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Abstract: The growing share of the population over the age of 65 is putting pressure on the social
health insurance system, especially on institutions that provide long-term care services for the elderly
or to people who suffer from chronic diseases or mental disabilities. This pressure can be reduced
through the assisted living of the patients, based on an intelligent system for monitoring vital signs
and home automation. In this regard, since 2008, the European Commission has financed the develop-
ment of medical products and services through the ambient assisted living (AAL) program—Ageing
Well in the Digital World. The SmartCare Project, which integrates the proposed Computer Vision
solution, follows the European strategy on AAL. This paper presents an indoor human activity
recognition (HAR) system based on scene understanding. The system consists of a ZED 2 stereo
camera and a NVIDIA Jetson AGX processing unit. The recognition of human activity is carried out
in two stages: all humans and objects in the frame are detected using a neural network, then the
results are fed to a second network for the detection of interactions between humans and objects. The
activity score is determined based on the human–object interaction (HOI) detections.

Keywords: assisted living; home automation; image processing; neural networks; public health care

1. Introduction

Technical solutions for ambient assisted living allow continuous monitoring of vital
parameters of the elderly and home automation [1,2]. Such solutions for assisted living
are particularly important in the context of an accelerated aging European society: it is
estimated that by 2060, one in three Europeans will be over 65 years of age, while the ratio
of active people to retired people will decrease from 4:1 currently to 2:1 [3]. Moreover, in
the coming years, Europe will face more than 2 million vacancies in the health and social
care system.

Monitoring the environmental and physiological parameters of elderly people who
suffer from chronic diseases or mental disabilities has become a topic of real interest in
recent years. Both the scientific community and industry have proposed various assisted
living systems for indoor environments.

At the commercial level, countless assistive devices are available, such as those for
administering medications, detecting falls, alarm buttons, monitoring vital parameters,
as well as complex solutions for recording and tracking environmental parameters [4].
However, the solutions that integrate multiple such devices in assistance applications for
autonomy at home have not yet known a commercial spread at the level of end users.
Most of the integrative solutions developed so far are prototypes described in the scientific
literature [5–9]. The main barrier to building such solutions is that most of these devices
come with proprietary applications, use custom communication protocols and do not
expose programming interfaces, which makes them impossible to integrate into third-party
applications.

The scientific literature provides many examples of complex and innovative systems
for monitoring environmental and physiological parameters. For example, Shao et al. [10]
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determines the values of physiological parameters (respiratory rate, exhaled air flow, heart
rate, pulse) using images from a web camera. Marques and Pitarma [11] describe a system
dedicated to environmental monitoring of air temperature, humidity, carbon monoxide
and luminosity to assist people inside buildings. For this, a microsensor infrastructure is
used for data acquisition, as well as Arduino, ESP8266 and XBee for data processing and
transmission using Wi-Fi. The recorded data are evaluated to determine the air quality
in the rooms, anticipating technical interventions. A system that analyzes the change of
temperature in the environment, as well as physiological indices (temperature, breathing
rate, electroencephalogram, electrocardiogram, using Japanese medical equipment from
Nihonkohden Co.), is proposed in [12]. With this system, the relationships between ambient
temperature, comfort sensations, sleepiness and physiological indicators were determined.

Regarding integrated applications for home assistance using ICT, research efforts have
focused on formulating solutions based on the combination of technologies specific to smart
home digital platforms, IoT, artificial intelligence and cloud computing. The HABITAT
platform [6] incorporates these technologies into everyday household objects: an armchair
for monitoring sitting posture, a belt for extracting movement information, a wall panel
and mobile phone for user interface. An artificial intelligence component is used for the
system to react to various specific events, trigger notifications and receive feedback from
the user. However, the radio frequency localization used requires the person to wear a tag,
the motion monitoring belt can be uncomfortable and difficult to wear for long periods
of time. In addition, the system is not easily scalable, reducing to the implementation
of a single usage scenario with specific devices. A significant limitation is the specific
character of these integrated systems produced to date—they address limited monitoring
and application scenarios.

A very relevant research and development topic is addressing the implementation
and interoperability issues encountered in the adoption of life assistance technology. In
this sense, possible solutions were formulated for managing the integration of devices
and aggregating information from them [7,8]. However, the proposed solutions require
significant integration efforts or the involvement of device manufacturers in a common
standard alignment process. A relevant effort in this sense is represented by ACTIVAGE [9],
a pilot project for intelligent living environments with the main goal of building the first
European eco-system. It will have nine implementation locations in seven European
countries, reusing and scaling public and private IoT platforms. New interfaces necessary
for interoperability are being integrated between these platforms that will implement IoT
solutions for active and healthy aging on a large scale. The project will deliver AIOTES
(AC-TIVAGE IoT Ecosystem Suite), a set of mechanisms, tools and methodologies for
interoperability at different levels between IoT platforms and a free working method for
providing their semantic interoperability.

A monitoring system designed for a health care environment has the following com-
ponents: data exchange between devices, data storage, data processing to determine envi-
ronmental conditions and physiological aspects, data security and confidentiality, as well
as data access to them [1,2]. According to Sanchez [13], there are two types of information:
unprocessed data from the sensors and context data used to determine behavior patterns
or human activity. The context is important because it helps to evaluate environmental
conditions and the health of the person monitored. The system must provide a way to
represent the environment. Some solutions only have a 2D map [14,15], while others use
3D models [16,17] from which essential information can be extracted (door and window
locations, pieces of furniture, gas sources, etc.) and generate positional alerts. In addition to
processing sensor data, a monitoring system must integrate communication technologies
in order to provide real-time health services that are aligned with the context and the real
needs [18]. In an IoT system, nodes containing sensors are used to monitor the user, to
collect data which is subsequently sent to a network of nodes.

The pressure put on the health insurance systems by care services for the elderly or
people with special needs is increasing. Therefore, an automated system that can assist a
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person in his environment would be less expensive. Such a system is based on different
types of sensors, independent or within a network. L. Malasinghe, N. Ramzan and K.
Dahal in [19] review monitoring systems that use different sensors, such as cardiogram
sensors for heart rate, sensors for breath measurements, for blood pressure, and for body
temperature,. This paper presents a monitoring system for daily activities based on Visual
Scene Understanding.

This paper is organized as follows: in Section 2, different approaches for human activity
recognition are presented. In Section 3, we will find a short introduction to the SmartCare
system, after which we discuss the integration of the HAR module into the project. In this
section are also presented the hardware architecture, the monitoring scenarios for various
medical conditions and the results on object detection and HOI detection with the selected
models. In Section 4, the datasets used for object detection as well as for HOI detection are
presented. In Section 5, we shortly present de HAR module architecture, while in Section 6
the design and implementation of the HAR module is presented; a comparison between the
tested object detectors in the context of human–object interaction and the use of the HAR
results within the SmartCare are also discussed here. Finally, we draw some conclusions in
Section 7.

2. Related Work

An approach to recognizing daily activities based on imaging and neural networks is
presented by M. Buzzelli, A. Albé and G. Ciocca in [20]. In the first part, the training and
testing subsets are defined and the activity groups are decided based on three properties:
duration, type and position. Each group is divided into two: by duration of activities,
long or short; by type, dangerous or common; and by position, static or mobile. Based
on the above classifications, there is a grouping by status, alarming situations and daily
activities. The approach has two steps: detect the person using ‘Faster R-CNN’ [21] and
then recognize the action by using two neural networks: I3D [22] and DeepHAR [23].
The obtained accuracy is 97% on status activities, 83% on alarming situations and 71% on
daily activities.

Another image-based approach is described in [24] and uses depth images and thermal
images to maintain confidentiality, as these images do not retain details. The dataset was
taken from an elderly person’s home for one month. The defined classes are: the person
sleeps, sits on a bed/chair, stands, walks, uses the nightstand and needs assistance from
a caretaker. In addition to the six activities, the background was also noted: when the
person is not in the room. Having two streams of images, the authors trained two models
and decided to merge them into one [25,26]. The deployed models use the ResNet-34
architecture [27], the average accuracy on the six activities and the background is: 94%
on thermal images, 93.2% on depth images, 91.8% using early fusion and 95.8% using
delayed fusion.

C. Alexandros et al. [28] presents an activity monitoring system using RGB images
or data from an RGB-D, which provides 3D information about the objects in the scene.
This system can recognize some basic activities: when a person is standing, sitting on a
chair/sofa, walking or falling. The system uses RGB images, and the person’s outline is
extracted by a background removal algorithm. The system uses a model based on a set
of key positions [29] and the most representative body position for each activity class is
learned. When the RGB-D sensor data are used, the silhouette of the human body is easier
to obtain. The body position is extracted and a generic algorithm is used to select the
optimal joints in recognizing activity [30].

