-cell and a2-cell (aggressor
cells), and on the v-cell (victim cell), respectively. The a1-cell and a2-cell are the cells
to which the sensitizing operation (or state) should be applied in order to sensitize
the fault, while the v-cell is the cell where the fault appears. Note that Sa1, Sv∈{0,
1, r0, r1, 0w0, 1w1, 0w1, 1w0}, whereas Sa2∈{0, 1}. As presented in Table 1, there
are 72 FPs compiled into seven FFMs, as defined in [7], namely:

• state coupling faults (CFst);

• disturb coupling faults (CFds);

• transition coupling faults (CFtr);

• write destructive coupling faults (CFwd);

• read destructive coupling faults (CFrd);

• deceptive read destructive coupling faults (CFdrd);

• incorrect read coupling faults (CFir).

For example, three cells are said to have a disturb coupling fault if an operation
(read, transition or non-transition write) performed on the a1-cell causes the v -cell
to flip, when a2-cell is in a given state; the FP defined in the row 9 shows that a
read 0 operation performed on a1-cell causes the v -cell to flip from 0 to 1, when the
a2-cell is in 0 state. Note that, the number of fault primitives is equal to the number
of arcs in the graph of states that describes the normal operations for three memory
cells (8 states × 9 arcs for each state). For this reason, the model is called “all static
three-cell coupling faults”.

Many test algorithms dedicated to such models of three-cell coupling faults have
been reported. Thus, a memory test that requires n + 32n log2 n operations is given
by Nair, Thatte, and Abraham (Algorithm B) [8]. A new test of length n+24n log2 n
is proposed by Papachristou and Sahgal [9]. Two more efficient test algorithms,
S3CTEST and S3CTEST2, are given by Cockburn [10]. These are tests of approxi-
mate length 5n log2 n + 22, 5n and 5n log2 n+5n [log2(1 + log2 n)] + 11n, respectively.
But, for the memory chips currently available, all these tests take a long time to
perform because the authors have assumed that the coupled cells can be anywhere in
the memory. For example, to test a 64 Mb memory chip assuming a cycle time of 60
ns, S3CTEST takes about 10 min 54s.

To reduce the length of the test, Caşcaval and Bennett have restricted the model
to the more realistic coupling faults that affect only the physically adjacent memory
cells [11]. Thus, for a set of three coupled cells {i, j, k}, six patterns denoted by P1,
P2, P3, P4, P5 and P6 are accepted, as shown in Fig. 1.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 445

Table 1. List of three-cell FPs

446 P. Caşcaval et al.

i j i j

k P1 P2 k

 i

P3 i j k j P4

 k

i P5 P6 i

j k j k

Fig. 1. Patterns for three physically adjacent cells.

This model of three-cell coupling, which comprises only physically adjacent mem-
ory cells, is called reduced three-cell coupling. Under this hypothesis and for the
cases in which the mapping from logical addresses to physical cell locations is known
completely, they have devised a march test of length 38n, which covers this reduced
model of three-cell coupling faults. A new more efficient march test with 30n opera-
tions (MT-R3CF) dedicated to the same reduced model of three-cell coupling faults
is reported by Caşcaval, Bennett, and Huţanu [12]. But, all these test algorithms as-
sume that a memory fault can be sensitized only by a transition write operation into
a cell. Based on the model of all static two-cell coupling faults defined by Hamdioui,
van de Goor and Rodgers in [7], this model of three-cell coupling faults has been ex-
tended by considering other classes of faults, such as the faults sensitized by a read or
a non-transition write operation [1]. To cover this large fault model, called all static
reduced three-cell coupling faults, the memory test MarchS3C has been proposed.
This test is presented briefly in the following section.

4. The Memory Test MarchS3C

The march tests are the most popular and widely accepted deterministic test
algorithms because of their low temporal complexity, regular structures and their
ability to detect a wide variety of memory faults. Usually, a complete march test is
delimited by ‘{. . . }’ bracket pair, while a march element is delimited by the ‘(. . .)’
bracket pair. March elements are separated by semicolons, and the operations within
a march element are separated by commas. Note that all operations of a march
element are performed at a certain address, before proceeding to the next address.
The whole memory is checked homogeneously in either one of two orders: ascending
address order (⇑) or descending address order (⇓). When the address order is not
relevant, the symbol m is used.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 447

The memory test we have considered for a possible BIST implementation is
MarchS3C. This memory test dedicated to the reduced model of all static three-
cell coupling is presented in Fig. 2, where I1, I2, I3, and I4 are sequences which
initialize the memory as follows: I1 initializes the odd columns with 0 and the even
columns with 1, and I3 vice versa (column-stripe data background); I2 and I4 initialize
the memory with a checkerboard data background and its complement, as illustrated
in Fig. 3.

 (w0) (0);

 (r, r, w, r, wc) (1)
; (r, r, w, r, wc) (2)

; (r, r, w, r, wc) (3)
; (r, r, w, r, wc) (4)

;

 I1
(5); (r, r, w, r, wc, r, r, w, r, wc) (6)

; I2
(7); (r, r, w, r, wc, r, r, w, r, wc) (8)

;

 I3
(9); (r, r, w, r, wc, r, r, w, r, wc) (10)

; I4
 (11); (r, r, w, r, wc, r, r, w, r, wc) (12)

;

 (ro) (13)

Fig. 2. The memory test MarchS3C.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

LSBCA I1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 I3 LSBCA

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

LSBRA LSBCA I2

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 I4 LSBRA LSBCA

Fig. 3. Memory initialization for the memory test MarchS3C.

This march test contains fourteen sequences as identified with a superscript (x),
where x∈{0, 1, . . . , 13}. The test sequences (5)-(12) form an alternating series of

448 P. Caşcaval et al.

background changes and march elements (as Cockburn proposed in [10]). Note that
when changing from one background to the next, only the cells that must change
states are written. Also, each write operation is preceded by a read operation. We
can observe in Fig. 4 that any background change affects only a half of the cells. Each
test sequence I1, I2, I3 or I4 performs n

2 read operations and n
2 write operations.

Consequently, MarchS3C needs 66n operations. This march memory test is able to
detect all the 72 FPs presented in Table 1 for all the six patterns illustrated in Fig. 1.

Circuit Under Test
M

U

X

Control Logic

Test generator

Response monitor

Inputs

Test pattern sequence
Error

Outputs

Self-Testing Logic

Fig. 4. Generic BIST scheme.

Regarding this march test, note that symbol ⇑ denotes an increasing address order,
from address 0 to n-1, as long as symbol ⇓ denotes a reverse address order, from
address n-1 to 0. Other permutations of the set of memory cell addresses decrease
the effectiveness of the march test.

5. Simulation Results

To compare MarchS3C with other published tests, simulation results are pre-
sented in this section. The following march tests have been considered for the simu-
lation study:

a) MT-R3CF [12] : {m(w0);⇑(r,w1);⇑(r,w0);⇓(r,w1);⇓(r,w0); I1;
⇑(r,wc,r,wc); I2; ⇑(r,wc,r,wc); I3; ⇑(r,wc,r,wc); I4; ⇑(r,wc,r,wc); m(r)}, where
I1, I2, I3 and I4 are sequences that initialize the memory as illustrated in Fig. 3.

b) Algorithm A [8] : {⇑(w0); ⇑(r0,w1); ⇑(r1); ⇑(r1,w0); ⇑(r0); ⇓(r0,w1); ⇓(r1);
⇓(r1,w0); ⇓(r0); ⇑(r0,w1,w0); ⇑(r0); ⇓(r0,w1,w0); ⇓(r0); ⇑(w1); ⇑(r1,w0,w1);
⇑(r1); ⇓(r1,w0,w1); ⇓(r1) }.

c) March G [13] : {m(w0); ⇑(r0,w1,r1,w0,w1); ⇑(r1,w0,r0,w1);
⇓(r1,w0,w1, w0); ⇓(r0,w1,r1,w0); ⇑(r0,w1,r1); ⇓(r1,w0,r0)}.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 449

d) March S2C [14] : {m(w0);⇑(r0,w1,r1,r1,w1); ⇑(r1,w0,r0,r0,w0);
⇓(r0,w1,r1,r1,w1); ⇓(r1,w0,r0,r0,w0); m(r0); }.

e) March LA [15] : {m(w0); ⇑(r0,w1,w0,w1,r1); ⇑(r1,w0,w1,w0,r0);
⇓(r0,w1,w0,w1,r1); ⇓(r1,w0,w1,w0,r0); ⇓(r0)}.

f) March B [16] : {m(w0); ⇑(r0,w1,r1,w0,r0,w1); ⇑(r1,w0,w1);
⇓(r1,w0,w1,w0); ⇓(r0,w1,w0)}.

g) March LR [17] : {m(w0); ⇓(r0,w1); ⇑(r1,w0,r0,w1); ⇑(r1,w0);
⇑(r0,w1,r1,w0); ⇑(r0)}.

h) March U [18] : {m(w0);⇑(r0,w1,r1,w0);⇑(r0,w1); ⇓(r1,w0,r0,w1);
⇓(r1,w0)}.

All the six patterns P1, P2, . . . , P6 illustrated in Fig. 1, and all FPs presented
in Table 1 have been considered in this simulation study. Moreover, for each group
of coupled cells, composed of two aggressor cells (a1-cell and a2-cell) and a victim
cell (v -cell), six distinct combinations on the set {a1, a2, v} have been considered.
Consequently, 2952 (6×6×72) FPs have been simulated in order to evaluate the fault
coverage of this reduced model of three-cell coupling faults. The simulation results
are presented in Table 2.

Table 2. Fault coverage of this reduced model of three-cell coupling faults

Memory test Test length Fault coverage (%)

1 MarchS3C 66n 100

2 MT_R3CF 30n 56.73

3 Algorithm A 30n 46.30

4 March G 24n 44.91

5 MarchS2C 22n 53.40

6 March LA 22n 42.82

7 March B 17n 32.18

8 March LR 14n 43.52

9 March U 13n 42.59

As shown in Table 2, only MarchS3C is able to detect all FPs of simple three-cell
coupling faults.

6. A BIST Logic Design for MarchS3C

Generally, a circuit with BIST facilities has two operation modes: normal opera-
tion and test. In normal operation, the circuit receives its inputs from other modules

450 P. Caşcaval et al.

and performs the function for which it was designed. In the test mode, a test gen-
erator applies a sequence of test patterns to the memory, and a response monitor
evaluates the test responses as illustrated in Fig. 4.

For the memory test MarchS3C, a BIST logic with the block diagram presented
in Fig. 5 is proposed.

memory address
Memory circuit

RA CA

(Up/Dn Counters)

Address generation logic

LSBRA LSBRC

End of

 Sequence

(EOS)

InitZero

InitOne

Up RA

Up CA

Dn RA

Dn CA

data buffer

data

comparator

Test Sequence

Counter (TSC)
Reset Up TSC

data

generator

LSBRA

LSBRC

Data generation &

response verification logic

Error

Microcode control logic
Start

Clock

State variables (TS, EOS, Error)

Control variables (R/W, Invert, …)

Test Result

End of Test

Invert

R/W

R/W

0 no error detected

Result F/F

State F/F

Test Result

End of Test

1 failed chip

1 test running on

0 test finished

TS

Fig. 5. The block diagram of BIST logic for the memory test MarchS3C.

The BIST logic is composed of three parts: address–generation logic, data–generation
and response–verification logic, and microcode control logic.

A. Address–generation logic

The address generation logic is composed of two up/down counters, for row address
(RA) and column address (CA), respectively. Each address counter can be initialised
with 0 (InitZero) or 1 (InitOne) in all bit locations. The memory is checked in
ascending or descending order, so that, depending on the test sequence (TS), the
control logic increments (Up) or decrements (Dn) one of the address counters, RA
or CA.

B. Data generation and response-verification logic

The data-generation logic supplies data to be written in the memory and the
expected data for response monitoring. An unique logic to generate both data for
writing operations and expected data for response monitoring can be used. Note that,
except on the first initialisation (w0) and the final checking of the memory (r0), the
test algorithm is composed of two kinds of march elements, (r, r, w, r, w c) and (r, r, w,

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 451

r, w c, r, r, w, r, w c). Every write operation into a cell is preceded by a read operation.
The expected data in the first read operation of a cell is presented in Table 3, where
LSBCA and LSBRA denote the less significant bit of the column address of the cell,
and the less significant bit of the row address of the cell, respectively (Fig. 3).

Table. 3. Expected data in the first read operation of a cell

Test sequence (TS) Expected data

(1) 0

(2) 1

(3) 0

(4) 1

(5) 0

(6) CALSB

(7) CALSB

(8) RACA LSBLSB

(9) RACA LSBLSB

(10) CALSB

(11) CALSB

(12) RACA LSBLSB

(13) RACA LSBLSB

Data generator is basically composed of a multiplexor with input variables in ac-
cordance with the expected data presented in Table 3, and a test sequence counter
(TSC) that supplies the selection inputs. The logic variable Invert is used to com-
mand the XOR gate for changing the data bit generated.

C. Microcode control logic

The control logic initiates and controls the testing process. The control flow of
the test algorithm MarchS3C is presented in Fig. 6.

In Fig. 6 the following notations are used to denote specific operations performed
on the current memory cell:

• O (w0) − for the first initialization;

• O (shortME) − for the march element (r, r, w, r, w c);

• O (longME) − for the march element (r, r, w, r, w c, r, r, w, r, w c);

• O (r0) − for the final checking.

452 P. Caşcaval et al.

Fig. 6. Control flow for the memory test MarchS3C.

A BIST Logic Design for MarchS3C Memory Test BIST Implementation 453

7. Final Remarks

We are unaware of other memory test able to detect all FPs of this large model
of three-cell coupling faults. To cover these harder-to-detect faults, MarchS3C uses
multiple data backgrounds: a solid, a column−stripe, and a checkerboard. Although
MarchS3C uses different patterns for memory initialization, the logic design we have
proposed for a possible built-in self-testing implementation is not so complicated.

Regarding the BIST logic design for a MASB architecture, another response ver-
ification method is comparing the outputs of symmetrically placed bits in the tested
arrays. An advantage of the parallel comparison method is that the expected values
need not be generated.