In paper [31], the activity monitoring is carried out by means of depth sensors. The
images are processed to extract the silhouette and then the human skeleton and its joints.
Based on the joints, they compute three features in order to train a hidden Markov model:
centroid points, joint distances, and joint magnitude. For each activity, there is a hidden
Markov model trained, the obtained results have an accuracy of 84.33%.
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V. Vishwakarma, C. Mandal and S. Sural in [32] use a method based on human
detection by adaptive background removal and then extract the characteristics by which
it will be detected whether a person has fallen. The extracted features are the aspect ratio
between the height and the width of the bounding box that fits the person, gradients on
X and Y, the fall angle. If the action takes place outside and there are more people, the
accuracy is 79%, the sensitivity is 54%, and the specificity is 97%. However, if there is only
one person involved, both in outdoor and indoor environments, accuracy, sensitivity, and
specificity are 100%.

A different approach in detecting human actions based on videos is presented by
Deepmind (Google) in [33,34]. A 700 classes video dataset is used to train the I3D neural
network. The model was trained and deployed on a machine with 32 P100 GPUs. The top-1
accuracy on the test set is 57.3%.

A team of researchers from MIT-IBM AI Lab propose a dataset [35,36] of one million
short videos for dynamic events which take place over a period of time no longer than
three seconds. 339 verbs are associated with over 1000 videos each. Results from three
different models are combined resulting in a 31.16% top-1 recognition score.

3. Human Activity Recognition in the SmartCare System

The ICT solution for assisted living proposed in [37] is improving living conditions
of the elderly and/or people with chronic disorders through intelligent automation of the
environment (home) and monitoring their vital parameters. Home care assistance provides
independent living for the categories of people mentioned above. The SmartCare system
provides a platform for monitoring, automation, and an alerting protocol in case of life-
threatening events. It is a system based on heterogeneous IoT devices which offers access
to data services and performs offline analysis using artificial intelligence. The Ambient
assisted living system integrates software utilities in order to configure and adapt it to the
needs of the beneficiary and make it easily scalable for the designer and the integrator.

To achieve maximum user satisfaction, the SmartCare project [37] is based on a user-
centric design that covers all the needs and preferences of the beneficiary, integrator or
system administrator.

As described in [37], the ambient assisted living system consists of three main parts:

• Gateway: Implements the communication and interfaces with the installed telemedicine
devices, actuators, as well as with the video monitoring component;

• Expert System: Cloud service that implements the intelligent processing of information
from the sensor network and other stand-alone components by defining and following
predefined monitoring and alerting rules;

• DeveloperUI: Graphical user interface that facilitates the design of solutions for specific
home care applications. The patient’s needs differ from case to case, according to the
medical conditions.

In Figure 1, a conceptual architecture of the SmartCare system is presented with the
components mentioned above. Among the devices layer it is integrated as well the human
activity recognition component using video monitoring, sub-system which communicates
with the Gateway.

The purpose of HAR is to identify the patient’s life-threatening events such as falls,
fainting or immobility, as well as activities which have to be regularly carried out in order
to avoid critical situations, for instance people with diabetes have to serve the meal after
a schedule and hydrate continuously. Failure to detect the patient for a longer period of
time than a predetermined threshold and the detection of specific activities will generate
warnings or notification messages to the caretaker.

The device network is composed of sensors belonging to three main categories: vital
parameters (heart rate wristband, glucose meter, blood pressure monitor, body thermometer,
pulse oximeter, etc.), home automation (smart switch, smart plug, smart lock, panic button,
smart lightbulb, etc.) and physical activity (video monitoring and accelerometer—steps,
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fall, burned calories). Figure 2 illustrates the human activity recognition module within the
bigger SmartCare system.
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The functional diagram of the system from the perspective of the proposed HAR
module is presented in Figure 3: the ZED stereo camera is connected via USB 3.0 to the
Jetson unit; the events (activities of interest for the specificity of the monitored person or a
life-threatening situation) are sent over MQTT to the Gateway. It is necessary to install the
SDK provided in order to make use of all the image post-processing facilities of the ZED
sensor. For reasons of modularity but also to relieve the gateway component of the video
processing, this task is implemented on a System-on-Chip platform, Nvidia Jetson Xavier
AGX. Object detection, human–object interaction detection and activity detection are also
performed on Jetson.
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3.1. Monitoring Scenarios

In the following three tables are presented the activities that the HAR module is
monitoring, according to the specific medical condition of the patient, if any. Table 1
presents the monitoring scenarios for patients with diabetes. For this condition, the focus is
on physical activity, the eating schedule and the adequate hydration of the patient. The
scenarios for monitoring patients with Alzheimer’s disease are presented in Table 2: due
to the condition, the person could do an activity repetitively or might put himself/herself
in danger by forgetting various household appliances in operation, such as the oven, the
cooker or the tap water. Table 3 summarizes the monitoring scenarios for patients with
arthritis for which it is recommended to monitor physical activity and eating habits.

Table 1. Monitoring scenarios for diabetes.

Monitored Activity Object Classes Verbs Resulted Triplets
<Human, Verb, Object>

The patient is active Person, chair, couch, bed To run, to sit, to lay <human, sits on, chair>
<human, lays on, bed>

The patient serves the meal
(after a diet recommended by

the doctor)

Person, dining table, pizza,
banana, apple, sandwich, orange,
broccoli, carrot, hot dog, donut,
cake, fork, knife, spoon, bowl,

plate, oven, microwave, toaster,
fridge, chair

To eat, to hold, to cut, to
catch, to sit, to carry

<human, eats, sandwich>
<human, eats, broccoli>
<human, sits on, chair>
<human, holds, fork>
<human, eats, pizza>

The patient drinks liquids Person, wine glass, bottle, cup To drink, to hold, to carry

<human, drinks from, cup>
<human, holds, bottle>
<human, drinks from,

wine glass>
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Table 2. Monitoring scenarios for Alzheimer’s disease.

Monitored Activity Object Classes Verbs Resulted Triplets
<Human, Verb, Object>

The patient serves the meal
(too often due to the condition,

eats too much)

Person, food (different types of
food: pizza, banana, apple,

sandwich, hot fog, etc.), dining
table, fork, knife, spoon, bowl,

oven, toaster, fridge, microwave

To eat, to sit, to hold, to
cut, to carry

<human, eats, donut>
<human, carry, fork>

<human, holds, bowl>
<human, cuts with, knife>

<human, holds, spoon>

The patient drinks liquids
(too often) Person, wine glass, bottle, cup To drink, to hold, to carry <human, drinks from, cup>

<human, holds, bottle>

The patient opens the tap (and
may forget it opened) Person, sink To stand, to hold, to point <human, stands, ->

<human, points at, sink>

The patient opens the gas
while cooking (and may forget

it opened)
Person, oven, bowl To hold, to carry, to point

<human, holds, bowl>
<human, points at, oven>

<human, carry, bowl>

Table 3. Monitoring scenarios for arthritis.

Monitored Activity Object Classes Verbs Resulted Triplets
<Human, Verb, Object>

The patient is active Person, chair, couch, bed To run, to sit, to lay <human, runs, ->
<human, lays on, bed>

The patient serves the meal
(after a diet recommended by

the doctor)

Person, dining table, pizza,
banana, apple, sandwich, orange,

broccoli, carrot, hot fog, donut,
cake, fork, knife, spoon, bowl,

plate, oven, microwave, toaster,
fridge, chair

To eat, to hold, to cut, to
catch, to sit, to carry

<human, holds, spoon>
<human, holds, bowl>

<human, sits at, dining table>
<human, eats, apple>
<human, eats, cake>

The patient drinks liquids Person, wine glass, bottle, cup To drink, to hold, to
carry

<human, holds, bottle>
<human, carry, cup>

<human, drinks from,
wine glass>

3.2. Object Detection and Human–Object Interaction Detection in HAR

Due to the fact that the HAR system needs to be deployable at the patient’s home
on a mobile platform and integrated as a stand-alone sensor, only lightweight models
were taken into consideration for SmartCare. Another constraint that must be fulfilled
is given by the necessity to detect the interaction of the patient with specific objects of
interest (knife, spoon, bottle, oven, chair, etc.); therefore, only solutions based on object
detection are suitable. Of all datasets available for human activity recognition used by
the solutions presented in Section 2, the ones designed for object detection are the easiest
to enhance with new classes. This aspect was also taken into account when the HAR
architecture was designed for SmartCare because new classes will be needed in the near
future (different type of medicine, wearables such as the insulin pump, fitness wristband,
and blood pressure).