References

[1] CAŞCAVAL P., CAŞCAVAL D., March Test for a Reduced Model of All RAM Static
3-Cell Coupling Faults, Bul. Inst. Polit. Iaşi, Tom LIII (LVII), Autom. and Comput.,
pp. 87–96, 2007.

[2] ALLAN A. et al., 2001 International Technology Roadmap for Semiconductors, Com-
puters, 35 (1), pp. 42–53, 2002.

[3] HAMDIOUI S., AL-ARS Z., JIMENEZ J., CALERO J., PPM Reduction on Embedded
Memories in System on Chip, Proc. IEEE European Test Symp. (ETS’07), Freiburg,
Germany, May 2007, pp. 85–90.

[4] HAMDIOUI S., Testing Static Random Access Memories: Defects, Fault Models and
Test Patterns, Kluwer Academic Publishers, Norwell, USA, 2004.

[5] ADAMS R.D., High Performance Memory Testing, Kluwer Academic Publishers, Nor-
well, USA, 2003.

[6] FRANCKLIN M., SALUJA K., Built-in Self Testing of RAMs, IEEE Computer, 23
(10), pp. 45–56, 1990.

[7] HAMDIOUI S., VAN DE GOOR A.J., RODGERS M., March SS: A Test for All Static
Simple RAM Faults, Proc. of 10th IEEE Int. Workshop on Memory Technology, Design
and Testing, pp. 95–100, Isle of Bendor, France, July, 2002.

bibitemnair NAIR R., THATTE S., ABRAHAM J., Efficient Algorithms for Test-
ing Semiconductor Random-Access Memories, IEEE Trans. on Computers, C-27 (6),
pp. 572–576, 1978.

[8] PAPACHRISTOU C., SAHGAL N., An Improved Method for Detecting Functional
Faults in Semiconductor Random-Access Memories, IEEE Trans. on Computers, C-34
(2), pp. 110–116, 1985.

[9] COCKBURN B.F., Deterministic Testing for Detecting Single V-Coupling Faults in
RAMs, Journal of Electronic Testing, Theory and Applications, 5 (1), pp. 91–113,
1994.

[10] CAŞCAVAL P., BENNETT S., Efficient March Test for 3-Coupling Faults in Random-
Access Memories, Microprocessors and Microsystems, 24 (10), pp. 501–509, 2001.

[11] CAŞCAVAL P., BENNETT S., HUŢANU C., Efficient March Tests for a Reduced
3-Coupling and 4-Coupling Faults in Random-Access Memories, Journal of Electronic
Testing, Theory and Applications, 20 (3), pp. 227–243, 2004.

454 P. Caşcaval et al.

[12] VAN DE GOOR A.J., Using March Tests to Test SRAMs, IEEE Design and Test of
Computers, 10 (1) pp. 8–14, 1993.

[13] CAŞCAVAL P., SILION R., STAN A., MarchS2C: A Test for All Static 2-Cell RAM
Coupling Faults, Bul. Inst. Polit. Iaşi, Tom. LII (LVI), Fasc. 1–4, Autom. and Comput.,
pp. 79–86, 2006.

[14] VAN DE GOOR A.J. et al., March LA: A Test for Linked Memory Faults, Proc. of
European Design and Test Conference, pp. 627–634, Paris, France, 1999.

[15] SUK D., REDDY S., Test Procedures for a Class of Pattern-Sensitive Faults in Semicon-
ductor Random-Access Memories, IEEE Trans. on Computers, C-29 (6), pp. 419–429,
1980.

[16] YARMOLIK V.N., VAN DE GOOR A.J., GAYDADJIEV G.N., MIKITJUK V.G.,
March LR: A test for realistic linked faults, Proc. 14th IEEE VLSI Test Symp. (VTS’96),
pp. 272–280, 1996.

[17] VAN DE GOOR A.J., GAYDADJIEV G.N., March U: A Test for All Unlinked Memory
Faults, IEE Proc. of Circuits Devices and Systems, 144 (3), pp. 155–160, 1997.

JOURNAL OF ELECTRONIC TESTING: Theory and Applications 20, 227–243, 2004

c© 2004 Kluwer Academic Publishers. Manufactured in The United States.

Efficient March Tests for a Reduced 3-Coupling and 4-Coupling

Faults in Random-Access Memories

PETRU CAŞCAVAL

Department of Computer Science,“Gh. Asachi” Technical University of Iaşi, Bd. D. Mangeron,

nr.53A, 6600, Iaşi, Romania

cascaval@cs.tuiasi.ro

STUART BENNETT

Department of Automatic Control and Systems Engineering, The University of Sheffield,

Mappin Street, Sheffield S13JD, UK

S.Bennett@sheffield.ac.uk

CORNELIU HUŢANU

Department of Automatic Control, “Gh. Asachi” Technical University of Iaşi, Bd. D. Mangeron,

nr.53A, 6600, Iaşi, Romania

chutanu@ac.tuiasi.ro

Received July 17, 2000; Revised August 19, 2002

Editor: B.F. Cockburn

Abstract. This paper presents two new march test algorithms, MT-R3CF and MT-R4CF, for detecting reduced

3-coupling and 4-coupling faults, respectively, in n × 1 random-access memories (RAMs). To reduce the length of

the tests, only the coupling faults between physically adjacent memory cells have been considered. The tests assume

that the storage cells are arranged in a rectangular grid and that the mapping from logical addresses to physical

cell locations is known completely. The march tests need 30n and 41n operations, respectively. In this paper any

memory fault is modelled by a set of primitive memory faults called simple faults. We prove, using an Eulerian

graph model, the ability of the test algorithms to detect all simple coupling faults. This paper also includes a study

regarding the ability of the test MT-R3CF to detect interacting linked 3-coupling faults. This work improves the

results presented in [1] where a similar model of reduced 3-coupling faults has been considered and a march test

with 38n operations has been proposed. To compare these new march tests with other published tests, simulation

results are presented in this paper.

Keywords: memory testing, functional faults, coupling faults, march test, fault simulation

1. Introduction

A memory module can be said to be running properly

if it is possible to read and correctly change the state of

any memory cell independently of the other cell states.

But it is impossible to check any cell for all the states

of the other cells because the test length would grow by

2n , where n is the memory size [5]. Therefore any prac-

tical memory test must focus on a fault model which

covers only a limited set of physical faults, for which

228 Caşcaval, Bennett and Huţanu

the occurrence probability cannot be ignored. Test pro-

cedures are constrained by the following conflicting

requirements:

(a) to detect a wide variety of memory faults;

(b) to reduce the number of memory operations in

order to allow large memories to be tested in an

acceptable period of time.

Rapid developments in semiconductor technology

have resulted in continuing growth of larger and denser

random-access memories on a single chip (now 256 Mb

and more). With increasing densities, certain types of

faults, such as coupling faults or pattern sensitive faults,

which are harder to detect are becoming more impor-

tant [10]. In addition, more time is required to test mem-

ories because of their increasing size thus it is necessary

to identify more efficient tests, with the ability to detect

complex faults, tests that require test time on the order

of n.

We report new efficient march test algorithms for

difficult-to-detect faults such as 3-coupling and 4-

coupling faults. For the 3-coupling fault model, a mem-

ory test that requires n +32n log2 n operations is given

by Nair et al. [5] (Algorithm B, NTA(B) in this ar-

ticle). In [6] a new test of length n + 24n log2 n is

proposed by Papachristou and Sahgal (PS(B) in this

article). Two more efficient test algorithms, S3CTEST

and S3CTEST2, are proposed by Cockburn in [2].

For 4-coupling faults Cockburn also proposed the test

S4CTEST. Taking into account the fault model con-

sidered in this paper and based on the specification

given by Cockburn in [3], we consider the Cockburn

tests with the sequence of operations (ruwūrūwu)

instead of the reduced sequence (ruwūwu). Conse-

quently, S3CTEST, S3CTEST2, and S4CTEST are tests

of approximate length 5n log2 n + 22.5n, 5n log2 n +

5n [log2(1 + log2 n)] + 11n, and 10.75n(log2 n)1.585,

respectively. For the memory chips currently available,

these tests take a long time to perform. For example,

to test a 64 Mb memory chip assuming a cycle time

of 60 ns, PS(B) and S3CTEST take about 44 min 24 s

and 10 min 54 s, respectively. These memory tests are

long because the authors have assumed that the coupled

cells can be anywhere in the memory.

We restrict ourselves to coupling faults that affect

only physically adjacent memory cells. Under this hy-

pothesis and for the cases in which the mapping from

logical addresses to physical cell locations is known

completely, we have devised a march test with 30n op-

erations for 3-coupling faults and a march test with 41n

operations for 4-coupling faults. This is an improve-

ment on the results presented in [1] where a march test

with 38n operations is proposed.

The remainder of this paper is organised as follows.

Section 2 defines the fault model and Section 3 intro-

duces notations, definitions and preliminary consider-

ations. Section 4 presents a new march test MT-R3CF

for a reduced model of 3-coupling and analyses the

ability of the test to detect simple coupling faults and

interacting linked coupling faults. Section 5 presents

and analyses the test MT-R4CF for a reduced model of

4-coupling. Section 6 contains simulation results and

compares the new march tests with other published

tests. Finally, some conclusions are drawn regarding

this work.

2. Memory Fault Model

This paper treats the problem of coupling faults in

random-access memories. Because the address de-

coders, sense amplifiers and write drivers are easier

to test, we assume that these modules are fault-free and

we focus only on the functional faults in the memory

cell array where difficult-to-detect faults may exist.

Many different faults can occur in a memory cell

array. These can be classified as faults which involve

only a single cell (such as stuck-at, stuck-open, transi-

tion and data retention faults) and faults where a cell

or set of cells influences the behaviour of another cell

(such as coupling faults and pattern sensitive faults)

[10].

Coupling faults involve v cells (v ≥ 2). In a set

of coupled cells an active and/or a passive influence

on a victim cell may exist [10]. Accordingly, coupling

faults can be divided into transition and state coupling

faults.

(1) Transition coupling faults (TCFs). Consider a set

of v-coupled cells, v ≥ 2. The transition coupling fault

is used to represent the situation when write operations

addressed to one memory cell of the set, say cell j ,

cause the state of another cell in the set, say cell i , to

change from 0 to 1 or from 1 to 0, while the v − 2 re-

maining cells hold a specific pattern. Cell i is called the

coupled (victim) cell and cell j is called the coupling

(aggressor) cell. If v > 2 then the v−2 remaining cells

are called the enabling cells. We write down this fault

as j → i TCF.

For the case in which two cells are coupled (v = 2),

two types of TCFs are usually considered: inversion

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 229

coupling fault (CFin) and idempotent coupling fault

(CFid) as defined in [10].

(2) State coupling faults (SCFs). The state coupling

fault is used to represent the situation when a cell in a set

of v−coupled cells (v ≥ 2), say cell i , fails to undergo

a 0 → 1 or a 1 → 0 transition when the complement of

the contents of the memory cell is written into the cell,

while the remaining v−1 cells in the set (enabling cells)

hold a specific pattern. In such a case, we say that the

enabling cells have a passive influence on the coupled

(victim) cell and call this fault an i-state coupling fault

(i-SCF). Note that a SCF is activated by a transition

in the victim cell, whereas a TCF is activated by a

transition in other aggressor cell.

In this work we have limited ourselves to the model

with at most four coupled cells and we assume that

only physically adjacent cells can be 3-coupled or

4-coupled. For a set of 3-coupled cells, six patterns

P1, P2, P3, P4, P5 and P6 are accepted, as shown in

Fig. 1. For a set of 4-coupled cells our model is lim-

ited to the square pattern. We call these models of

3-coupling and 4-coupling faults, which comprise

only physically adjacent cells, reduced 3-coupling and

4-coupling, respectively.

Remark 1. Because in our model the 3-coupled cells

and 4-coupled cells are physically adjacent, the tran-

sition coupling faults and the state coupling faults can

also be considered as active neighbourhood pattern sen-

sitive faults (ANPSFs) and passive neighbourhood pat-

tern sensitive faults (PNPSFs), respectively [8]. But in

our model any cell in a set of v-coupled cells can be a

victim cell, not only the central base cell as is usually

Fig. 1. Patterns for three and four physically

adjacent cells.

considered in the NPSFs model (see for example

[8]).

In the memory, one or more sets of coupled cells

may exist. As in [5, 6] we assume that the pairs of sets

of coupled cells are disjoint.

Definition 1. A triggering transition is defined as one

that is initiated by the testing algorithm by writing into

a cell the complement of the previous logic value of the

cell. With respect to a given fault, the triggering transi-

tion which may activate the fault is called an activating

transition.

We assume that a memory fault can be activated only

by a triggering transition into a cell. In other words, we

do not consider in this work disturb coupling faults

which can be activated by either read or write opera-

tions (as is possible for dynamic coupling faults).

3. Notations, Definitions and Preliminaries

We use the following notations to describe operations

on RAMs:

• x denotes that a cell is in a logical state x ; x ∈

{0, 1}.

• r (r i)—the read operation on a cell (specifically to

cell i).

• wx (wi
x)—the operation of writing x into a cell (cell

i), x ∈{0,1}.

• wc(wi
c)—the operation of writing the complement of

the previous state of a cell (cell i).

• ↑ (↑ i)—the operation of writing 1 into a cell (cell i)

when the previous state of the cell was 0.

• ↓ (↓ i)—the operation of writing 0 into a cell (cell i)

when the previous state of the cell was 1.

Consider a set S of v-coupled cells. A state of set S

is given by the logical state of each cell in S. In order to

describe a failed write operation in S, we use a vector

F with 2v elements grouped in two parts, separated by

“:”. The first part shows the initial state of set S and the

triggering transition which activates the fault and the

second part shows the state of set S after the triggering

transition is carried out. Vector F is composed by the

symbols 0, 1, ↓ and ↑. Only one symbol in vector F can

be ↑ or ↓. For example, for a set of cells S = {i, j, k},

230 Caşcaval, Bennett and Huţanu

Table 1. Simple 2-coupling faults in a set of cells S = {i, j}.