Taking into account the limited hardware resources and compatibility restrictions,
only the neural networks with a custom architecture for mobile platforms with limited
computing power were considered, such as MobileNet v1 and v2 [38,39], Inception [40],
or YOLO [41]. The following implementations have been chosen for the four basic
architectures:

1. Jetson Inference [42] for SSD-MobileNet v1, SSD-Mobilenet v2 and SSD-Inception V2;
2. Darknet [43] for YOLO v4 and YOLO v4 Tiny.
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Jetson Inference [42] is a library written by Nvidia that offers implementations not only
for the three neural networks listed above, it provides a wide range of networks for image
recognition (ImageNet), object detection (DetectNet), semantic segmentation (SegNet)
and pose estimation (PoseNet). The object detection networks are trained on the COCO
dataset [44], while the semantic segmentation networks are trained on Cityscapes [45,46],
DeepScene [47], Multi-Human [48], Pascal VOC [49] or SUN RGB-D [50].

YOLO v4 and YOLO v4 Tiny [41,43] are not the only open-source network architectures
developed by the creators of Darknet [51]. In addition to these, pre-trained models for
YOLO v3 [52] or v2 [53] are also available. Just like the Jetson Inference object detector,
Darknet uses the COCO dataset.

To understand the context in a scene, we need to recognize how humans interact with
objects in the environment. A scene can be further understood by detecting human–object
interactions (HOI). Once again, the limited computing power on the used mobile platform
restricts us to use the smallest neural network that runs in real time for human–object
interaction detection.

In paper [54], the researchers propose a neural network for HOI detection. The model
was validated on two public datasets for HOI detection: Verbs in COCO [55] (V-COCO)
and Humans Interacting with Common Objects (HICO-DET) [56,57].

We used the V-COCO dataset [55] to evaluate iCAN [54] results for HOI detection.
Using the single-thread sequential configuration for the evaluation tests, in Table 4, HOI
detection accuracy increases with object detection accuracy. AP is calculated for the Agent
(human) and for the Role (object/instrument). Two confidence thresholds were used for
the evaluation of HOI detection: 0.5 and 0.2. Gupta Saurabh and Malik Jitendra define
in [55] two scenarios for role AP evaluation:

• Scenario 1 (S1): in test cases with missing annotations for role a prediction for agent
is correct if the action is correct and the person boxes overlap is >0.5 and the cor-
responding role is empty. This evaluation scenario is fit for missing roles due to
occlusion.

• Scenario 2 (S2): in test cases with missing annotations for role, a prediction for agent is
correct if the action is correct and the person boxes overlap is >0.5 (the correspond-
ing role is ignored). This evaluation scenario is fit for cases with roles outside the
COCO classes.

Table 4. HOI detection evaluation for agent and role.

Object
Detector

Average
Agent AP

Average
Role AP

[S1]

Average
Role AP

[S2]

Average
Agent AP

Average
Role AP

[S1]

Average
Role AP

[S2]

Threshold = 0.2 Threshold = 0.5

SSD-Mobilenet-v2 [39,42] 25.78% 11.75% 12.99% 26.43% 13.43% 14.80%

YOLO v4 tiny [41,43] 26.62% 13.41% 15.09% 26.79% 14.92% 16.70%

SSD-Inception-v2 [40,42] 29.80% 14.26% 15.94% 30.02% 14.78% 17.56%

YOLO v4 [41,43] 56.68% 37.77% 43.20% 57.05% 40.07% 45.72%

The more objects are detected in the scene and the higher their confidence factor is, the
more HOIs are detected with a higher confidence. Figure 4 shows the activities detected by
iCAN using different object detectors.

In order to evaluate the HOI detector we keep track of some of the most relevant
actions: to eat, to drink, to sit on, to stand, to hold an object/instrument, to lay on. A
comparison of accuracies of the actions mentioned above using the four selected object
detectors is presented in Table 5.
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Considering the results for human–object interaction detection (Table 4) and the
detection accuracy for the most relevant actions (Table 5), the best compromise is using
YOLO v4 as object detector.
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Figure 4. (a) Input frame; (b) HOI detections using YOLO V4 tiny; (c) HOI detections using SSD-
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Table 5. HOI detection evaluation for the most relevant actions.

Detected Activity SSD—Mobilenet—v2 YOLO v4 Tiny SSD—Inception—v2 YOLO v4

To eat 4.24% 7.06% 4.14% 32.11%

To drink 0.75% 5.76% 2.13% 25.69%

To lay on 9.09% 0.32% 13.43% 10.68%

To sit on 17.17% 7.91% 22.59% 34%

To stand 48.88% 53.27% 54.35% 78.51%

To hold an object/instrument 7.85% 9.48% 9.03% 34.78%

4. Used Datasets for Object Detection and HOI Detection
4.1. Common Objects in Context (COCO)

Microsoft developed the COCO dataset [44]. It contains 91 categories of objects and
328,000 images. The majority of the categories have over 5000 annotated objects. The total
count of annotated objects is 2,500,000. Although there are other multi-class datasets, such
as ImageNet [56], COCO has many more annotated objects in each category. A dataset with
fewer classes but more accurate predictions made by the model is preferred over a dataset
with more categories but worst predictions. In addition, the COCO dataset contains an
average of approximately 8 annotated objects per image, while ImageNet has only 3 or
Pascal VOC 2.3 [49]. The used dataset offers annotations for image classification, object
detection, and semantic segmentation.
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Because a person can interact with different objects, a relevant statistic in choosing the
dataset says that only 10% of images contain objects from a single category, while in Pascal
VOC approximately 60% of images contain annotations from a single category.

4.2. Verbs in Common Objects in Context (V-COCO)

V-COCO [55] is a dataset that builds on top of COCO for HOI detection. It splits 10,346
images into: 2.533 for training, 2.867 for validation, and 4.946 for testing. In total, there are
16.199 human instances. The dataset considers 26 different action verbs, for a few verbs it
includes two types of attributes: instrument and object, resulting in a total number of 29
action classes.

Divided by the existence of an attribute and its type, the verb classes with the associ-
ated attributes are as follows:

• <agent, verb>: walk, smile, run, stand;
• <agent, verb, object>: cut, kick, eat, carry, throw, look, read, hold, catch, hit, point;
• <agent, verb, instrument>: surf, ski, ride, talk on the phone, work on computer, sit,

jump, lay, drink, eat, hit, snowboard, skateboard.

In the context of the SmartCare project, we split the V-COCO verb classes into three
categories: essential, util, and unnecessary, according to Table 6.

Table 6. V-COCO categories in SmartCare.

Category Verbs with Associated Attribute Type

Essential verbs for SmartCare walk, eat_object, sit_instrument, lay_instrument, drink_instrument, eat_instrument,
hold_object, stand

Util verbs for SmartCare cut_instrument, cut_object, talk_on_phone_instrument, work_on_computer_instrument,
carry_object, smile, look_object, point_instrument, read_object, run, jump_instrument

Unnecessary verbs for SmartCare surf_instrument, ski_instrument, ride_instrument, kick_object, hit_instrument, hit_object,
snowboard_instrument, skateboard_instrument, catch_object

V-COCO has, on average, 1.57 people annotated per image that perform actions: over
7000 images with one annotated person, 2000 with two, 800 with three and the rest with
four or more people annotated [55]. Figure 5 illustrates situations in which the person
performs multiple actions at the same time.
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5. Human Activity Recognition Module Architecture

From the HAR system’s point of view, we have a n-Tier architecture: Zed Camera
& Nvidia Jetson, Gateway, System Expert. From the point of view of the application that
runs on Nvidia Jetson, we have a multi-level architecture. The hardware architecture is
presented in Figure 6. The HAR data flow is presented in Figure 7: the video stream is
processed on the Jetson platform, after which an alert is sent when activities of interest are
recognized.
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The ambient images of the patient are acquired by the ZED 2 stereo camera.
At the software level, the application level runs a multi-layer architecture consisting:

the image acquisition and preprocessing layer, the logic layer and the communication layer.

• The first layer acquires images and preprocesses them in order to be fed to the logic
layer.

• In the logic layer, two neural networks are used: one for human and object detection
and another one for human–object interaction detection. Based on the interactions, the
activities which are performed by the monitored patient are determined.

• The communication layer prepares the data and transmits it to the server. The com-
munication between the HAR system and the Gateway is carried out over the MQTT
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protocol. Based on a voting procedure that takes into consideration other sensor results
as well, the Gateway decides when notification alerts are sent to the family or the
medical doctor.

Figure 8 illustrates the proposed pipeline architecture, consisting of two distinct and
modular parts: the patient and the environmental objects detection and the detection of the
human–object interactions. Based on the interaction between the person and the objects
of interest, we can draw conclusions regarding the monitored activities and conditions:
falling/fainting, immobility, serving the meal, drinking liquids, etc.
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6. Design and Implementation

In this section, we will discuss the following: class diagram, communication between
classes, used threads and finally communication with the Gateway-MQTT server.