Nr. Vector F Fault type Nr. Vector F Fault type

1 〈↑, 0 : D, 0〉 i-SCFs 9 〈0, ↑: 0, D〉 j-SCFs

2 〈↑, 1 : D, 1〉 10 〈1, ↑: 1, D〉

3 〈↓, 0 : D̄, 0〉 11 〈0, ↓: 0, D̄〉

4 〈↓, 1 : D̄, 1〉 12 〈1, ↓: 1, D̄〉

5 〈↑, 0 : 1, D̄〉 i → j TCFs 13 〈0, ↑: D̄, 1〉 j → i TCFs

6 〈↑, 1 : 1, D〉 14 〈1, ↑: D, 1〉

7 〈↓, 0 : 0, D̄〉 15 〈0, ↓: D̄, 1〉

8 〈↓, 1 : 0, D〉 16 〈1, ↓: D, 1〉

• vector F1 = 〈0, ↑, 0 : 0, 0, 0〉 describes a SCF in

which the triggering transition ↑ j fails to write 1

into cell j while cells i and k are in the state 0, and

• vector F2 = 〈↑, 0, 0 : 1, 0, 1〉 describes a TCF in

which the triggering transition ↑ i changes the state

of cell k from 0 to 1 if cell j is in the state 0.

To emphasis the state of cell affected by the fault (the

victim cell) we use a logic variable D (the well known

Roth’s notation [7]) as follows:

D =

{

1 the cell is fault-free

0 the coupling fault has been activated

Thus, the faults previously defined become: F1 =

〈0, ↑, 0 : 0, D, 0〉 and F2 = 〈↑, 0, 0 : 1, 0, D̄〉, where

D̄ = NOT D.

Definition 2. A memory fault that affects a cell in

a set of cells S is called a simple fault if and only

if it is activated by a single cell transition in set S.

Only one vector F is necessary to describe a sim-

ple fault. If at least two vectors are necessary for a

Table 2. Simple 3-coupling faults which affect cell i in set of cells S = {i, j, k}.

Nr. Vector F (i-SCFs) Nr. Vector F (j → i TCFs) Nr. Vector F (k → i TCFs)

1 〈↑, 0, 0 : D, 0, 0〉 9 〈0, ↑, 0 : D̄, 1, 0〉 17 〈0, 0, ↑: D̄, 0, 1〉

2 〈↑, 0, 1 : D, 0, 1〉 10 〈0, ↑, 1 : D̄, 1, 1〉 18 〈0, 1, ↑: D̄, 1, 1〉

3 〈↑, 1, 0 : D, 1, 0〉 11 〈1, ↑, 0 : D, 1, 0〉 19 〈1, 0, ↑: D, 0, 1〉

4 〈↑, 1, 1 : D, 1, 1〉 12 〈1, ↑, 1 : D, 1, 1〉 20 〈1, 1, ↑: D, 1, 1〉

5 〈↓, 0, 0 : D̄, 0, 0〉 13 〈0, ↓, 0 : D̄, 0, 0〉 21 〈0, 0, ↓: D̄, 0, 0〉

6 〈↓, 0, 1 : D̄, 0, 1〉 14 〈0, ↓, 1 : D̄, 0, 1〉 22 〈0, 1, ↓: D̄, 1, 0〉

7 〈↓, 1, 0 : D̄, 1, 0〉 15 〈1, ↓, 0 : D, 0, 0〉 23 〈1, 0, ↓: D, 0, 0〉

8 〈↓, 1, 1 : D̄, 1, 1〉 16 〈1, ↓, 1 : D, 0, 1〉 24 〈1, 1, ↓: D, 1, 0〉

complete description, the fault is called a complex

fault. Any complex fault can be modelled as a set

of distinct simple faults simultaneously present in the

memory.

Table 1 presents all possible simple faults for a set

S = {i, j} of coupled cells and Table 2 presents all

simple 3-coupling faults which may affect cell i in a

set of cells S = {i, j, k}. As shown in Tables 1 and 2,

for each victim cell in a set S of v-coupled cells, v · 2v

simple faults must be considered.

Definition 3. An interacting linked fault denotes a

complex fault comprising two simple faults with con-

trary effects on the same victim cell. Thus, an interact-

ing linked fault is described by two vectors F1 and F2

which contain in the same cell position the symbols D

and D̄, respectively, or vice-versa.

Examples of complex fault modelling are:

• Take 2-coupled cells with cell i the coupling cell and

cell j the coupled cell. The transition ↑ i changes

the state of cell j from 0 to 1 and the transition ↓ i

changes the state of cell j from 1 to 0. This interacting

linked fault can be modelled by two vectors,

F1 = 〈↑, 0 : 1, D̄〉 and F2 = 〈↓, 1 : 0, D〉.

• Consider a cell j that is a victim cell of two aggressor

cells i and k. When cells i , j and k are in the state 0,

the transition ↑ i or ↑ k changes the state of cell j

from 0 to 1. This non-interacting linked fault can be

modelled by two vectors,

F1 = 〈↑, 0, 0 : 1, D̄, 0〉 and

F2 = 〈0, 0, ↑: 0, D̄, 1〉.

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 231

To test and find a fault in a memory we need to be

able to:

• activate (to sensitise) the fault by a proper triggering

transition, and,

• observe the fault by reading the changed value of the

cell affected by the fault.

Proposition 1. Assume that in a set of cells at most

one simple fault may exist. The next three conditions are

necessary and sufficient for a test to detect any simple

fault that affects a cell in a set S of coupled cells:

• Condition 1. The test must force all the possible cell

transitions in the set of coupled cells in order to ac-

tivate any fault.

• Condition 2. After a triggering transition into a cell

in set S, the test must read the cell to check if the

state has changed before another triggering transi-

tion into the cell is allowed to occur. This condition is

required to detect any simple SCF activated in set S.

• Condition 3. For each possible coupled cell c in S,

after one or more triggering transition in other cells

in the set, the test must read cell c, prior to a trigger-

ing transition into cell c, to check if the state has been

changed by a triggering transition in other possible

coupling cell. This condition is required to detect any

simple TCF activated in set S.

Proposition 2. A memory test must force at least v ·2v

cell transitions in a set of v cells to be able to activate

any fault that may affect the set of cells.

Proof: Consider the state transition diagram describ-

ing the triggering transitions in a set of v cells without

faults (for v = 2, see for example the graph in Fig. 3).

The memory test must force all the transitions in this

graph. Because the number of nodes in this graph of

states is 2v and from each node v arcs go to other adja-

cent nodes, the memory test must force v · 2v different

transitions to cover the graph of states.

Remark 2. Generally, the complex non-interacting

linked faults are easier to detect than the simple faults

because there are more situations in which a complex

fault is activated. Thus, if a test procedure detects all

the simple faults, it also detects all the complex non-

interacting linked faults. In other words, the set of com-

plex non-interacting linked faults dominates the set of

simple faults. However, for the interacting linked faults

the combined effects of some simple faults may cancel

each other out before the affected cell is read again. In

this way an interacting linked fault can escape even if

the test procedure detects all the simple faults.

Proposition 3. A memory test is able to detect an

interacting linked fault comprising two simple faults if,

between two consecutive read operations of the coupled

cell, one simple fault is activated and another one is

not.

The march tests are the most popular and widely

accepted deterministic test algorithms because of their

low temporal complexity, regular structures and their

ability to detect a wide variety of memory faults.

Definition 4. A march element (M) consists of a se-

quence of operations applied to each cell in the memory

before proceeding to the next cell. The whole memory

is checked homogeneously in either one of two orders:

ascending address order (⇑) or descending address or-

der (⇓). Symbol
 denotes either ⇑ or ⇓ address order

[11].

Definition 5. A march test consists of a sequence of

m march elements, 〈M (0); M (1); . . . ; M (m−1)〉.

4. March Test for Reduced 3-Coupling

In this section we propose the following new march test

MT-R3CF for the reduced model of 3-coupling faults.

MT-R3CF=〈
 (w0)(0); ⇑ (rw1)(1); ⇑ (rw0)(2);

⇓ (rw1)(3); ⇓ (rw0)(4); I
(5)
1 ;

⇑ (rwcrwc)(6); I
(7)
2 ; ⇑ (rwcrwc)(8);

I
(9)
3 ; ⇑ (rwcrwc)(10); I

(11)
4 ;

⇑ (rwcrwc)(12);
 (r)(13)〉 (1)

where I1, I2, I3, and I4 are sequences which initialise

the memory as follows: I1 initialises the odd columns

with 0 and the even columns with 1, and I3 vice versa

(column-stripe data background); I2 and I4 initialise

the memory with a checkerboard data background and

its complement (Fig. 2).

This march test contains fourteen sequences as iden-

tified with a superscript (x) where x ∈ {0, . . . , 13}.

The test sequences (5)–(12) form an alternating se-

ries of background changes and march elements (as

Cockburn proposed in [2]). Note that when changing

from one background to the next, only the cells that

232 Caşcaval, Bennett and Huţanu

Fig. 2. Data background used by MT-R3CF and the possible initial states for all six distinct patterns.

must change states are written. Also, each write opera-

tion is preceded by a read operation. We can observe in

Fig. 2 that any background change affects only a half

of the cells. Each test sequence I1, I2, I3, or I4 per-

forms n
2

read operations and n
2

writes operations. Con-

sequently, MT-R3CF has a length of 30n. Regarding the

march test MT-R3CF, symbol ⇑ denotes an increasing

address order, from address 0 to n − 1, as long as sym-

bol ⇓ denotes a reversed address order, from address

n−1 to 0. Other permutations of the set of memory

cell addresses decrease the effectiveness of the march

test.

Proposition 4. March elements (1)–(4) in MT-R3CF

are able to activate all simple 2-coupling faults.

Proof: Take an arbitrary set of two cells S = {i, j}.

Fig. 3 shows the triggering transition diagram for this

set of cells. We represent a state of the set by the con-

tents of cells i and j . As shown in Fig. 3 march elements

(1)–(4) force all the possible transitions in the set of

cells (Condition 1 previously defined in Proposition 1

is satisfied). Note that these four march elements

perform a minimal number of write operations be-

cause each arc in the graph has been traversed only

once.

Fig. 3. The Eulerian graph of states for a set of cells

S = {i, j}.

Remark 3. Except for the final read sequence
 (r),

the first part of MT-R3CF, 〈
 (w0)(0); ⇑ (rw1)(1); ⇑

(rw0)(2); ⇓ (rw1)(3); ⇓ (rw0)(4)〉, is a test sequence

identical with the test March C- [11], that is an op-

timal march test for simple 2-coupling faults. Without

a final read sequence, this test sequence does not detect

all simple 2-coupling faults, but the next test sequences

(5) and (6) detect all simple 2-coupling faults activated

but undetected by march elements (1)–(4).

In the following section we analyse the ability of

this new march test to detect reduced 3-coupling faults.

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 233

First, we show that MT-R3CF detects all simple faults

and then, based on this result, we analyse the ability

of the test to detect the interacting linked coupling

faults.

I. Simple 3-Coupling Faults

Theorem 1. The march test MT-R3CF detects all sim-

ple reduced 3-coupling faults.

Proof: Consider an arbitrary triple set of cells S =

{i, j, k} that corresponds with one of the patterns P1,

P2, P3, P4, P5 and P6 (see Fig. 1). As shown in Fig. 1,

we refer to the cells in S by i , j and k taking into account

the order in which these cells are checked during the

memory testing. Cells i , j and k are checked in this

order when the memory is tested in ascending order

(⇑), and in reverse order, when the memory is tested

in descending order (⇓). We must show that MT-R3CF

activates and observes any simple fault that affects the

set of cells S.

I.1 MT-R3CF activates any fault which affects any

triple set of cells S

According to Condition 1 previously defined in

Proposition 1, we must prove that MT-R3CF covers

the Eulerian graph of states for a set of cells S, in all

the six cases.

First, note that the sequence
 (w0) loads into any

triple set of cells the initial state 〈0, 0, 0〉. Applying the

march elements (1)–(4) MT-R3CF forces the transitions

marked with solid lines in the Eulerian graph presented

in Fig. 4, in every set of cells in the memory under test

regardless of the pattern.

The test sequences I1, I2, I3 and I4 ensure in a set of

cells S, depending on the pattern (see Figs. 1 and 2),

the initial states presented in Table 3. As highlighted

Table 3. The initial states for a set of cells S = {i, j, k}.

I1 and I3 I2 and I4

P1 〈1, 0, 1〉, 〈0, 1, 0〉 〈0, 1, 1〉, 〈1, 0, 0〉

P2 〈1, 1, 0〉, 〈0, 0, 1〉 〈1, 0, 1〉, 〈0, 1, 0〉

P3 〈1, 0, 1〉, 〈0, 1, 0〉 〈1, 1, 0〉, 〈0, 0, 1〉

P4 〈0, 1, 1〉, 〈1, 0, 0〉 〈1, 0, 1〉, 〈0, 1, 0〉

P5 〈1, 0, 1〉, 〈0, 1, 0〉 〈0, 1, 0〉, 〈1, 0, 1〉

P6 〈0, 0, 0〉, 〈1, 1, 1〉 〈1, 0, 1〉, 〈0, 1, 0〉

Fig. 4. The Eulerian graph of states for a set of cells

S = {i, j, k} and the transitions carried out by the march

elements (1)–(4).

Fig. 5. The transitions carried out in a set of cells S =

{i, j, k} by ⇑ (rwcrwc) for the initial states 〈0, 1, 0〉 and

〈1, 0, 1〉.

in Table 3, the test sequences ensure the initial states

〈0, 1, 0〉 and 〈1, 0, 1〉 for all the six patterns.

In the Eulerian graph two adjacent nodes (states)

have only one bit changed and two non-adjacent nodes

have at least two bits changed. Applying ⇑ (rwcrwc)

three adjacent nodes are visited and, finally, the set

of cells returns to the initial state (the state that the

sequence started with). The transitions forced by ⇑

(rwcrwc) in a set of cells S initialised with 〈0,1,0〉

and 〈1,0,1〉, respectively, are highlighted (marked with

solid line) in Fig. 5. The transitions marked with

solid lines in Figs. 4 and 5 show that the Eulerian

graph of states is completely covered in all the six

cases.