As presented in the diagram from Figure 9, the application is modular; if needed,
different types of cameras or object detectors can be used.

• CameraAcquisition and ZEDAcquisition implement the functionalities of IAcquisition
interface: we considered the option of using a generic camera or the ZED camera
(default option);

• JetsonInferenceObjectDetector and DarknetOD implement the functionalities of IObject-
Detector interface: two main options were integrated for object detection-YOLO [41,43]
(Darknet implementation [51]) and Mobilenet/Inception [38–40] (official Nvidia im-
plementation for Jetson [42]).

For reasons of optimization, threads are used for independent tasks and the communi-
cation between them is carried out using priority queues, as follows:

• AcquisitionAndObjectDetect thread is used for image acquisition and object detection;
• queueImageToHOI stores the object detection results;
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• HOIDetector thread reads from queueImageToHOI, performs human–object interac-
tion detection;

• queueHOIToMain stores the detected HOIs;
• MQTTConnection thread initiates the connection with the MQTT agent to which the

Gateway is connected.

The diagram presented in Figure 10 illustrates the communication between modules
and threads for one frame, from acquisition to activity detection.
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HOI detector inference time is considerably longer than the time required to detect
objects. That is why we decided to test using multiple threads for HOI detections. Figure 11
describes the communication between threads. Priority queues are used for thread commu-
nication.
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There is only one thread for image acquisition and there are object detection, and
multiple threads for HOI detection. ImageToHOI priority queue is used between the
AcquisitionAndObjectDetect thread and HOIDetector thread(s), while HOIToMain priority
queue is used to return the HOI detections to the MQTTConnection thread which updates
the current activity and communicates with the MQTT agent.

6.1. Forwarding Detected Activities to the SmartCare Gateway

As described in Section 3, the SmartCare Gateway receives information from several
devices, one of which is the HAR system. Communication with the Gateway is carried out
using the MQTT protocol by publishing messages. We use serialized JSON objects with
information about the current activity of the supervised person.

On initialization, the Gateway subscribes to the following topics:

• gateway/register;
• video-monit/1/activity/response-get;
• video-monit/1/activity/response-async-get.

At start-up, the video monitoring system subscribes to:
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• gateway/discover;
• video-monit/1/activity/get;
• video-monit/1/activity/async-get.

It must also make itself known to the Gateway by publishing a serialized JSON object
containing system data on the gateway/register topic. The video-monit subtopic is the
name of the HAR bridge used for the proposed module. The module communication and
initialization process can be followed in Figures 11 and 12, both the HAR system and the
SmartCare Gateway subscribe to the MQTT Agent for this connection.
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Topic description:

• gateway/register and gateway/discover are used for a handshake protocol: bridges
from each device in the network (including the HAR system) subscribe to gate-
way/discover to receive a “get acquainted” message from the server, after which
they publish device details to gateway/register to get recognized by the server.

• video-monit/1/activity/get and video-monit/1/activity/response-get: under the
video-monit/bridge name we have 1/device enrolled with a resource of type activity/.
The Gateway publishes an inquiring operation on the get/subtopic and the video
monitoring system responds on the response-get/subtopic with the patient activity
details. This message exchange is represented in Figure 13.

• video-monit/1/activity/async-get and video-monit/1/activity/response-async-get:
similar with the above get/response-get topics, an asynchronous behavior is triggered
by an ‘on’/‘off’ message. An example of asynchronous communication is illustrated
in Figure 14.
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6.2. Thread Experiments

In this subsection, we present the experimental results of configurations with different
numbers of threads. One thread is always needed to run the MQTT client which keeps
communication with the Gateway open, but we will focus on the threads used by the other
components.

6.2.1. Configuration 1: Single Thread for Acquisition, Object Detection, and
Activity Detection

All components except MQTTConnection run on a single thread. The entire processing
pipeline runs sequentially: first the image is acquired, then object detection is performed,
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and finally the HOIs are detected and used to determine the activity performed by the
patient. Figure 15 illustrates the single-thread configuration block diagram.
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detection.

An example of a sequential pipeline timeline is presented in Figure 16: the total
processing time is the sum of object detection time and the time needed to detect HOIs.
The average frame processing time is t1 + t2; therefore, the result for the third frame is
available at T + 3 × (t1 + t2). t1 and t2 are not real measurements; for Figures 16–18, they
were chosen to ideally exemplify the tested configurations.
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6.2.2. Configuration 2: One Thread for Acquisition and Object Detection, Another One for
Activity Detection

In this test scenario, we follow the general diagram from Figure 10: one thread is
used for image acquisition and object detection, results go through first queue to the HOI
detector which writes the output to the second queue in order to be further processed and
extract the patient activity.

Figure 17 illustrates the result timeline: In addition to the first iteration, which is
always affected by the initialization process and is taken out of the time statistics, each time
the HOI detection thread finishes the current frame processing, the queue will feed the
object detections for the next frame. The average processing time is, in fact, the inference
time for HOI detection (t2), the result for the 3rd frame is available at T + t1 + 3 × t2.
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6.2.3. Configuration 3: One Thread for Acquisition and Object Detection, Two Threads for
Activity Detection

To the previous scenario we add a second thread for HOI detection: ideally, as ex-
emplified in Figure 18, the run-time for image processing should remain the same even
if multiple threads are used. In practice, to run multiple instances of neural networks,
there should be multiple GPUs. To satisfy this constraint, multiple logical video cards were
created by dividing the physical video memory by the number of threads.
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The advantage of using a single thread for acquisition, object detection and HOI
detection is that the time elapsed between frame acquisition and activity detection is the
shortest of the three configurations, representing mostly the inference time of the two neural
networks (Figure 16). In the second and third configurations, the time elapsed between
frame acquisition and activity detection is longer, and a delay is added due to unavailable
threads for HOI detection (Figures 17 and 18). An advantage of using dedicated threads in
the following configuration: one for acquisition and object detection and one/two for HOI
detection, is that the FPS is higher.

Table 7 presents a comparison between different scenarios regarding used threads
and queue sizes. Increasing the queue size causes a longer time elapsed between frame
acquisition and activity result. In order to have the smallest delay, the queue size is set to
be equal to the number of threads used for human–object interaction. Ideally, increasing
the number of threads should improve FPS, but, because the memory of the video card is
split into multiple virtual GPUs, the processing speed decreases considerably, so that the
configuration with two threads for HOI detection is actually slower than the configuration
that uses only one thread for this process. The fastest configuration in terms of FPS is the
second one-two threads: acquisition and object detection, HOI detection.

Table 7. HOI detection thread experiments.

Acquisition and OD Threads HOI Threads Queue Size FPS

0 0 0 2.17

1 1 1 2.43

1 2 2 2.23

An example of activity detection is shown in Figure 19 and a snapshot of the MQTT
message is listed in Figure 20.
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6.3. Using HAR Results in the SmartCare System

Depending on the monitored patient, the SmartCare system can integrate a wide range
of sensors for different aspects, such as

• Vital parameters: heart rate (Fitbit Versa Smartwatch), blood pressure (Omron), blood
glucose meter (Contour Plus), etc.

• Home automation: smart dimmer (AD146), smart switch (Fibaro Double Switch 2),
valve actuator (Popp Flow Stop 2), smart lock (Danalock V3), waterleak detector (Abus
Z-wave SHMW), panic button (Orvibo HS1EB), smart light bulb (Osram Smart A60),
ambient temperature, gas sensor, etc.

• Physical activity: steps, fall detection, consumed calories (Fitbit Versa), the video
monitoring system.

SmartCare has a predefined set of sensors depending on the health status of the
assisted person:

• Alzheimer’s disease: mandatory (smart lock, water tap, flood sensor, panic button),
recommendation (switch, ambient temperature), nice to have (smart bulb, vibration
sensor, humidity, HAR).

• Diabetic: mandatory (blood pressure, blood sugar), recommendation (oxygen satura-
tion), nice to have (panic button, HAR, ambient temperature, humidity).

• Hypertensive: mandatory (blood pressure, heart rate), recommendation (oxygen
saturation), nice to have (panic button, HAR, ambient temperature, humidity).

• Obese: mandatory (blood pressure, blood sugar), recommendation (heart rate), nice to
have (HAR, ambient temperature).

• etc.

Due to the possibility of a life-threatening event, a rule engine implemented on the
Gateway uses information from all connected devices and systems and defines the rules
according to the particularities of the monitored person. The WHO and the EU have
standardized the use of such rules for the assisted living applications. Accordingly, we
define three alert classes: notification (patient), alert (patient, caregiver) and emergency
(caregiver, initiate help procedure). Some examples of rules are:

1. If the light intensity is below 300 lux (which is the recommended value for an adult’s
bedroom), the light is turned on (the dimmer is at a value greater than 0) and the
patient is detected (HAR), then the light intensity value is increased step by step up to
300 lux.
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2. If the patient is using the sink (HAR) and a leak is detected, then the electricity is
turned off (smart switch, smart plug), the tap is closed and the caregiver is alerted.

3. If the patient serves the meal (HAR) and the blood sugar is above the upper limit for
diabetes, then the patient and the caregiver are alerted.

The implementation of the HAR system is available at https://github.com/MihaiCHG/
VideoMonitoring, accessed on 20 October 2022.

7. Conclusions

In order to reduce the cost of health services provided to an increasingly inactive
population, especially the elderly and people with chronic diseases or mental disabilities,
the European Union has focused on digital strategies such as e-health and telemedicine.
Through programs such as Ageing Well in the Digital World, the EU is financing the
development of medical products aiming to maintain the same level of quality in health care
services and create a better quality of life for the elderly. An EU pilot project for intelligent
living environments worth mentioning is ACTIVAGE. The SmartCare Project follows the
European AAL directives being designed to improve living conditions, especially regarding
life independence, according to the context of specific needs that people with disabilities
may have.

The SmartCare platform in which the human activity recognition system is included
has a ‘connect and use’ architecture that does not require settings to be made. It is designed
as a modular platform to which devices can be added or removed in the simplest way
possible without affecting the functionality.

To detect activities, this HAR system uses two convolutional neural networks. The
first network detects objects in images, including people, while the second one detects
human–object interactions based on objects and people received from the previous network.
Because the system must run in real time, these networks must have as little processing time
as possible. Yolo V4 was chosen from the neural networks for object detection presented in
this paper, and iCAN was chosen for the detection of interactions. Based on the detected
actions, the monitored activities are detected.

Activities are sent to the gateway via MQTT. The system subscribes to topics that it
listens to when it needs to submit activities, and then publishes them on paired topics.

The lab results presented in this paper demonstrate that such a system can be inte-
grated in the SmartCare platform in order to provide information about the activity of
the monitored patient, to confirm or deny events detected by other sensors connected to
the platform (e.g., IMU). The activity of the person will not be established on the basis of
the information received from a single sensor/module, but by merging the information
received from other devices.

Future work includes dataset expansion with annotation for specific object classes
such as different types of medicine, other objects often found in the patient’s environment
(home or medical center)—wheelchair, walking crutches, rolling crutches, different types of
prostheses or specific wearable technology which also has integration with the SmartCare
platform—insulin pump, fitness wristband, blood pressure monitor, panic button, smart
switch and smart plug, etc. The object detection model can easily be retrained with an
enhanced dataset. The HOI verbs and possible interactions will also be tailored according
to the newly added objects.

The recent COVID-19 pandemic has led us to include within SmartCare a stand-alone
module in order to monitor the distance and physical interaction between people: patient
and patient, patient and caregiver, and patient and medical staff. Future work also implies
adapting the HAR output so that the system is compliant with this feature as well.

https://github.com/MihaiCHG/VideoMonitoring
https://github.com/MihaiCHG/VideoMonitoring
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Abstract: For most visually impaired people, simple tasks such as understanding the environment or
moving safely around it represent huge challenges. The Sound of Vision system was designed as a
sensory substitution device, based on computer vision techniques, that encodes any environment in
a naturalistic representation through audio and haptic feedback. The present paper presents a study
on the usability of this system for visually impaired people in relevant environments. The aim of
the study is to assess how well the system is able to help the perception and mobility of the visually
impaired participants in real life environments and circumstances. The testing scenarios were devised
to allow the assessment of the added value of the Sound of Vision system compared to traditional
assistive instruments, such as the white cane. Various data were collected during the tests to allow
for a better evaluation of the performance: system configuration, completion times, electro-dermal
activity, video footage, user feedback. With minimal training, the system could be successfully used
in outdoor environments to perform various perception and mobility tasks. The benefit of the Sound
of Vision device compared to the white cane was confirmed by the participants and by the evaluation
results to consist in: providing early feedback about static and dynamic objects, providing feedback
about elevated objects, walls, negative obstacles (e.g., holes in the ground) and signs.

Keywords: sound of vision; visually impaired; sensory substitution system; outdoor environments;
perception; mobility

1. Introduction and Related Work

The World Health Organization (WHO) estimates that at least 2.2 billion persons
around the world suffer from blindness or visual impairment. The effects of reduced or
absent eyesight have a major impact on the life of a person, e.g., daily routine, school,
work. In the last years, several systems were proposed to help visually impaired people
to improve their perception and/or navigation in unknown environments. These devices
incorporate different technologies and sensors.

Di Mattia et al. [1] proposed a low consumption radar-based system for obstacle
avoidance. An acoustic warning is generated every time an obstacle is detected, and
the range of detection is within 5 m. To obtain a more complex and accurate estimation
of environment objects, a sensor fusion system comprising a low-power millimeter wave
(MMW) radar and an RGB-Depth (RGB-D) sensor is described in [2,3]. Using this data
fusion, the authors ensured the accuracy and stability of the system under any illumination
conditions and expand the object detection range up to 80m. Semantic/non-semantic
acoustic feedback is sent to the user by Bluetooth bone conduction headphones. In [4],
the authors combined the advantages of an IR sensor with an RGB-D camera. A random
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sample consensus (RANSAC) segmentation and surface normal vector estimation are
used to detect the traversable area. The device is functional in both indoor and outdoor
environments and has been tested by eight visually impaired volunteers. The EyeCane [5]
is equipped with IR sensors that capture distance information about obstacles and convey
it to the user’s hand through vibrations.

In the recent years, multiple computer vision based devices for visually impaired
have been proposed in the literature. A Raspberry Pi with a camera module was used
by Abraham et al. in [6]. The device can identify and locate specific object from the
environment, detect text and convey it to speech and also to determine the walkable area.
A neural network, i.e., YOLOv3, was used to compute the elements listed before. A module
comprising a pi-camera and a controller to move the camera in the required direction was
proposed in [7], and this module was integrated into the white-cane. Mask R-CNN is
used to detect and classify the objects from the environment. Furthermore, the system
estimates the position of obstacles in outdoor environments. Kang et al. [8] proposed a
method to detect the risk of collision in a variety of scenarios. The approach effectively
locates obstacles at a risk of collision using the shape variation of a grid, called deformable
grid. This solution is further improved in [9] by introducing a vertex deformation function
to represent the displacement of each vertex in the deformable grid.

User experience understanding is essential to make assistive technology really useful,
non-obtrusive and pervasive. Building a technology for the assistance of the visually
impaired (VI) requires a deep user study to iteratively assess user satisfaction and then to
bring improvements and corrections to the system accordingly. Offline tests and evaluations
of the computer vision techniques employed by these assistive systems are truly required
to assess technical performance. However, most of the reported contributions are limited
to this form of evaluation [10–16], whereas extensive testing with visually impaired users
would bring more insight on usability. There are only a few contributions that report taking
the system ‘in the wild’, i.e., in real-life uncontrolled scenarios, to evaluate its performance
concerning the technical design and implementation or usability. The obstacle detection
system described by Rodriguez et al. [17] has been tested with visually impaired people in
real life scenarios consisting of crowded and uncontrolled areas such as a railway station.
Experiments in various uncontrolled environments have also been reported by [18,19].
The framework proposed in [20] uses voice messages to alert the user about the presence of
obstacles. The system is evaluated with the help of visually impaired subjects and answers
to the following aspects: Are the users able to start the application on their own? Can they
safely navigate in a novel environment?Is it possible to avoid obstacles using the set of
acoustic warnings? Is the system globally useful and can it complement the white cane?
In [21], a smartphone camera was used to acquire images from the environment that are
further processed on a server. Four visually impaired persons with partial level of visual
impairment tested the solution. A questionnaire regarding the overall impression, user
interface and experience and alert frequency was collected.

For most of the assistive solutions proposed in the literature, there is a lack of usability
assessment. Such evaluations should be based on a more complex feedback provided
through visually impaired user experience. Several development loops followed by user
evaluations should be employed before reaching a final solution that provides both tech-
nical accuracy and user adoption. More visually impaired user evaluations should be
designed to assess each component of the system, ranging from the information required
to be extracted from the environment to the method of delivering it, but also the various
combinations of these components. Furthermore, none of the analyzed systems employ
extensive testing in real environments and in uncontrolled settings. New requirements
could emerge from these tests, from both technical and user perspective.

2. Purpose of the Study

The Sound of Vision system (SoV) [22–24] is a sensory substitution device (SSD) that
allows a visually impaired user to perceive unknown environments and to navigate safely.
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It works by permanently scanning the environment, extracting essential features and
rendering them to the user through audio and haptic means.