234 Caşcaval, Bennett and Huţanu

Table 4. The operations carried out in a set of cells S = {i, j, k} by the march test MT-R3CF.

Operations Comments

. . . r i
w

i
1 . . . r j

w
j
1 . . . r k

w
k
1 . . . r i

w
i
0 . . . r j

w
j
0 . . . r k

w
k
0 . . . March elements (1) and (2)

. . . r k
w

k
1 . . . r j

w
j
1 . . . r i

w
i
1 . . . r k

w
k
0 . . . r j

w
j
0 . . . r i

w
i
0 . . . March elements (3) and (4)

. . . [r i
w

i
c] . . . [r j

w
j
c] . . . [r k

w
k
c] . . . Change to 2nd background (I1)

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . March element (6)

. . . [r i
w

i
c] . . . [r j

w
j
c] . . . [r k

w
k
c] . . . Change to 3rd background (I2)

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . March element (8)

. . . [r i
w

i
c] . . . [r j

w
j
c] . . . [r k

w
k
c] . . . Change to 4th background (I3)

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . March element (10)

. . . [r i
w

i
c] . . . [r j

w
j
c] . . . [r k

w
k
c] . . . Change to 5th background (I4)

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . March element (12)

. . . r i
. . . r j

. . . r k
. . . Final read sequence

I.2 MT-R3CF observes any simple fault activated in

set S

Table 4 presents the operations carried out in a set

of cells S ={i , j , k} during the memory testing, ex-

cept on the writes for the first initialisation. The oper-

ations enclosed inside brackets sometimes are made,

or sometimes are not made, depending on the set of

cells. We can easily check in Table 4 that Conditions 2

and 3, previously defined in Proposition 1, are also

satisfied.

II. Interacting Linked 3-Coupling Faults

In this section we show that MT-R3CF is able to de-

tect nearly all of the interacting linked faults of re-

duced 3-coupling. Some interacting linked faults can

not be detected even if MT-R3CF detects all simple

faults.

We proved in the previous section that MT-R3CF

is able to activate any reduced 3-coupling fault. Now,

we must check the ability of the test to observe, in

time, the activated faults. This analysis takes into con-

sideration only the interacting linked faults modelled

by two simple 3-coupling faults. For the interacting

linked faults modelled by one simple 2-coupling fault

and one simple 3-coupling fault the approach is similar

and simpler.

Consider a victim cell k. For other two cases when

cell i or cell j is a victim cell the analysis is similar.

Generally, a fault which affects the initialisation of

a cell is detected by the next march element applied

to this cell because a march element starts with a read

operation. A fault undetected at that moment will be

definitely reactivated later. For example, take a test se-

quence that changes the background and must bring

the set S = {i, j, k} into the state (x, y, z). An arbi-

trary fault prevents the change of state in cell k from z̄

to z. Because cell k is the last cell written in set S only

a k-SCF may cause the initialisation of cell k. Fig. 6

shows that even if this k-SCF is not detected by the

first read operation of cell k, because of another i → k

or j → k TCF, it is activated again by the operations

w
k
cr k

w
k
c .

Based on these considerations we assume that all

the memory initialisations are successfully performed

in order to simplify the analysis of the interacting linked

faults.

Because the number of possible interacting linked

faults in a set of 3-coupled cells is very large, we must

limit the analysis to faults liable to remain undetected

by MT-R3CF. Thus, the analysis requires first

• to identify and model the interacting linked faults

in a set of 3-coupled cells, that can possibly remain

undetected by MT-R3CF, and then,

• to check if MT-R3CF is able to detect these interact-

ing linked faults.

II.1. Identification and modelling of the interacting

linked faults which affect cell k

We concentrate on the situations in which two or

more write operations are carried out in a set of cells

S = {i, j, k} between two consecutive read operations

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 235

Fig. 6. The fault k-SCF which affects the initialisation is reactivated by the next march element.

of cell k. As shown in Table 4, five types of interacting

linked faults which affect cell k must be considered.

These interacting linked faults are modelled by two

simple faults, as follows:

(a) one simple k-SCF and one simple i → k TCF;

(b) one simple k-SCF and one simple j → k TCF;

(c) one simple i → k TCF and one simple j → k

TCF;

(d) two simple i → k TCFs;

(e) two simple j → k TCFs.

Case (a) We must determine all pairs of simple faults

k-SCF and i → k TCF with contrary effects on cell k.

Tables 5 and 6 present all simple k-SCFs and i → k

TCFs, respectively. Consequently, we must determine

all combinations between one simple fault in Table 5

(F1) and other one in Table 6 (F2), in which F1 con-

tains symbol D and F2 symbol D̄, or vice-versa. For

Table 5. Simple k-state coupling faults (k-SCFs).

Initial states and patterns for which

w
k
c r k activates and observes the fault

Vector F Initial state Pattern

〈0, 0, ↑: 0, 0, D〉 〈0, 0, 0〉 P6

〈0, 0, ↓: 0, 0, D̄〉 〈0, 0, 1〉 P2, P3

〈0, 1,↑ :0, 1, D〉 〈0, 1, 0〉 P1, P2, P3, P4, P5, P6

〈0, 1, ↓: 0, 1, D̄〉 〈0, 1, 1〉 P1, P4

〈1, 0, ↑: 1, 0, D〉 〈1, 0, 0〉 P1, P4

〈1, 0,↓: 1, 0, D̄〉 〈1, 0, 1〉 P1, P2, P3, P4, P5, P6

〈1, 1, ↑: 1, 1, D〉 〈1, 1, 0〉 P2, P3

〈1, 1, ↓: 1, 1, D̄〉 〈1, 1, 1〉 P6

example,

F1 = 〈0, 0, ↑: 0, 0, D〉 and

F2 = 〈↑, 0, 0 : 1, 0, D̄〉, 〈↓, 0, 0 : 0, 0, D̄〉,

〈↑, 1, 0 : 1, 1, D̄〉, or 〈↓, 1, 0 : 0, 1, D̄〉.

Regarding the k-SCFs we note that some faults

are detected by the test sequence w
k
cr k when the cell

k is checked immediately after the triggering transi-

tion. Table 5 highlights two simple k-SCFs, 〈0, 1, ↑:

0, 1, D〉 and 〈1, 0, ↓: 1, 0, D̄〉, that are detected by the

operations w
k
cr k for all the six patterns P1–P6 . These

two simple k-SCFs can be ignored in this analysis. All

the interacting linked faults we must consider in this

case are presented in Table 8, rows 1–24.

Case (b) This is similar to (Case a). We must con-

sider the combinations between one simple fault in

Table 5 (F1) and other one in Table 7 (F2), in which

F1 contains symbol D and F2 symbol D̄, or vice-versa.

These interacting linked faults are presented in Table 8,

rows 25–48.

Table 6. Simple i → k TCFs.

Nr. Vector F

1 〈↑, 0, 0 : 1, 0, D̄〉

2 〈↓, 0, 0 : 0, 0, D̄〉

3 〈↑, 0, 1 : 1, 0, D〉

4 〈↓, 0, 1 : 0, 0, D〉

5 〈↑, 1, 0 : 1, 1, D̄〉

6 〈↓, 1, 0 : 0, 1, D̄〉

7 〈↑, 1, 1 : 1, 1, D〉

8 〈↓, 1, 1 : 0, 1, D〉

236 Caşcaval, Bennett and Huţanu

Table 7. Simple j → k TCFs.

Nr. Vector F

1 〈0, ↑, 0 : 0, 1, D̄〉

2 〈0, ↓, 0 : 0, 0, D̄〉

3 〈0, ↑, 1 : 0, 1, D〉

4 〈0, ↓, 1 : 0, 0, D〉

5 〈1, ↑, 0 : 1, 1, D̄〉

6 〈1, ↓, 0 : 1, 0, D̄〉

7 〈1, ↑, 1 : 1, 1, D〉

8 〈1, ↓, 1 : 1, 0, D〉

Case (c) We must have in view all combinations be-

tween one simple fault in Table 6 (F1) and another one

in Table 7 (F2) in which F1 contains symbol D and

F2 symbol D̄, or vice-versa. These interacting linked

faults are presented in Table 8, rows 49–80.

Case (d) We must consider all combinations of sim-

ple i → k TCFs with contrary effects on cell k which

can be activated by the test sequence r i
w

i
cr

i
w

i
c. Thus,

two vectors F1 and F2 in Table 6 must satisfy three

conditions:

– F1 contains symbol ↑ and F2 symbol ↓, or vice-

versa;

– F1 contains symbol D and F2 symbol D̄, or vice-

versa;

– F1 and F2 contain the same value regarding cell j .

The interacting linked faults we must consider for this

case are given in Table 8, rows 81–84.

Case (e) This is similar to (Case d). We must consider

all pairs of vectors F1 and F2 in Table 7 that satisfy the

conditions previously defined. These interacting linked

faults are given in Table 8, rows 85–88.

II.2. The analysis of the interacting linked faults pre-

viously defined

Table 8 presents the whole set of interacting linked

faults which affect cell k that could possibly remain

undetected by MT-R3CF. To check if the march test

MT-R3CF is able to detect an interacting linked fault,

according to Proposition 3 we identified first an initial

state which allows, in the next test sequence, one sim-

ple fault to be activated and the other one not to be.

Table 8 gives the test sequence which detects an in-

teracting linked fault, for each pattern of coupled cells

(in the hypothesis in which the fault is not activated by

 (w0)). For example, independent of the set of cou-

pled cells, the first interacting linked fault is detected

by the test sequence ⇑(rw1), when F2 is activated and

F1 is not. The second interacting linked fault is detected

by sequence (6) if the set of coupled cells corresponds

with pattern P1, P2 or P3, by sequence (8) for pattern

P4, and by sequence (10) for pattern P5 or P6.

As shown in Table 8, MT-R3CF does not detect the

following three interacting linked faults which affect

cell k:

• Fault 60, modelled by F1 = 〈↑, 0, 1 : 1, 0, D〉 and

F2 = 〈1, ↓, 0 : 1, 0, D̄〉, for P5 and P6,

• Fault 65, modelled by F1 = 〈↑, 1, 0 : 1, 1, D̄〉 and

F2 = 〈0, ↑, 1 : 0, 1, D〉, for P5,

• Fault 88, modelled by F1 = 〈1, ↓, 0 : 1, 0, D̄〉 and

F2 = 〈1, ↑, 1 : 1, 1, D〉, for P2.

Finally we present other two interacting linked faults

undetected by MT-R3CF, when cell i is a victim cell:

• Fault modelled by F1 = 〈0, ↓, 0 : D̄, 0, 0〉 and F2 =

〈1, 1, ↓: D, 1, 0〉, for P1, P4 and P6,

• Fault modelled by F1 = 〈1, ↑, 1 : D, 1, 1〉 and F2 =

〈0, 0, ↑: D̄, 0, 1〉, for P1, P4 and P6.

5. March Test for Reduced 4-Coupling Faults

In this section we propose the following new march

test of length 41n for the reduced model of 4-coupling

faults considered in this paper.

MT-R4CF

= 〈I1; ⇑ (rwcrwc); I2; ⇑ (rwcrwc);

I3; ⇑ (rwcrwc); I4; ⇑ (rwcrwc); I5; ⇑ (rwcrwc);

I6; ⇑ (rwcrwc); I7; ⇑ (rwcrwc); I8; ⇑ (rwcrwc);

 (R)〉 (2)

where I1, I2, I3, I4, I5, I6, I7 and I8 are test sequences

which initialise the memory as follows: I1 and I3 ini-

tialise all the cells with 0 and 1, respectively (solid data

background); I2 initialises the odd columns with 0 and

the even columns with 1, and I4 vice versa (column-

stripe data background); I5 initialises the odd rows with

0 and the even rows with 1, and I7 vice versa (row-stripe

data background); I6 and I8 initialise the memory with

a checkerboard data background and its complement

(Fig. 7).

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 237

Table 8. The interacting linked coupling faults which affect cell k and the test sequences which detect them.