Several design–implementation–evaluation loops have been previously employed
for the development of the SoV system. At each development phase, various usability
aspects have been carefully assessed: selection of the most appropriate audio and haptic
encodings [25–27], the effect of training on performance improvement [28,29], and cognitive
and affective assessment of mobility tasks [30]. These previous evaluations have been
deployed in controlled laboratory settings.

In contrast, the present study is focused on evaluating the usability of the Sound of
Vision system in complex real life environments, outdoors. For this purpose, evaluations
to assess user perception and mobility in outdoor environments were devised. The tests
were performed in normal lighting (i.e., cloudy to bright sunlight) and weather conditions
(i.e., no rain or snow, temperatures above 0 ◦C). The users are assumed to be familiar with
all the encodings and options available in the Sound of Vision (SoV) system, and were
encouraged to use their preferred combination in each test.

The tests focused on evaluating the usability of the Sound of Vision system in real
world outdoor scenarios. The main research questions addressed were:

1. Are the visually impaired (VI) users able to perceive the environment (perception)? Are they
able to identify obstacles and specific objects (negative obstacles, hanging obstacles, signs,
walls) that define the added value of SoV compared to using the white cane? Is the system
usable in real life environments and under real life circumstances (outside laboratory setups)?

2. Are the VI users able to use the information from the SoV device to guide their interaction
with the environment (mobility)? Are they able to move around and avoid obstacles? Are
they able to move around and identify targets (e.g., bus stop, corner of a building)? How
is their mobility performance with the SoV system compared to traditional assistive devices
(i.e., white cane)?

The results of the evaluations were analyzed using a case study approach, which is
more appropriate for understanding the strengths and weaknesses of the system, correlated
to the individual user expectations and needs. This allows us to better explain the highly
probable individual variance and inconsistencies in user performance and feedback given
the small size of the sample involved in the tests vs. the high diversity of the visually
impaired community. Further, an analysis of averaged results of all participants was
also performed to overcome individual differences. However, statistical significance tests
or extensive comparisons between demographic categories were not the purpose of the
presented study. An emphasis was laid on acquiring user feedback through interviews
and questionnaires.

While several research groups were involved in the multiple experimental and evalua-
tion phases of the Sound of Vision project, each performed a specific study with the system
in each phase [25–30]. Overall, almost 50 blind persons were involved in these evaluations
throughout the project. However, the replication of the same experiments in real-life
environments is difficult and prone to significant variations. In contrast, the experiments
involving virtual environments and laboratory settings, were replicated at the premises of
four partners in three countries. Furthermore, we do not provide a comparison between the
results of the present study and those obtained in the previous usability evaluations with
the system. This is mainly justified by the different versions of the SoV prototype used in
the evaluations as several design–implementation–evaluation loops were employed during
the project. Each loop was followed by improvements on the design and functionality
of the system. Moreover, each evaluation phase had a different purpose, specific to the
corresponding technological readiness level of the system.

The main contributions of this paper consist in providing a procedure for usability
assessment of sensory substitution devices for the visually impaired in complex real-life
environments as well as the results of applying it for the evaluation of the Sound of Vision
SSD. Besides their intrinsic value for the validation of the multi-sensory feedback employed
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in the Sound of Vision system, these results also provide further valuable insights for the
development of any sensory substitution device for the visually impaired:

• Evaluation of environment perception and understanding based on audio and haptic
feedback, in real life usage conditions;

• Evaluation of the usability of multi-sensory feedback of SSDs for mobility tasks in real
life environments;

• Importance of training and recommendations for improved protocols and instruments
for training with SSDs;

• Evaluation of the interplay between SSDs and traditional assistive instruments (white cane);
• Recommendations for the development of multi-sensory feedback systems for the

visually impaired.

To the best of our knowledge, this is the first elaborate study on the usability of a
sensory substitution device for the visually impaired in real-life conditions, outdoors.

3. Materials and Methods
3.1. The Sound of Vision System

The Sound of Vision system (SoV) is a wearable sensory substitution device (SSD) for
visually impaired persons. The SSD aims to help them to understand the surrounding
environment (perception) and to improve their mobility in unknown, indoor and outdoor
environments (navigation). The SoV prototype used in the present study integrates custom
and complex software and hardware solutions that enable real-time operation of the device.
The system works by permanently acquiring environmental information through a fusion of
cameras and sensors, extracting essential features and providing real-time feedback to the
user by conveying the information through audio signals and haptics (vibrations)—Figure 1.
Moreover, the system is designed to work in both indoor and outdoor environments and
irrespective of the illumination conditions. A presentation of the SoV system can be accessed
at https://youtu.be/6QRiwykp_bM (accessed on 5 July 2021).

Figure 1. The Sound of Vision system. (Left) The prototype used in the usability evaluations.
(Right) Various parts of the system.

Environment sensing and reconstruction is performed based on data acquired with
different imaging and inertial sensors [31]. A structured light camera provides depth
information in indoor environments and in low light or in the dark. In outdoor environ-
ments with normal and bright lighting conditions, the depth information is provided by a
stereo vision system. This combination of sensors ensures the environment sensing in any

 https://youtu.be/6QRiwykp_bM
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conditions. The 3D reconstruction and recognition of the various elements of interest in
the environment is obtained with specific processing pipelines, tailored for the particular
input used [23].

The 3D reconstruction pipeline used in the performed tests is based on stereo vision
and is specifically tailored for outdoor environments. The details of the technical solution
and the reconstruction algorithms for outdoor environments are presented in [24]. In this
configuration, the system is able to identify various types of elements of interest and their
properties (width, height and position with respect to the camera): generic obstacles, walls,
negative obstacles (e.g., holes in the ground, stairs down), signs and texts.

Sound of Vision offers to the user several ways of perceiving the surrounding scene:
2 full scene encoders, plus tools useful for specific situations, and danger rendering.
Changing between these and adjusting their audio/haptic options and volumes is easy to
perform in real-time, using a remote control.

The full scene encoders are independent modes of encoding the information about
all the objects in the scene (i.e., segmented and identified by the 3D module): iterative
(renders the objects in a loop—one by one, in increasing order of distance from user, similar
to an expanding sphere); continuous (renders all the objects simultaneously). In both
cases, the rendering of each individual object has both audio and haptic outputs, which
are carefully synchronized. Furthermore, both of the full scene encoders provide several
options regarding the way that individual objects are rendered. For example, in the iterative
mode, for audio, the user can choose between stimuli of two types: bar impact sounds or
bubble sounds, while for haptics, the user can choose between the projection of shapes
on the belt, or just of the closest points of the objects in the scene. The properties of the
sound stimuli (e.g., pitch, duration, amount of oscillation, etc.) generated for each object
intuitively encode its width, height, distance to the user and elevation from the ground [25].
For example, when encoded with impact sounds, the closer an obstacle is to the user,
the louder its sound will be. The wider the obstacle, the deeper (lower) its sound will be.

The tools are designed in order to help the user in certain situations by providing
simpler information; e.g., by reducing the number of objects in the scene that are encoded
and rendered. The ‘flashlight’ tool provides a very simple encoding of the distance from
camera to the first object touched by an imaginary line going straight out from the camera.
It is helpful to carefully explore a scene and allows accurate perception of distances to
objects’ surfaces, and especially of their margins. The ‘Best free space’ tool gives the
user a simple indication of the open space where he/she can navigate. Other tools offer
the functionality of texts detection and reading, signs detection and encoding, and TTS
scene description. Another important feedback provided to the user is represented by
the notification for Dangers’. The system renders to the user, through acute, hard-to-miss
stimuli, the potentially dangerous elements in the scene—i.e., head-level obstacles or holes
on the ground that are located on collision course, in a specified range.

3.2. Virtual Training and Testing Environment (VTE)

Before testing the SoV final prototype in real-world scenarios, every user participated
in a short training and testing session using the Virtual Training and Testing Environment
(https://youtu.be/hBay25-KN10, accessed on 5 July 2021) [26,28]. The VTE offers a series
of 3D scenes meant to train, evaluate and improve user skills and their familiarity with
the SoV system. The VTE integrates three operating modes: learning—tasks are presented
individually and the user can switch between various tasks, audio and haptic models, and
through this mode the user can learn the audio/haptic feedback associated with the task;
practice—the user pre-tests the learned information and receives feedback (correct/wrong)
as well as additional details if required; and testing—the users test their ability to correctly
answer the task, no feedback involved.

The main goals of the usability evaluation included in the present study concern the
ability of visually impaired persons to use the system in the “wild”, in outdoor environ-
ments. These represent the most complex environments for the SoV sensory substitution
device and its users. Thus, prior to performing any training or testing in outdoor envi-

https://youtu.be/hBay25-KN10


Electronics 2021, 10, 1619 6 of 23

ronments, the users required to have a minimal experience with the system in the Virtual
Testing and Testing Environment and indoor environments:

• The already trained users participated in one VTE and indoor training session, where
they became familiar with the latest updates on the SoV system (changes or additions
to the encodings, using the remote control, etc.).