Interacting linked faults

Nr. Case F1 F2

Test sequence that

detects the fault for

P1, P2, P3, P4, P5, P6

1 a 〈0, 0, ↑: 0, 0, D〉 〈↑, 0, 0 : 1, 0, D̄〉 1

2 ” 〈↑, 1, 0 : 1, 1, D̄〉 6, 6, 6, 8, 10, 10

3 ” 〈↓, 0, 0 : 0, 0, D̄〉 4

4 ” 〈↓, 1, 0 : 0, 1, D̄〉 4

5 〈0, 0, ↓: 0, 0, D̄〉 〈↑, 0, 1 : 1, 0, D〉 3

6 ” 〈↑, 1, 1 : 1, 1, D〉 3

7 ” 〈↓, 0, 1 : 0, 0, D〉 3

8 ” 〈↓, 1, 1 : 0, 1, D〉 2

9 〈0, 1, ↓: 0, 1, D̄〉 〈↑, 0, 1 : 1, 0, D〉 10, 9, 7, 9, 8, 6

10 ” 〈↑, 1, 1 : 1, 1, D〉 4

11 ” 〈↓, 0, 1 : 0, 0, D〉 10, 9, 7, 9, 8, 6

12 ” 〈↓, 1, 1 : 0, 1, D〉 2

13 〈1, 0, ↑: 1, 0, D〉 〈↑, 0, 0 : 1, 0, D̄〉 1

14 ” 〈↑, 1, 0 : 1, 1, D̄〉 6, 6, 6, 6, 9, 6

15 ” 〈↓, 0, 0 : 0, 0, D̄〉 6, 6, 6, 6, 5, 5

16 ” 〈↓, 1, 0 : 0, 1, D̄〉 6, 6, 6, 6, 9, 6

17 〈1, 1, ↑: 1, 1, D〉 〈↑, 0, 0 : 1, 0, D̄〉 1

18 ” 〈↑, 1, 0 : 1, 1, D̄〉 2

19 ” 〈↓, 0, 0 : 0, 0, D̄〉 2

20 ” 〈↓, 1, 0 : 0, 1, D̄〉 6, 6, 6, 8, 8, 10

21 〈1, 1, ↓: 1, 1, D̄〉 〈↑, 0, 1 : 1, 0, D〉 6, 8, 6, 12, 6, 6

22 ” 〈↑, 1, 1 : 1, 1, D〉 4

23 ” 〈↓, 0, 1 : 0, 0, D〉 10, 8, 8, 12, 6, 6

24 ” 〈↓, 1, 1 : 0, 1, D〉 2

25 b 〈0, 0, ↑: 0, 0, D〉 〈0, ↑, 0 : 0, 1, D̄〉 6, 8, 6, 8, 10, 10

26 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

27 ” 〈0, ↓, 0 : 0, 0, D̄〉 4

28 ” 〈1, ↓, 0 : 1, 0, D̄〉 4

29 〈0, 0, ↓: 0, 0, D̄〉 〈0, ↑, 1 : 0, 1, D〉 3

30 ” 〈1 ↑, 1 : 1, 1, D〉 3

31 ” 〈0, ↓, 1 : 0, 0, D〉 2

32 ” 〈1, ↓, 1 : 1, 0, D〉 3

33 〈0, 1, ↓: 0, 1, D̄〉 〈0, ↑, 1 : 0, 1, D〉 4

34 ” 〈1 ↑, 1 : 1, 1, D〉 10, 9, 7, 9, 6, 6

35 ” 〈0, ↓, 1 : 0, 0, D〉 2

36 ” 〈1, ↓, 1 : 1, 0, D〉 10, 9, 7, 9, 6, 6

37 〈1, 0, ↑: 1, 0, D〉 〈0, ↑, 0 : 0, 1, D̄〉 6, 8, 6, 6, 9, 6

38 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

39 ” 〈0, ↓, 0 : 0, 0, D̄〉 6, 8, 6, 6, 9, 6

40 ” 〈1, ↓, 0 : 1, 0, D̄〉 6, 6, 6, 6, 5, 5

41 〈1, 1, ↑: 1, 1, D〉 〈0, ↑, 0 : 0, 1, D̄〉 2

42 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

43 ” 〈0, ↓, 0 : 0, 0, D̄〉 6, 6, 6, 8, 6, 10

44 ” 〈1, ↓, 0 : 1, 0, D̄〉 2

(Continued on next page.)

238 Caşcaval, Bennett and Huţanu

Table 8. (Continued).

Interacting linked faults

Nr. Case F1 F2

Test sequence that

detects the fault for

P1, P2, P3, P4, P5, P6

45 〈1, 1, ↓: 1, 1, D̄〉 〈0, ↑, 1 : 0, 1, D〉 4

46 ” 〈1 ↑, 1 : 1, 1, D〉 6, 8, 6, 12, 6, 5

47 ” 〈0, ↓, 1 : 0, 0, D〉 2

48 ” 〈1, ↓, 1 : 1, 0, D〉 10, 8, 10, 12, 6, 6

49 c 〈↑, 0, 0 : 1, 0, D̄〉 〈0, ↑, 1 : 0, 1, D〉 1

50 ” 〈0, ↓, 1 : 0, 0, D〉 1

51 ” 〈1, ↑, 1 : 1, 1, D〉 10, 12, 10, 12, 6, 5

52 ” 〈1, ↓, 1 : 1, 0, D〉 1

53 〈↓, 0, 0 : 0, 0, D̄〉 〈0, ↑, 1 : 0, 1, D〉 4

54 ” 〈0, ↓, 1 : 0, 0, D〉 2

55 ” 〈1, ↑, 1 : 1, 1, D〉 6, 12, 6, 8, 5, 5

56 ” 〈1, ↓, 1 : 1, 0, D〉 6, 12, 6, 8, 5, 5

57 〈↑, 0, 1 : 1, 0, D〉 〈0, ↑, 0 : 0, 1, D̄〉 6, 8, 6, 8, 8, 6

58 ” 〈0, ↓, 0 : 0, 0, D̄〉 6, 8, 6, 8, 8, 6

59 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

60 ” 〈1, ↓, 0 : 1, 0, D̄〉 6, 6, 6, 6, −, −

61 〈↓, 0, 1 : 0, 0, D〉 〈0, ↑, 0 : 0, 1, D̄〉 6, 8, 6, 8, 8, 6

62 ” 〈0, ↓, 0 : 0, 0, D̄〉 6, 8, 6, 8, 8, 6

63 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

64 ” 〈1, ↓, 0 : 1, 0, D̄〉 8, 6, 8, 6, 9, 9

65 〈↑, 1, 0 : 1, 1, D̄〉 〈0, ↑, 1 : 0, 1, D〉 8, 6, 8, 10, −, 9

66 ” 〈0, ↓, 1 : 0, 0, D〉 2

67 ” 〈1, ↑, 1 : 1, 1, D〉 6, 8, 6, 8, 6, 6

68 ” 〈1, ↓, 1 : 1, 0, D〉 6, 8, 6, 8, 6, 6

69 〈↓, 1, 0 : 0, 1, D̄〉 〈0, ↑, 1 : 0, 1, D〉 4

70 ” 〈0, ↓, 1 : 0, 0, D〉 2

71 ” 〈1, ↑, 1 : 1, 1, D〉 6, 8, 6, 8, 6, 6

72 ” 〈1, ↓, 1 : 1, 0, D〉 6, 8, 6, 8, 6, 6

73 〈↑, 1, 1 : 1, 1, D〉 〈0, ↑, 0 : 0, 1, D̄〉 4

74 ” 〈0, ↓, 0 : 0, 0, D̄〉 4

75 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

76 ” 〈1, ↓, 0 : 1, 0, D̄〉 4

77 〈↓, 1, 1 : 0, 1, D〉 〈0, ↑, 0 : 0, 1, D̄〉 2

78 ” 〈0, ↓, 0 : 0, 0, D̄〉 6, 8, 6, 8, 6, 10

79 ” 〈1, ↑, 0 : 1, 1, D̄〉 1

80 ” 〈1, ↓, 0 : 1, 0, D̄〉 2

81 d 〈↑, 0, 0 : 1, 0, D̄〉 〈↓, 0, 1 : 0, 0, D〉 1

82 〈↓, 0, 0 : 0, 0, D̄〉 〈↑, 0, 1 : 1, 0, D〉 6, 12, 6, 8, 8, 6

83 〈↑, 1, 0 : 1, 1, D̄〉 〈↓, 1, 1 : 0, 1, D〉 2

84 〈↓, 1, 0 : 0, 1, D̄〉 〈↑, 1, 1 : 0, 1, D〉 4

85 e 〈0, ↑, 0 : 0, 1, D̄〉 〈0, ↓, 1 : 0, 0, D〉 2

86 〈0, ↓, 0 : 0, 0, D̄〉 〈0, ↑, 1 : 0, 1, D〉 4

87 〈1, ↑, 0 : 1, 1, D̄〉 〈1, ↓, 1 : 1, 0, D〉 1

88 〈1, ↓, 0 : 1, 0, D̄〉 〈1, ↑, 1 : 1, 1, D〉 6, −, 6, 6, 6, 5

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 239

Fig. 7. Data background used by MT-R4CF and the initial states for a set of 4-coupled cells.

MT-R4CF contains an alternating series of back-

ground changes and march elements. Note that when

changing from one background to the next, only the

cells that must change states are written. Also, each

write operation is preceded by a read operation. We

can observe in Fig. 7 that any background change af-

fects only a half of cells. Each test sequence I1, I2,

I3, I4, I5, I6, I7 or I8 performs n
2

read operations and
n
2

write operations. Consequently, MT-R4CF contains

41n operations.

Regarding the march test MT-R4CF, note that for

the ⇑ address order any sequence may be used, as long

as the ⇓ address order uses the exact inverse address

sequence.

Theorem 2. MT-R4CF detects all simple reduced 4-

coupling faults.

Proof: Consider an arbitrary set of four cells S =

{i, j, k, l} which forms a square pattern.

1. MT-R4CF activates all 4-coupling faults in

set S

Table 9. The initial states for a set of cells S = {i, j, k, l}.

I1 I3 I2 and I4 I5 and I7 I6 and I8

〈0, 0, 0, 0〉 〈1, 1, 1, 1〉 〈1, 0, 1, 0〉, 〈0, 1, 0, 1〉 〈1, 1, 0, 0〉, 〈0, 0, 1, 1〉 〈0, 1, 1, 0〉, 〈1, 0, 0, 1〉

We show that MT-R4CF performs all 4 · 24 possible

transitions in the set of cells according to Proposition 2

in Section 3. The sequences I1, I2, I3, I4, I5, I6, I7

and I8 load into S (see Fig. 7) the eight different initial

states presented in Table 9. Every pair of initial states in

Table 9 has at least two bits changed. Consequently, in

the Eulerian graph of states, the nodes associated with

these initial states are not adjacent nodes.

Applying the march element ⇑ (rwcrwc) eight dif-

ferent transitions are forced in set S and, finally, the

set of cells is left into the initial state (in the Eule-

rian graph four adjacent nodes are visited, going and

coming back). For example, the transitions forced in S

starting from the state 〈0, 0, 0, 0〉 are shown in Fig. 8.

Because MT-R4CF applies the march element ⇑

(rwcrwc) eight times starting from different initial

states, and because every pair of initial states has at

least two bits changed, then 64 distinct transitions are

forced in set S. MT-R4CF covers the Eulerian graph of

states and, consequently, is able to activate any fault in

the set of 4-coupled cells.

2. MT-R4CF observes any simple fault activated in

set S

240 Caşcaval, Bennett and Huţanu

Table 10. The operations carried out in a set of cells S = {i, j, k, l} by the march test

MT-R4CF.

Operations Comments

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . r l

w
l
cr l

w
l
c . . . March element

. . . [r i
w

i
c] . . . [r j

w
j
c] . . . [r k

w
k
c] . . . [r l

w
l
c] . . . Change to the next background

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . r l

w
l
cr l

w
l
c . . . March element

.

. . . r i
w

i
cr i

w
i
c . . . r j

w
j
c r j

w
j
c . . . r k

w
k
c r k

w
k
c . . . r l

w
l
cr l

w
l
c . . . March element

. . . r i
. . . r j

. . . r k
. . . r l

. . . Final read sequence

Fig. 8. The transitions carried out in a set of cells S =

{i, j, k, l} by ⇑ (rwcrwc) starting from the initial state

〈0, 0, 0, 0〉.

Table 10 shows the operations carried out in a set

of cells S = {i, j, k, l}. Analysing these operations we

can check easily that Conditions 2 and 3 previously

defined in Section 3 are satisfied.

Based on the proof of Theorem 2 we derive a lower

bound on the length of any test that detects simple re-

duced 4-coupling faults.

Corollary. A memory test needs at least 34n opera-

tions to detect all simple reduced 4-coupling faults.

Proof: Because in every set S = {i, j, k, l} all

64 transitions are carried out exactly once, the eight

march elements ⇑ (rwcrwc) in Eq. (2) perform a min-

imal number of writes to activate all simple reduced

4-coupling faults. On the other hand, all reads of these

march elements, as well as the reads of the final se-

quence, are necessary to satisfy Conditions 2 and 3,

previously defined in Section 3. Consequently, a mem-

ory test needs at least 34n operations (including n op-

erations for memory initialisation) to detect all simple

reduced 4-coupling faults.

Remark 4. With 41n operations we can say that MT-

R4CF is a near-optimal test for this reduced model of

4-coupling.

6. Simulation Results

To compare the effectiveness of the march tests pro-

posed in this paper with other published tests, we

present in this section simulation results regarding the

ability of the tests to detect v-coupling faults in our

models. The following published tests have been con-

sidered for the simulation study:

• March test with 38n operations given by Caşcaval

and Bennett [1] (CB in this paper);

• March test with 36n operations given by

Papachristou and Sahgal [6] (PS(A) in this

paper);

• Algorithm A with 30n operations given by Nair et al.

[5] (NTA(A) in this paper);

• Symmetric March G algorithm with 24n operations

given by van de Goor [11];

• March LR with 18n operations given by Yarmolik,

van de Goor, Gaydadjiev and Mikitjuk [12];

• Test B with 16n operations given by Suk and Reddy

[9] (March B in this paper);

• Algorithm March C- with 10n operations given by

van de Goor [11] as an improved version of March

C given by Marinescu [4];

• The test procedure given by Suk and Reddy [8] that

requires 165n operations, obtained by concatenating

the procedures TANPSF1 and TLPNPSF1 (SR in this

paper);

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 241

• Memory tests NTA(B), PS(B), S3CTEST2 and

S4CTEST mentioned in Section 1.

We have evaluated by fault simulation the ability of

these test algorithms to detect simple 2-coupling, re-

duced 3-coupling and reduced 4-coupling faults. Thus,

for each test we have calculated the fault coverage as a

ratio between the number of faults detected by the test

and the total number of simulated faults. In our simu-

lation program the RAM memory under test (RUT) is

simulated as an array with n locations. For this experi-

ment we have considered a RUT with 64 storage cells.

We use the TRAP interrupt of Pentium microprocessor

to simulate a permanent fault in the RUT.

1. Simple 2-coupling faults

We have selected six groups of 2-coupled cells,

as shown in Fig. 9. For each set of 2-coupled cells

S = {i, j} we have simulated, one-by-one, the simple

faults presented in Table 1 and have checked if the test

algorithms are able to detect them. The simulation re-

sults regarding the fault coverage of the tests we have

checked are given in Table 11.

2. Simple reduced 3-coupling faults

Six sets of 3-coupled cells have been considered, one

for each pattern Pi , i ∈ {1, 2, 3, 4, 5, 6} as shown in

Fig. 10. For each set, all possible simple 3-coupling

faults have been simulated: 24 SCFs and 48 TCFs.

Table 2 presents the simple faults which affect cell

Table 11. Fault coverage of simple 2-coupling faults (expressed as %).