• The new participants went through full training and testing in VTE (Single attributes,
Frontal Pickups, Passing between, Treasure hunt—Boxes) and indoor (Frontal Pickups,
Passing between, Treasure hunt—Boxes).

During the VTE and indoor training session(s), the users were presented with all the
audio and haptic encodings available in the SoV system. After that, they were able to
select the models according to their preferences and even switch between them during
the training and testing sessions. This feature is available using the remote control by
the visually impaired or by the trainer. The outdoor sessions contained both training and
testing exercises. The goal of training was to make the users familiar with using the SoV
system to identify real-world obstacles (both generic and special objects), both in ego-static
scenarios and mobility scenarios. The training and testing scenarios contained both static
and dynamic obstacles in natural outdoor scenes (in the parking lot, on the sidewalk, etc.)
in usual environmental noise conditions. Each scenario started with training ego-static
perception of the presented scene and continued with training the use of the system while
moving in that scene.

Each outdoor session started with training in predefined scenarios and ended with a set
of tests related to the scenarios trained in that session. For each scenario, the user trained
the perception of the environment (i.e., ego-static), followed by training the mobility in that
specific environment (i.e., ego-dynamic). For most of the scenarios, the egostatic training started
with an environment containing only static objects, followed by adding dynamic objects, too.
The dynamic obstacles were at first represented by moving persons (SoV team members).
Uncontrolled environments were gradually added to the training and testing where dynamic
obstacles were represented by any person, bicycle, or car passing by. The testing scenarios were
different from the trained ones to minimize the effect of learning the environment. At most,
it was acceptable to use a trained setup, but starting with a different position and orientation
for the user. Figure 2 illustrates a map of the University campus and downtown Iasi where the
locations of the training and testing environments are marked.

Figure 2. Geographical localization of the environments used for training and testing.

The outdoor training time was minimal, it had small variations between users, de-
pending on their skills with the system. There was a number of 4 sessions of 2 h planned
for training (TR) and testing with each user (Table 1). However, due to weather conditions
(temperatures approaching 0 ◦C making some of the testing equipment work inappropri-



Electronics 2021, 10, 1619 7 of 23

ately) and users’availability, some sessions were shorter than 2 h, and thus some users
were invited for one extra session.

Table 1. Overview of the training and testing sessions in outdoor environments (TR—training session, PT—perception
testing session, MT—mobility testing session).

Session Training Testing

1 Training in the parking lot—generic objects, static and dynamic (environment
TR1); training with elevated objects—tree branches (environment TR 4) Testing PT I

2 Training with walls (environment TR 4); training with negative
obstacles—holes in the ground (environments TR2 and TR3) Testing PT II

3 Training in the parking lot—generic objects, static and dynamic(TR1), on the
sidewalk, finding the bus stop (environments TR6) Testing MT I

4 Training mobility on the sidewalk, finding the bus stop (environment TR5) Testing MT II

3.3. Data Collected During the Experiments

For each test, the following data was collected: use of encodings, electrodermal activity
(Galvanic Skin Response, Heart Rate)—only during mobility tests, video footage, and user
feedback. The electrodermal activity data was collected using a device (GRS + Shimmer)
that is mounted on the fingers and hand. This setup incapacitates the use of the remote
control with the respective hand. The other hand is used to hold the white cane in the
corresponding tests. Thus, it was decided that the users would not change the selected
encodings during a test. However, they are able to choose their favorite combination
before each test, after the task is explained to them. The video footage was processed
offline to extract the completion time and accuracy metrics for each test. After each test,
the users responded to the task related questions. The users also responded to the system
general questions, once after the finalization of the Perception Tests (PT) and once after the
finalization of the Mobility Tests (MT).

3.4. Testing Equipment

The equipment used in the testing sessions was composed of the following devices:

• SoV system (using as main input the video feed from the stereo camera);
• GRS + Shimmer for electrodermal activity recording;
• SoV Test Utility for automatic recording of encodings usage and time (application

running on the SoV device);
• Tablet for remote connection to the SoV device (used for inspection of system status,

for starting/stopping the recording of the test session using the SoV Test Utility,
for starting/stopping the recording of electrodermal activity data);

• Wi-Fi bundle to ensure connection between the SoV device and the tablet.

3.5. Study Design

The evaluation tests are divided in two categories: Perception Tests (PT)—evaluation
of the SoV prototype and assessment of its usability compared to the white cane for
perception; Mobility Tests (MT)—evaluation of SoV usability for mobility.

Some mobility testing scenarios were performed by the users in three conditions:
(1) with the white cane only, (2) with SoV and white cane, and (3) with SoV only. This
allowed a comparison between the performance in the three use cases. To this end, some
testing scenarios (i.e., particular environments) were carefully selected such that they con-
tained the same structure of the environment in all cases. Still, outdoor environments are
highly dynamic in change. Thus, testing in such scenarios can also pose a high uncontrol-
lable variance between different tests and users, even if following the same course in the
same environment. To account for the variance, the analysis of averaged results across users
was performed by weighting the results based on the difficulty of the course. The difficulty
level was assigned based on the total number of obstacles. In order to collect meaningful
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data, some testing scenarios were “fabricated”. However, they still contained real-world
objects and resembled for as much as possible situations that users can encounter in the
“wild”. Operating in such semi-controlled environments also helped ensure the safety
of the visually impaired participants. For safety reasons, during all training and testing
sessions, the participants were closely assisted by at least one sighted test assistant. The role
of the test assistant was to take care of the safety of the test-taker and stop him/her before
running into any dangerous situations.

The perception tests (Table 2) were aimed at evaluating how the visually impaired
participants perceive the environment in ego-static scenarios (i.e., the user is standing in
a fixed position). They were set in realistic outdoor environments, with various noise
conditions, containing static and dynamic elements (cars, poles, trees, people, buildings),
as well as generic and special (walls, holes in the ground, signs) types of objects that can
be identified and signaled by the SoV device. For safety reasons, the training and testing
sessions with negative obstacles (holes in the ground) were performed without the user
moving in the scene. The identification of negative obstacles was only evaluated in the
tests in the perception category and not in the mobility one. The distance and direction for
dynamic objects were not evaluated (a dynamic object is an object that moves in the scene,
changing its direction and/or distance to the user).

Table 2. Overview of the outdoor tests designed for evaluation of environment perception with the SoV device
(PT—perception test).

Setting Test ID Scenario Details Tasks Performance Metrics

PT I—complex scenes with
generic objects (static,
dynamic, hanging)

PT I-1 Generic static objects (car, person,
bush, tree, pole)

PT I-2 Generic static and dynamic
objects

The user is asked to
identify:

PT I-3 Generic static and elevated objects
How many objects
are present in the
scene

PT I-4 Generic static, dynamic and
elevated objects Accuracy

PT II—complex scenes with
generic objects and special
objects (static, dynamic,
negative obstacles, walls)

PT II-1
Generic static and special objects
(negative obstacles: hole in the
ground)

Type of objects
Completion time
(static, dynamic,
special)

PT II-2
Generic static, dynamic and
special objects (negative obstacles:
hole in the ground)

Localization of
objects (distance,
direction)

PT II-3 Generic static and special objects
(wall) Elevation of objects

The mobility tests (ego-dynamic scenarios) were aimed at evaluating how well the
users can guide their interaction with the environments based on the information received
from the SoV device. Two types of scenarios were considered: semi-controlled environ-
ments (Table 3 MT I) and uncontrolled environments (Table 3 MT II). The users were asked
to walk on predefined routes fulfilling specific tasks. By semicontrolled environments, we
denote natural areas, usually containing short testing routes (15–30 m long), with no or light
traffic, for which the testing team could control the structure of the scene. This ensured
the presentation of the same scene and tasks to all participants. Specific static and/or
dynamic obstacles (i.e., people) were purposely and systematically introduced in some
testing scenarios. By uncontrolled environments we understand public areas, with vary-
ing, uncontrollable traffic. This only allows for qualitative (as opposed to quantitative)
performance evaluations and comparison of performance between users and modalities
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(i.e., white cane, SoV + cane, SoV). Still, it better reflects the usability of the system in the
targeted real-life environments.

Table 3. Overview of the tests designed for evaluation of mobility in outdoor environments with the SoV device
(MT—mobility test).

Setting Test ID Scenario Details Tasks Performance Metrics

MT I-1

Walking by a wall
(30 m path):
static obstacles on the
path

The user is asked to: Identify the
wall;
Walk along the wall at a certain
maximum distance from it;

MT I—semi-controlled
environments
(static, dynamic,
hanging objects, walls)

MT I-2
Walking by a wall
(15 m path): hanging
obstacles on the path

Identify and avoid the obstacle(s)
on the path;
Identify the corner of the wall.