Test algorithm Length∗ Fault coverage

March C−

March B

March LR

March G

NTA(A)

PS(A)

CB

MT-R3CF

MT-R4CF

NTA(B)

PS(B)

S3CTEST2

SR

10n

17n

18n

24n

30n

37n

38n

30n

41n

n + 32n log2 n

n + 24n log2 n

5n log2 n + 5n[log2(1 + log2 n)] + 11n

165n

100

81.25

100

100

100

100

100

100

100

100

100

100

79.17

∗Including the initialisation sequence ⇑(w0).

Fig. 9. The sets of 2-coupled cells

used in the simulation study.

Fig. 10. The sets of 3-coupled cells

used in the simulation study.

i (8 SCFs and 16 TCFs) in a set of 3-coupled cells

S = {i, j, k}. In total, we have simulated 432 simple

faults and have verified the ability of the test algorithms

to detect them.

242 Caşcaval, Bennett and Huţanu

Table 12. Fault coverage of simple reduced 3-coupling faults (expressed as %).

Test algorithm Length Fault coverage

March C–

March B

March LR

March G

NTA(A)

PS(A)

CB

MT-R3CF

MT-R4CF

NTA(B)

PS(B)

S3CTEST2

SR

10n

17n

18n

24n

30n

37n

38n

30n

41n

n + 32n log2 n

n + 24n log2 n

5n log2 n + 5n[log2(1 + log2 n)] + 11n

165n

50

47.22

62.5

62.5

63.89

63.89

94.91

100

97.22

100

100

100

73.38

Table 13. Fault coverage of simple reduced 4-coupling faults (expressed as %).

Test algorithm Length Fault coverage

March C–

March B

March LR

March G

NTA(A)

PS(A)

CB

MT-R3CF

MT-R4CF

NTA(B)

PS(B)

S3CTEST2

SR

S4CTEST

10n

17n

18n

24n

30n

37n

38n

30n

41n

n + 32n log2 n

n + 24n log2 n

5n log2 n + 5n[log2(1 + log2 n)] + 11n

165n

10.75n(log2 n)1.585

25.39

26.95

35.55

35.16

37.11

37.11

75.00

74.22

100

75.78

75.78

93.36

54.3

100

Simulation results regarding the ability of the test

algorithms to detect these simple 3-coupling faults are

presented in Table 12.

Remark 5. The non-march test SR, which detects

all single NPSFs as defined in [8], is able to detect

only 73.38% of simple faults in our model. This result

demonstrates that the model of reduced 3-coupling is

not covered by the model of NPSFs.

3. Simple reduced 4-coupling faults

For the set of four coupled cells {28, 29, 36, 37} all

the 256 possible simple faults have been simulated: 64

SCFs and 192 TCFs. The simulation results are pre-

sented in Table 13.

7. Conclusion

This paper presents two new efficient march test al-

gorithms, MT-R3CF and MT-R4CF, for reduced 3-

coupling and 4-coupling faults in Random-Access

Memories. To reduce the length of the tests only the

Efficient March Tests for 3-Coupling and 4-Coupling Faults in Random-Access Memories 243

Table 14. Test time for a 4 Mb and a 64 Mb memory chip (assuming

a cycle time of 60 ns).

Test algorithm MT-R3CF MT-R4CF S3CTEST2 S4CTEST

4 Mb 7.55 s 10.32 s 33.34 s 6 min 3 s

64 Mb 2 min 2 min 45 s 10 min 12 s 2 h 6 min

coupled faults between physically adjacent memory

cells have been considered. MT-R3CF and MT-R4CF

are march tests of length 30n and 41n, respectively. The

first test detects all simple faults and nearly all the in-

teracting linked reduced 3-coupling faults. The second

test detects all simple reduced 4-coupling faults and is

a near-optimal test for this model. The simulation re-

sults presented in this paper confirm the correctness of

the march tests MT-R3CF and MT-R4CF.

Our tests allow test engineers to obtain greatly re-

duced test time at the cost of reasonable restrictions

on the achievable fault coverage. For example, to com-

pare our tests with Cockburn’s tests, S3CTEST2 and

S4CTEST, Table 14 presents the test time for a 4 Mb

and a 64 Mb memory chip, assuming a cycle time of

60 ns. MT-R3CF and MT-R4CF are march tests ade-

quate for a BIST implementation in embedded RAM.

Both tests given in this paper require the mapping

from logical addresses to physical cell locations. If

the row and column addresses for the square grid are

scrambled in a way unknown to the tester then the ef-

fectiveness of these tests can be affected. The fault cov-

erage of simple faults which affect scrambled coupled

cells depends on the addresses of the coupled cells. For

example, MT-R3CF detects all simple 3-coupling faults

which affect the set of cells {18, 23, 52} in Fig. 10,

whereas, for the set of cells {12, 36, 52}, MT-R3CF de-

tects only 83.33% of simple 3-coupling faults. This is

the first limitation of the tests proposed in this paper.

References

1. P. Caşcaval and S. Bennett, “Efficient March Test for 3-Coupling

Faults in Random Access Memories,” J. Microprocessors and

Microsystems, vol. 24, no. 10, pp. 501–509, 2001.

2. B.F. Cockburn, “Deterministic Tests for Detecting Single V-

Coupling Faults in RAMs,” J. Electronic Testing, vol. 5, no. 1,

pp. 91–113, 1994.

3. B.F. Cockburn, “Deterministic Test for Detecting Scram-

bled Pattern-Sensitive Faults in RAMs,” IEEE Workshop on

Memory Technology, Design and Testing, 1995, pp. 117–

122.

4. M. Marinescu, “Simple and Efficient Algorithms for Func-

tional RAM Testing,” in Digest of Papers, 1982 Int’l Test Conf.,

Philadelphia, PA, Nov. 1982, pp. 236–239.

5. R. Nair, S. Thatte, and J. Abraham, “Efficient Algorithms

for Testing Semiconductor Random-Access Memories,” IEEE

Trans. Comput., vol. C-27, no. 6, pp. 572–576, 1978.

6. C. Papachristou and N. Sahgal, “An Improved Method for De-

tecting Functional Faults in Semiconductor Random Access

Memories,” IEEE Trans. Comput., vol. C-34, no. 2, pp. 110–

116, 1985.

7. J.P. Roth, “Diagnosis of Automata Failures: A Calculus and a

Method,” IMB J. Research and Development, vol. 10, no. 4,

pp. 278–291, 1966.

8. D. Suk and S. Reddy, “Test Procedures for a Class of Pattern-

Sensitive Faults in Semiconductor Random-Access Memories,”

IEEE Trans. Comput., vol. C-29, no. 6, pp. 419–429, 1980.

9. D. Suk and S. Reddy, “A March Test for Functional Faults in

Semiconductor Random Access Memories,” IEEE Trans. Com-

put., vol. C-30, no. 12, pp. 982–985, 1981.

10. A.J. van de Goor, Testing Semiconductor Memories, Theory and

Practice, Chichester, UK: John Wiley & Sons, 1991.

11. A.J. van de Goor, “Using March Tests to Test SRAMs,” IEEE

Design and Test of Computers, pp. 8–14, 1993.

12. V.N. Yarmolik, A.J. van de Goor, G.N. Gaydadjiev, and V.G.

Mikitjuk, “March LR: A Test for Realistic Linked Faults,” Proc.

VLSI Test Symp., March 1996, pp. 272–280.

Petru Caşcaval is Assistant Professor in the Department of

Computer Engineering at “Gh.Asachi” Technical University of

Iaşi, Romania. He received a PhD in Systems Engineering from

“Gh.Asachi” Technical University of Iaşi. His research interests in-

clude test generation and testable design of digital systems, modeling

and simulation, reliability evaluation, and fault-tolerance. As part of

this work he is involved in RAMs testing and test generation and

fault simulation for both combinational and sequential circuits.

Stuart Bennett is Reader in Automatic Control and Systems Engi-

neering at the University of Sheffield. His current research interests

include the design of dependable systems including the incorpora-

tion of smart actuators and voting systems. As part of this work

he is involved in reliability modeling of mixed hardware/software

systems.

Corneliu Huţanu is Professor in the Department of Automatic Con-

trol of the “Gh.Asachi” Technical University of Iaşi. His fields of

interest include microcontrollers and their applications, testing and

design for testability of digital systems, robotics and distributed sys-

tems. Huţanu received a BEng degree and a PhD from “Gh.Asachi”

Technical University of Iaşi.

Efficient march test for 3-coupling faults in random access memories

P. Cas¸cavala,* , S. Bennettb,1

aDepartment of Computer Science, “Gh. Asachi” Technical University of Iasi, Bd. D. Mangeron, nr.53A, 6600 Iasi, Romania
bDepartment of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield S13JD, UK

Received 11 January 2000; revised 1 November 2000; accepted 13 November 2000

Abstract

A new efficient march test algorithm for detecting the 3-coupling faults in Random Access Memories (RAM) is given in this paper. To
reduce the length of the test algorithm only the 3-coupling faults between physically adjacent memory cells have been considered. The
proposed test algorithm needs38Noperations. We have proved, using an Eulerian graph model, that the algorithm detects all non-interacting
coupling faults. This paper also comprises a study about the ability of the algorithm to cover the interacting coupling faults.

Simulation results with regard to the coupling fault coverage of the march tests, obtained based on a fault injection mechanism, are also
presented in this paper.q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Memory testing; Functional faults; Coupling faults; March test; Fault injection

1. Introduction

Rapid developments in semiconductor technology have
resulted in continuing growth of larger and denser random
access memories (RAM) on a single chip. More time is
required to test memories because of their increasing size.
On the other hand, because of the increased cell density the
nature of the failure mode becomes more complex and
subtle. Therefore it is necessary to identify more efficient
tests with the ability to detect more complex and subtle
faults into theO(N) class of complexity [4].

Test procedures are constrained by two conflicting
requirements:

(a) to detect a wide variety of complex faults;
(b) to reduce the number of memory operations in order to
allow the testing of large memory size to be carried out in
an acceptable period of time.

Very efficient test algorithms for detecting stuck-at faults
and 2-coupling faults have been proposed, see for example
Refs. [1–4]. All of these are march algorithms with a
reduced number of operations.

For 3-coupling faults, a memory test that requiresN 1
36Nlog2N operations is given by Nair, Thatte and Abraham

[1] (NTA(B) in this article). Papachristou and Sahgal [2]
proposed a new algorithm with the same ability to detect
3-coupling faults but with only 37N 1 24Nlog2N operations
(PS(B) in this article). Unfortunately, for the memory chips
currently available, these tests take a long time to perform.
For example, assuming a cycle time of 100 ns,PS(B) takes
about 4 min to test a 4 Mb memory chip and 1 h 14 min to
test a 64-Mb memory chip. Of course, this time is not accep-
table in many cases, such as the on-line testing. Both
memory tests,NTA(B) andPS(B), are lengthy because the
authors have assumed that the three coupled cells can be
anywhere in the memory.

In this paper we propose a new march test for 3-coupling
faults with an acceptable compromise between the fault
detection ability and the length of the test. We have limited
ourselves to the 3-coupling faults that affect only the physi-
cally adjacent memory cells. In this hypothesis, and for the
cases in which the structure of memory is known (the
number of columns), we have devised a test algorithm
with 38N operations, which detects all restricted 3-coupling
faults.

2. Memory fault model

This paper focuses only on the functional faults in RAM
and because the address decoders, sense amplifiers and write
drivers are easier to test, we consider that these modules are
fault free. Consequently, we have concentrated only on the

Microprocessors and Microsystems 24 (2001) 501–509

0141-9331/00/$ - see front matterq 2001 Elsevier Science B.V. All rights reserved.
PII: S0141-9331(00)00103-4

www.elsevier.nl/locate/micpro

* Corresponding author. Tel.:140-32-232430; fax:140-32-214290.
E-mail addresses:cascaval@cs.tuiasi.ro (P. Cas¸caval),

s.bennett@sheffield.ac.uk (S. Bennett).
1 Tel.: 144-0-114-222-5230; fax:144-0-114-273-1729.

functional faults in the memory cell array where difficult to
detect faults may exist.

We assume that any cell in the memory can be read (fault
free read operations) and a memory fault is activated only
by a transition into a cell (fault free non-transition writes).

Generally we have used the fault models formalised by
Nair, Thatte and Abraham [1] which were refined later by
Papachristou and Sahgal [2]. At the same time we have used
some definitions and fault models given by Suk and Reddy
[3] and by David, Fuentes and Courtois [5]. We have also
adopted some notations given by van de Goor [4]. The fault
models are presented as follows.

(1) Stuck-at faultsOne or more cells are stuck-ats, where
s[{0,1}. If a cell is stuck-ats then it will remain in states
independent of reads and writes on any cell of the memory.

(2) Coupling faultsCoupling faults occur because of the
mutual capacitance between physically adjacent cells or
because of leakage current from one cell to another in
large RAM [2]. Two or more cells can be coupled. In a
group of coupled cells, active and/or passive influence on
a cell may exist. To model these physically faults we use
transition coupling faults and state coupling faults models.

(a) Transition coupling faults

• 2-coupled cells.A write operation that affects a 0! 1 or
a 1! 0 state transition into cellj changes the state of
another memory celli independently of the contents of
other cells. This does not necessarily imply that a state
transition into celli changes the contents of cellj [1]. Cell
i is called thecoupled celland cellj is called thecoupling
cell. We say that cellj has anactive influenceon celli and
we write down this faultj! i coupling fault.

• n -coupled cells.A set ofn cells (n ^ 3) is said to ben-
coupled if a transition into one cell of the set causes the
state of another cell in the set to change from 0 to 1 or
from 1 to 0, when then 2 2 remaining cells have a fixed
state [1]. In this article we consider only 3-coupled cells.

We assume that only the physically adjacent cells can be
3-coupled. Two cells are physically adjacent if they have a
border or even a corner in common. Fig. 1 shows all the four

distinct patternsP1, P2, P3 andP4 for a group of three physi-
cally adjacent cells (i, j,k).

(b) State coupling faults.A state-coupling fault occurs
when one or more cells in a group ofn -coupled cells
(n ^ 2) fail to undergo a 0! 1 or a 1! 0 transition when
the complement of the contents of the memory cell is writ-
ten into the cell [4,6]. This type of fault depends on the states
of the remainingn 2 1 cells in the group and in this case, we
say that the remainingn 2 1 cells in the group have a
passive influenceon the coupled cell. Ifi is a coupled cell
we name this faulti-state coupling fault.

We also accept that in a group withn coupled cells two or
more interacting faultsmay exist. Informally, the signifi-
cance of interacting faults is that their combined effects may
cancel each other [2]. In the memory, one or more groups of
coupled cells may exist. When the pairs of groups of
coupled cells are disjoint the model is calledrestricted
coupling faults. As in Refs. [1,2] we consider only this
restricted model.

3. Notations, definitions and preliminaries

The following two definitions are drawn from Ref. [3]:

Definition 1. For every memory cell in a RAM three
possible states can be considered:

• Internal stateis the actual contents of the memory cell.
• Apparent stateis the result of a read operation of a

memory cell.
• Expected stateis the expected contents of a cell after one

or more write operations.

Definition 2. Faults aredetectedif and only if one or more
differences between the expected states and the apparent
states of the cells occur during the test.

To describe operations on RAMs the following notations
are used [3]:

• R read operation on a cell;
• Wx the operation of writingx into a cell,x [{0,1};
• Wc the operation of writing the complement of the

previous apparent or expected state of a cell;
• " i the operation of writing 1 into celli when the previous

apparent or expected state was 0;
• # i the operation of writing 0 into celli when the previous

apparent or expected state was 1.

Definition 3. A forced transitionis defined in Ref. [1] as
one that is initiated by the testing algorithm by writing into a
cell (of course, this may cause transitions in other cells
because of coupling).

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509502

i j i j
k P1 P4 k

i P2 P3 i
j k j k

Fig. 1. Patterns for three physically adjacent cells.

Consider a group S ofn cells. In order to describe a failed
operation inSwe use a vectorF with 2n elements grouped
in two parts. The first part shows the conditions to activate
the fault (the initial state of groupS and the forced transi-
tion) and the second part shows the effect of the fault sensi-
tising (the state of groupS after the forced transition). An
element in vectorF can be one of the symbols 0, 1,f , #
and " (f is an irrelevant logic value). Only one symbol inF
can be # or " because it shows the forced transition inS.

For example, for a group of cellsS� �i; j; k� :

• If j is a coupled cell, vectorF1 � k0; ";0 : 0;0; 0l
describes astate coupling faultin which the transition
" j has no effect when celli andk are in the state 0.

• If k is a coupled cell, vectorF2 � k ";f;0 : 1;f; 1l
describes atransition coupling faultin which the forced
transition " i changes the state of cellk from 0 to 1.

To emphasise the cell affected by the fault we use a logic
variableD as follows:

D �
0 the cell is fault free

1 the coupling fault has been activated

(
Thus, the faults previously defined become:F1 � k0; ";0 :

0;–D; 0l andF2 � k0; ";0 : 0;1;Dl; where–D � NOT D:

Definition 4. In this paper a fault is calledsimple faultif
only one vectorF is necessary for description the fault
behaviour. If at least two vectors are necessary for a
complete description the fault is called acomplex fault.

Any complex fault can be modelled as a set of distinct
simple faults simultaneously present in the memory. An
interacting fault is a complex fault which comprises two
or more (even number) simple faults with complementary
influence on the same cell. Examples of complex fault
modelling are:

• Take ani ! j coupling fault in which the transition" i
changes the state of cellj from 0 to 1 and the transition# i
from 1 to 0. This interacting fault can be modelled by two
vectors

F1 � k ";0;f : 1;D;fl andF2 � k #; 1;f : 0;–D;fl:

• Take a linked coupling fault with cellj a coupled cell.
Both transition" i and " k change the state of cellj from 0
to 1. This non-interacting fault can be modelled by two
vectors

F1 � k ";0;f : 1;D;fl andF2 � kf;0; ": f;D;1l:

To test and find a fault in a memory we need to be able to:

• activate (to sensitise) the fault by a proper forced transition;

• observe the fault by reading the changed value of the cell
affected by the fault.

Remark 1. Generally, the complex non-interacting faults
are easier to detect than the simple faults because there are
more situations in which a complex fault is activated. Thus,
if a test procedure detects all the simple faults furthermore it
detects all the complex non-interacting faults. With regard
to the interacting faults, we observe that the combined
effects of some simple faults may cancel each other out
before the affected cell is read again. In this way, an inter-
acting fault can be masked even if the test procedure detects
all the simple faults. Consequently, in this article we focus
on the simple faults and the interacting complex faults.

Assertion 1. The next three conditions are necessary and
sufficient for a test to detect all the simple faults in a group
of coupled cells [1]:

• Condition 1.For a group of cellsS the test must force all
the possible cell transitions. Thus, any fault which affects
a cell in S is definitely activated.

• Condition 2.After a forced transition into a cell the test
must read the cell to check if the state has changed before
another forced transition into the cell is allowed to occur.

• Condition 3.Every cell must be read prior to a forced
transition, in order to check if the state has been changed
by a transition in a coupled cell.

A march test(T) consists of a sequence ofm march
elements:T � kM1;M2;…;Mm21;Mml: A march element
(M) consists of a sequence of operations applied to each
cell in the memory before proceeding to the next cell [4].
During a march sequencethe whole memory is checked
homogeneously in either one of two orders: increasing
address order from address 0 (*) or decreasing address
order from addressN 2 1�+�:

A march test may also comprise one or more sequences to
initialise the memory.

4. March tests currently used

The best-known march test procedures currently used are
presented below.

(1) The march test A with30Noperations given by Nair,
Thatte and Abraham [1] (NTA(A)):

NTA�A� � k * �W0�; * �RW1�; * �R�; * �RW0�; * �R�;
+ �RW1�; + �R�; + �RW0�; + �R�;

* �RW1W0�; * �R�; + �RW1W0�; + �R�; * �W1�;
* �RW0W1�; * �R�; + �RW0W1�; + �R�l

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509 503

(2) The march test A with37Noperations given by Papa-
christou and Sahgal [2] (PS(A)):

PS�A� � k * �W0�; * �RW1R�; * �RW0R�; * �RW1W0�;
* �RW1�; * �RW0W1�; * �RW0�; * �RW1W0�;

+ �RW1�; + �RW0�; + �RW1W0�; + �RW1�; + �RW0W1�;
+ �RW0�; + �RW1W0�l

(3) The march testMarchGwith 24Noperations given by
van de Goor [4]:

MarchG� k * �W0�; * �RW1RW0W1�; * �RW0RW1�;
+ �RW0W1W0�; + �RW1RW0�; * �RW1R�;

+ �RW0R�l

(4) The march algorithmMarchB with 16N operations
given by Suk and Reddy [3]:

MarchB� k * �W0�; * �RW1RW0W1�; * �RW0W1�;
+ �RW0W1W0�; + �RW1W0�l

(5) The march algorithmMarchC with 10N operations
presented in Ref. [4]:

MarchC� k * �W0�; * �RW1�; * �RW0�; + �RW1�;
+ �RW0�; + �R�l

We have evaluated experimentally the 3-coupling fault
coverage of these march tests. In order to simulate a perma-
nent fault into the memory under test we have used a
software fault injection mechanism [7,8].

For every possible transition in a group of coupled cellsS
we have checked two kind of faults:

• state coupling faults— the forced transition does not
change the state of the addressed cell;

• transition coupling faults — the forced transition
changes the state of the addressed cell but, at the same
time, it changes the state of another coupled cell inS.

Four groups of three coupled cells have been considered,
one for each patternP1, P2, P3 andP4 (see Fig. 1). For each
group, all possible simple 3-coupling faults have been
injected: 24state coupling faultsand 48transition coupling
faults. In total, for all groups of cells, 288 simple faults have
been checked. The simulation results are shown in Table 1.

All these march tests have good fault coverage forstuck-
at faultsand 2-coupling faultsbut, as we can see in Table 1,
they have low fault coverage for 3-coupling faults. For
example, the best of them,NTA(A) and PS(A), cover
completely 2-coupling faults but only 63.89% of simple 3-
coupling faults. This is the reason we have devised a new
march test for 3-coupling faults, generically calledMT. We
argue that it is reasonable to consider that only the physi-
cally adjacent cells can be coupled. We assume that the
number of columns for the memory cell array is known in
order to determine which are the physically adjacent cells.

5. A new march test (MT)

We propose a new march testMT for the restricted 3-
coupling faults which affect the physically adjacent cells

�6� MT � kIa; * �RWc�; * �R�; * �RWc�; * �R�; + �RWc�;
+ �R�; + �RWc�; + �R�;

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509504

Table 1
Simple 3-coupling fault coverage

March test March C March B March G NTA(A) PS(A)

Fault coverage (%) 41.67 47.22 62.50 63.89 63.89

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ia

0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1

Ib

0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0

Ic

Fig. 2. Patterns used byMT to initialise the memory.

Ib; * �RWc�; * �R�; * �RWc�; * �R�; + �RWc�;
+ �R�; + �RWc�; + �R�;

Ic; * �RWc�; * �R�; * �RWc�; * �R�; + �RWc�;
+ �R�; + �RWc�; + �R�l

where Ia, Ib and Ic are three sequences for memory initi-
alisation:Ia initialises all the cells with 0 (solid data back-
ground),Ib initialises the odd columns with 0 and the even
columns with 1 (column-stripe data background) andIc
initialises the memory by a checkerboard pattern (Fig. 2).

Remark 2. MT performs only one transition into each
memory cell during a march sequence.

Assertion 2. The march testMT covers the restricted 2-
coupling faults and the restricted 3-coupling faults which
affect the physically adjacent cells.

Demonstration
1. Simple faults
1.1 MT activates any fault in a group of v-coupled cells
We prove thatMT performs all the possible transitions in

a group of coupled cells (condition 1previously defined in
Section 3 is satisfied). In fact, we prove that the Eulerian
graph of states for the considered group of coupled cells is
completely covered during the memory testing.

(a) Simple restricted 2-coupling faults
Take a group of two coupled cellsS� �i; j�; ;i; j [

{0 ;1;…;N 2 1} ; i ± j: The graph of states for the group
of cells S is shown in Fig. 3. As shown in Fig. 3, during
the following test sequence

�1� �2� �3� �4�
Ia; * �RW1�; * �R�; * �RW0�; * �R�; + �RW1�; + �R�; + �RW0�; + �R�;

the graph of states is completely covered and, consequently,
MT performs all the possible transitions in group of cellsS.

MT performs a minimal number of write operations
because each arc in the graph has been traversed only
once. This test sequence, identical with the sequence
given by Nair, Thatte and Abraham [1] for restricted 2-
coupling faults (first part of the testNTA(A)), is an optimal
test sequence for the non-interacting 2-coupling faults.

(b) Simple restricted 3-coupling faults
Take a group of three cellsS� �i; j; k�: The Eulerian

graph of states for the groupS is shown in Fig. 4. Observe
that two adjacent states (nodes) in the graph have only one
bit changed and two non-adjacent states have at least two
bits changed.

Every group of three physically adjacent coupled cells
corresponds with one of the patternsP1, P2, P3 or P4 (see
Fig. 1). Consequently, we have to prove that the graph of
states for a group of coupled cells is completely covered by
MT in all these four cases.

For all groups of cells in the memory under test, regard-
less of the pattern, the first four march sequences (RWc)
perform the same transitions because every group starts
from the initial state 000: These transitions are marked
with solid lines in the graph in Fig. 5.

Note that the graph has been traversed from the initial
node to the opposite node (the node with all the bits chan-
ged). Moreover, we can see that the same arcs will be
traversed in the graph if the opposite state 111 becomes
initial state. Consequently, it does not matter if the group
of cells has been initialised with 010 or 101:

A state of groupSbefore a new march sequence is started
is calledinitial state. Table 2 shows the initial states for each
patternPi, i [{1,2,3,4} after the sequencesIa, Ib andIc.

Table 2 shows that the sequenceIb or Ic ensures the state
010 or 101 for all the groups of cells, regardless of the
pattern. Consequently, the following test sequences

Ib; * �RWc�; * �R�; * �RWc�; * �R�; + �RWc�;
+ �R�; + �RWc�; + �R�;

Ic; * �RWc�; * �R�; * �RWc�; * �R�; + �RWc�; + �R�;
+ �RWc�; + �R�;

perform at least the transitions marked with solid lines in
Fig. 6, for all the groups of three physically adjacent cells in
the memory under test.

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509 505

(2)

00 (3) 01

(1) (4) (3) (2)

(4)
10 11

(1)

Fig. 3. The Eulerian graph of states for a group of cellsS� �i; j�:

010 110

(1) (4)

(1)

000 100 (1) (4)
(4)

(3)

(3) (2) 011 111
(2)

(3)
(2)

001 101

Fig. 4. The Eulerian graph of states for a group of cellsS� �i; j; k�:

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509506

010 110

(1) (4)

(1)

000 100 (1) (4)
(4)

(3)

(3) (2) 011 111
(2)

(3)
(2)

001 101

Fig. 5. The transitions performed in group S by the first four march
sequences ofMT.

010 110

000 100

011 111

001 101

Fig. 6. The transitions between the states010and101and vice versa.

Fig. 7. The transitions between the states011and100and vice versa.

Table 3
Simple i ! k coupling faults

Nr. VectorF

1 k " ,0,0: 1,0,Dl
2 k " ,0,1: 1,0,D

¯
l

3 k " ,1,0: 1,1,Dl
4 k " ,1,1: 1,1,D

¯
l

5 k # ,0,0: 0,0,Dl
6 k # ,0,1: 0,0,D

¯
l

7 k # ,1,0: 0,1,Dl
8 k # ,1,1: 0,1,D

¯
l

9 k " ,f ,0: 1,f ,Dl
10 k " ,f ,1: 1,f ,D

¯
l

11 k # ,f ,0: 0,f ,Dl
12 k # ,f ,1: 0,f ,D

¯
l

Table 4
Simple j ! k coupling faults

Nr. VectorF

1 k0, " ,0: 0,1,Dl
2 k0, " ,1: 0,1,D

¯
l

3 k1, " ,0: 1,1,Dl
4 k1, " ,1: 1,1,D

¯
l

5 k0, # ,0: 0,0,Dl
6 k0, # ,1: 0,0,D

¯
l

7 k1, # ,0: 1,0,Dl
8 k1, # ,1: 1,0,D

¯
l

9 kf , " ,0: f ,1,Dl
10 kf , " ,1: f ,1,D

¯
l

11 kf , # ,0: f ,0,Dl
12 kf , # ,1: f ,0,D

¯
l

Table 5
All the initial states for a groupS� �i; j; k�

Pattern Initial states

P1 000, 111, 010, 101, 011, 100
P2 000, 111, 010, 101, 001, 110
P3 000, 111, 010, 101, 001, 110
P4 000, 111, 010, 101, 011, 100

010 110

000 100

011 111

001 101

Fig. 8. The transitions between the states001and110and vice versa.

Table 2
The initial states performed byIa, Ib, Ic

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509 507

Table 6
The interacting 3-coupling faults and the conditions in whichMT detects the faults

Interacting faults Conditions in whichMT detects the faults

Nr. i ! k coupling faultF1 j ! k coupling faultF2 Initial state Test order Result Initial state Test order Result

1 k " ,0,0: 1,0,Dl k0, " ,1: 0,1,D
¯

l 101 * F
¯1,F2

2 k1, " ,1: 1,1,D
¯

l 100 + F
¯1,F2 001 * F

¯1,F2

3 k0, # ,1: 0,0,D
¯

l 000 * F1,F¯2

4 k1, # ,1: 1,0,D
¯

l 000 * F1,F¯2

5 kf , " ,1: f ,1,D
¯

l 101 * F
¯1,F2

6 kf , # ,1: f ,0,D
¯

l 111 * F
¯1,F2

7 k " ,0,1: 1,0,D
¯

l k0, " ,0: 0,1,Dl 001 * F1,F¯2 100 * F
¯1,F2

8 k1, " ,0: 1,1,Dl 101 + F
¯1,F2

9 k0, # ,0: 0,0,Dl 010 + F1,F¯2

10 k1, # ,0: 1,0,Dl 111 + F
¯1,F2

11 kf , " ,0: f ,1,Dl 010 + F1,F¯2

12 kf , # ,0: f ,0,Dl 010 + F1,F¯2

13 k " ,1,0: 1,1,Dl k0, " ,1: 0,1,D
¯

l 010 * F1,F¯2

14 k1, " ,1: 1,1,D
¯

l 010 * F1,F¯2

15 k0, # ,1: 0,0,D
¯

l 010 * F1,F¯2

16 k1, # ,1: 1,0,D
¯

l 110 + F
¯1,F2 011 * F

¯1,F2

17 kf , " ,1: f ,1,D
¯

l 101 * F
¯1,F2

18 kf , # ,1: f ,0,D
¯

l 111 * F
¯1,F2

19 k " ,1,1: 1,1,D
¯

l k0, " ,0: 0,1,Dl 000 + F1,F¯2

20 k1, " ,0: 1,1,Dl 101 + F
¯1,F2

21 k0, # ,0: 0,0,Dl 011 * F1,F¯2 110 * F
¯1,F2

22 k1, # ,0: 1,0,Dl 111 + F
¯1,F2

23 kf , " ,0: f ,1,Dl 101 + F
¯1,F2

24 kf , # ,0: f ,0,Dl 111 + F
¯1,F2

25 k # ,0,0: 0,0,Dl k0, " ,1: 0,1,D
¯

l 101 * F
¯1,F2

26 k1, " ,1: 1,1,D
¯

l 100 * F1,F¯2 001 * F
¯1,F2

27 k0, # ,1: 0,0,D
¯

l 010 + F
¯1,F2

28 k1, # ,1: 1,0,D
¯

l 111 + F1,F¯2

29 kf , " ,1: f ,1,D
¯

l 000 + F
¯1,F2

30 kf , # ,1: f ,0,D
¯

l 010 + F
¯1,F2

31 k # ,0,1: 0,0,D
¯

l k0, " ,0: 0,1,Dl 100 * F
¯1,F2 001 + F

¯1,F2

32 k1, " ,0: 1,1,Dl 101 * F1,F¯2

33 k0, # ,0: 0,0,Dl 101 * F1,F¯2

34 k1, # ,0: 1,0,Dl 101 * F1,F¯2

35 kf , " ,0: f ,1,Dl 000 * F
¯1,F2

36 kf , # ,0: f ,0,Dl 010 * F
¯1,F2

37 k # ,1,0: 0,1,Dl k0, " ,1: 0,1,D
¯

l 000 + F
¯1,F2

38 k1, " ,1: 1,1,D
¯

l 101 + F1,F¯2

39 k0, # ,1: 0,0,D
¯

l 010 + F
¯1,F2

40 k1, # ,1: 1,0,D
¯

l 101 + F1,F¯2

41 kf , " ,1: f ,1,D
¯

l 000 + F
¯1,F2

42 kf , # ,1: f ,0,D
¯

l 010 + F
¯1,F2

43 k # ,1,1: 0,1,D
¯

l k0, " ,0: 0,1,Dl 111 * F1,F¯2

44 k1, " ,0: 1,1,Dl 111 * F1,F¯2

45 k0, # ,0: 0,0,Dl 110 * F
¯1,F2 100 + F1,F¯2

46 k1, # ,0: 1,0,Dl 111 * F1,F¯2

47 kf , " ,0: f ,1,Dl 111 * F1,F¯2

48 kf , # ,0: f ,0,Dl 111 + F
¯1,F2

49 k " ,f ,0: 1,f ,Dl k0, " ,1: 0,1,D
¯

l 101 * F
¯1,F2

50 k1, " ,1: 1,1,D
¯

l 010 * F1,F¯2

51 k0, # ,1: 0,0,D
¯

l 000 * F1,F¯2

52 k1, # ,1: 1,0,D
¯

l 000 * F1,F¯2

53 kf , " ,1: f ,1,D
¯

l 010 * F1,F¯2

54 kf , # ,1: f ,0,D
¯

l 000 * F1,F¯2

55 k " ,f ,1: 1,f ,D
¯

l k0, " ,0: 0,1,Dl 000 + F1,F¯2

56 k1, " ,0: 1,1,Dl 101 + F
¯1,F2

57 k0, # ,0: 0,0,Dl 010 + F1,F¯2

58 k1, # ,0: 1,0,Dl 010 + F1,F¯2

59 kf , " ,0: f ,1,Dl 010 + F1,F¯2

60 kf , # ,0: f ,0,Dl 010 + F1,F¯2

For a group of coupled cells, regardless of the pattern, the
Eulerian graph is covered except on the arcs between 000
and 010 and between 101 and 111 (see both Figs. 5 and 6).
But, we can see in Table 2 that the sequenceIb or Ic ensures
the initial state 011 or 100 for a group with patternP1 or P4,
and, 001 or 110 for a group with patternP2 or P3. In both
cases the arcs between 000 and 010 and between 101 and
111 are traversed (see Figs. 7 and 8) and, consequently, the
whole graph is covered for every group of cells in the
memory under test.

Finally, we have proved thatMT activates any fault which
affects a group of three physically adjacent cells.

1.2 MT observes any simple fault activated in group of
cells S

The march testMT repeats the pair of march elements
(RWc) and (R) many times. Because every write operation
(Wc) is preceded and succeeded by a read operation (R)
conditions 2 and 3previously defined in Section 3 are satis-
fied.1.2 Interacting 3-coupling faults

According to Definition 4 defined in Section 3, a complex
fault causes two or more transitions in one or more cells and
can be modelled as a set of distinct simple faults which are
simultaneously present in the memory. As follows, we
prove thatMT detects all the interacting faults modelled
by two simple transition coupling faults.

Remark 3. In a group of cellsS� �i; j; k�; in which cell j
is a coupled-cell, all the transition coupling faults are defi-
nitely detected becauseMT performs only one forced transi-
tion in cell i or cellk between two consecutive reads of cellj.

Remark 4. MT performs a march sequence (RWc) in both
orders, increasing (*) and decreasing (+), for all the initial
states. In other words,MT is a symmetrical test. Therefore it
is sufficient to analyse only the case in which celli is a
coupled cell or cellk is a coupled cell. We have chosen to
prove thatMT detects the interacting coupling faults which
affect cellk.

We must consider all the combinations between one
simple i! k coupling faultand onesimple j! k coupling
fault. These interacting faults are presented in Tables 3 and
4, respectively.

Every combination between a vectorF in Table 3 with
symbol D, and a vectorF in Table 4 with symbol–D, or vice
versa, describes an interacting coupling fault which affects
cell k. All these interacting faults are shown in Table 6.

A march memory test detects an interacting coupling fault
if and only if, during a march sequence, one simple fault is
activated and another simple fault is masked. Consequently,
we must prove that for each interacting fault which affects cell
k, the march testMT brings the groupS into an appropriate
initial state which allows, in the next march sequence, one
simple fault to be activated and another masked. Of course,
this initial state of groupSdepends on the pattern. Table 5
comprises all the initial states for each pattern.

Table 6 comprises all the 72 interacting transition
coupling faults which may affect cellk and the conditions
in whichMT detects these faults. In some cases there are two
conditions in whichMT detects the fault: one condition for
the patternsP1 and P4 and another forP2 and P3. In the

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509508

Table 6 (continued)

Interacting faults Conditions in whichMT detects the faults

Nr. i ! k coupling faultF1 j ! k coupling faultF2 Initial state Test order Result Initial state Test order Result

61 k # ,f ,0: 1,f ,Dl k0, " ,1: 0,1,D
¯

l 000 + F
¯1,F2

62 k1, " ,1: 1,1,D
¯

l 111 + F1,F¯2

63 k0, # ,1: 0,0,D
¯

l 010 + F
¯1,F2

64 k1, # ,1: 1,0,D
¯

l 111 + F1,F¯2

65 kf , " ,1: f ,1,D
¯

l 000 + F
¯1,F2

66 kf , # ,1: f ,0,D
¯

l 010 + F
¯1,F2

67 k # ,f ,1: 0,f ,D
¯

l k0, " ,0: 0,1,Dl 111 * F1,F¯2

68 k1, " ,0: 1,1,Dl 111 * F1,F¯2

69 k0, # ,0: 0,0,Dl 101 * F1,F¯2

70 k1, # ,0: 1,0,Dl 101 * F1,F¯2

71 kf , " ,0: f ,1,Dl 111 * F1,F¯2

72 kf , # ,0: f ,0,Dl 101 * F1,F¯2

Table 7
The coupling fault coverage of the march tests (expressed as %)

March test March C 10N March B 17N March G 25N NTA(A) 30N PS(A) 37N MT 38N

2-Coupling 81.25 87.5 100 100 100 100
3-Coupling 41.67 47.22 62.50 63.89 63.89 100

columnResultthe pairF1, –F 2 for example, reflects that the
fault F1 has been activated andF2 has not. Table 6 shows
thatMT detects all the interacting coupling faults which may
affect cellk. BecauseMT is a symmetrical test it also detects
all the interacting transition coupling faults which may
affect cell i.

Similarly, we can prove thatMT detects any interacting
faults modelled by one simple state coupling fault and one
simple transition coupling fault. A

The simulation result confirms thatMT detects all simple
3-coupling faults and, also, all the interacting faults
presented in Table 6.

6. Conclusions

A new efficient march test (MT) for detecting the 3-
coupling faults in RAM is given in this paper. Comparing
with the most known march tests currently usedMT is
slightly longer but it covers completely the 3-coupling faults
which affect the physically adjacent cells. The simulation
result presented in Table 7 gives emphasis to the effective-
ness of the new march testMT.

This new march test has38N operations. For a 64 Mb
memory chip the test experiment takes about 5 min if we
assume a cycle time of 100 ns. Remember that the non-
march testPS(B), especially designed for 3-coupling faults,
takes about 1h 14 min.

MT is a homogeneous test algorithm and comprises only
two kind of march sequences, (RWc) and (R). Consequently,
MT is adequate for BIST implementation in embedded
RAM [9,10].

Acknowledgements

This work was done while Petru Cas¸caval was an
Academic Research Visitor at the Department of Automatic
Control and Systems Engineering, University of Sheffield,
under the kind supervision of Dr Stuart Bennett.

References

[1] R. Nair, S. Thatte, J. Abraham, Efficient algorithms for testing semi-
conductor random access memories, IEEE Trans. Comput. C-27 (6)
(1978) 572–576.

[2] C. Papachristou, N. Sahgal, An improved method for detecting func-
tional faults in semiconductor random access memories, IEEE Trans.
Comput. C-34 (2) (1985) 110–116.

[3] D.S. Suk, M. Reddy, A march test for functional faults in semicon-
ductor random access memories, IEEE Trans. Comput. C-30 (12)
(1981) 982–985.

[4] A.J. van de Goor, Using march tests to test SRAMs, IEEE Design Test
Comput. March (1993) 8–14.

[5] R. David, A. Fuentes, B. Courtois, Random pattern testing versus
deterministic testing of RAM’s, IEEE Trans. Comput. 38 (5) (1989)
637–650.

[6] J. Hayes, Testing memories for single-cell pattern-sensitive faults,
IEEE Trans. Comput. C-29 (3) (1980) 249–254.

[7] P. Caşcaval, R. Silion, Memory test algorithm study by fault injection
mechanism, Sixth International Symposium on Automatic Control
and Computer Science, SACCS’98, vol. II, Iasi, Romania, November
1998, pp. 23–28.

[8] P. Caşcaval, C. Hutanu, R. Silion, Memory fault coverage evaluation
for march tests, Buletinul Institutului Politehnic din Iasi XLV (IL) (1–
4) (1999) 103–110 (Automatica si Calculatoare).

[9] M. Franckil, K. Saluja, Built-in self-testing of random-access
memories, IEEE Comput. October (1990) 45–56.

[10] C. Huang, et al., A programmable BIST core for embedded DRAM,
IEEE Design Test Comput. January–March (1999) 59–70.

P. Caşcaval, S. Bennett / Microprocessors and Microsystems 24 (2001) 501–509 509

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