MT I-3

Walking in a parking
lot (25 m path): parked
cars, dynamic obstacles
on the path

The user is asked to:
Walk along parked cars at a certain
maximum distance from them;
Identify the last parked car on the
left/right of the course;
Identify and avoid dynamic
obstacles on the path.

Accuracy
Time to completion
Collisions

MT II—uncontrolled
environments
(static, dynamic,
hanging objects, signs)

MT II-1

Walking on the
sidewalk (45 m path):
static and dynamic
obstacles on the path,
bus stop

The user is asked to:
Walk on the sidewalk;
Identify and avoid static and
dynamic obstacles;
Identify and stop at the bus stop

MT II-2

Walking on the
sidewalk (250 m path):
static and dynamic
obstacles on the path

The user is asked to:
Walk on the sidewalk;
Identify and avoid static and
dynamic obstacles;

3.6. Description of the Perception Experiments

Only two types of scenarios were selected for evaluation: complex scenes with generic
objects (Table 2 PT I) and complex scenes with generic and special objects (Table 2 PT II).
These are ego-static tests, where the visually impaired user is standing at a fixed point
within the real-world environment and interprets the varying scenes presented to him/her.
The user is only relying on the SoV system. An overview of the scenes selected for testing
is presented in Table 2. Even though the user is not changing their position, he/she can
look around in the environment. This is important, as head turning is a fundamental part
of orientation for sighted people, with the role of expanding the visual field. The SoV
training program encourages visually impaired people to use the device in the same way.
Moreover, unlike the tests performed previously in Virtual Testing Environment [28] (VTE)
and indoor real-world, the outdoor tests also included the presence of dynamic obstacles.
The main goals of the perception tests were to evaluate whether the visually impaired
participants:

1. Are able to perceive the environment using the SoV device from a stationary position.
2. Are able to identify obstacles and recognize specific objects in static environments.
3. Are able to identify both static and dynamic obstacles and recognize specific objects in

real-life environments.

The first type of perception tests (PT I) included only generic objects. These objects
were represented by people, cars and poles (Figure 3). The tests were performed in an order
of gradually increasing difficulty, starting from a scene with static objects (PT I-1, Figure 3a),
and then adding a dynamic object (PT I-2, Figure 3b). In the next step, the perception
of elevated objects was tested, first in a static scene (PT I-3, Figure 3c), then in a scene
with dynamic objects (PT I-4, Figure 3d). A piece of cardboard was held by one test
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assistant at head level to represent the elevated object. The second type of perception tests
(PT II) included generic and special objects. The special objects considered were walls
and negative obstacles, i.e., a hole in the ground (Figure 4). The hole in the ground was
represented by a sewer for which the cap was removed for the purpose of the tests.

(a) (b)

(c) (d)

Figure 3. Examples of testing scene setups for perception tests with generic objects: (a) Scene
with generic static objects (PT I-1); (b) scene with generic static and dynamic objects (PT I-2);
(c) scene with generic static and elevated objects (PT I-3); (d) scene with generic static, dynamic and
elevated objects (PT I-4).

(a) (b)

(c)

Figure 4. Examples of testing scene setups for perception tests with special objects: (a) scene with
generic static objects and hole in the ground (PT II-1); (b) scene with generic static, dynamic objects
and hole in the ground (PT II-2); (c) scene with generic static objects and wall (PT II-3).

The system was used with a fixed distance range of 5 m. The scenes contained 3 to
5 objects in this range, with varying distance and orientation to the user. Some tests were
performed in the same physical location (e.g., parking lot). However, the user position
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and orientation were changed to maximize the difference between consecutive test scene
layouts. The system output was paused while preparing the testing setup or switching
between consecutive testing scenarios. The system output was turned on only after the
testing setup was prepared and the user was positioned and oriented accordingly.

Before starting the test, users are instructed:

• To stand still and analyze the presented scene by scanning with the head.
• To inform the testers immediately in case the representation stops or the audio sounds

are distorted, etc. In that case, the users are asked to stop, and the testers pause the
completion time while fixing the problem. In case it can be fixed directly, the user is
asked to proceed with the scene, and the time measurement continues.

• For each tested scenario, the user is informed about the context and the tasks he/she
is supposed to perform:

You will be presented with a scene including several objects at the same time, each with varying
distance, direction, size and quantity. You will hear (feel) how the scene is represented with
sounds (vibration patterns). Your task is to try to understand the scene, the relation between
the different objects, trying to get an inner picture of its composition. You will be asked the
following questions for each scene in random order, one at a time. As soon as one of these
questions is asked, you should answer it verbally:

1. How many objects do you perceive?
2. Out of the perceived objects, how many are special objects (i.e., wall, hole in the ground)?
3. If any special objects, specify their type.
4. Out of the perceived objects, how many are dynamic?
5. For each static object, indicate: the distance to the object, the direction of the object,

the elevation of the object.

• To choose their favorite encoding for audio and haptic, which they are not be able to
change during the test.

3.7. Description of the Mobility Experiments

The mobility tests included two types of scenarios: semi-controlled environments
(MT I) and uncontrolled environments (MT II). These are ego-dynamic tests, where the VI
user is asked to walk on a predefined route fulfilling specific tasks. An overview of the
scenes selected for testing is presented in Table 3.

The main goals of the mobility tests were to evaluate:

1. Whether the visually impaired participants are able to use the information from the SoV device
to guide their interaction with the environment.

2. Whether the visually impaired participants are able to move around and avoid obstacles using
the SoV device.

3. The efficiency of navigation with SoV device compared to using only the cane.

For two testing scenarios, i.e., MT I-1 and MT II-2, the course was performed in three
conditions: (1) only white cane, (2) SoV + white cane, (3) only SoV. Scenarios MT I-3
and MT II-1 were performed in conditions (2) and (3). Using only the white cane cannot
solve scenarios involving the detection of hanging objects or signs. Thus, in testing these
scenarios, the condition of using only the white cane was omitted.

The first type of mobility tests (MT I) were performed in semi-controlled environments
(Figure 5). The tests evaluated the usability of the system on short paths in natural identical
set-ups for all users. For scenario MT I-3, a dynamic obstacle was introduced in the
scene by having a SoV team member walk towards the user on their path. The second
type of mobility tests (MT II) were also performed on the same courses for all users and
for all modalities. However, the environment was not controlled in any way (Figure 6).
The difficulty of the course with respect to the number of obstacles varied between different
instances of the tests. To account for this variability when comparing the performance
between users and between different modalities on the same course (white cane, SoV and
white cane, SoV), the performance metrics (time and collisions) were adjusted based on
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the number of obstacles present on the course (as described in the Performance Metrics
section below).

(a) (b)

(c) (d)

(e) (f)

Figure 5. Examples of testing scene set ups for mobility tests in semi-controlled environments:
(a) Walking by a wall (30 m path), static obstacles on the path (MT I-1); (b) Geolocation of MT
I-1 testing scenario; (c) Walking by a wall (15 m path), hanging obstacles on the path (MT I-2);
(d) Geolocation of MT I-2 testing scenario; (e) Walking in a parking lot (25 m path), parked cars,
dynamic obstacles on the path (MT I-3); (f) Geolocation of MT I-3 testing scenario.

The system output was paused while preparing the testing setup or switching between
consecutive testing scenarios. The system output was turned on only after the testing setup
was prepared and the user was positioned and oriented accordingly.

Before starting the test, users are instructed:

• To avoid collisions with obstacles as well as with walls on any sides.
• To inform the testers immediately in case the representation stops or the audio sounds

distorted, etc. In that case, the users are asked to stop, and the testers pause the time
while fixing the problem. In case it can be fixed directly, the user is asked to proceed
with the scene and the time measurement continues.

• To choose their favorite encoding for audio and haptic, which they are not able to
change during the test.

• For each tested scenario, the user is informed about the context and the tasks he/she
is supposed to perform:

1. MT I-1: You are standing in close vicinity of a building. Please identify its wall and walk
along the wall at a comfortable distance to it, no more than 2m. There might be static
and/or dynamic obstacles on the path that you should avoid. Please indicate verbally
when you have reached the corner of the building.

2. MT I-2: Same as for MT I-1.
3. MT I-3: You are standing in a parking lot. There are parked cars to your left/right. Walk

along them until you identify the last parked car on the left/right of the course. There
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might also be other static and/or dynamic obstacles on the path that you should avoid.
Indicate verbally when you have reached the last car.

4. MT II-1: You are standing on the sidewalk. Walk on the sidewalk in front of you until
you reach the bus stop. There might be static and/or dynamic obstacles on the path that
you should avoid. Indicate verbally when you have reached the bus stop and point to the
direction of the bus stop sign. You will be closely assisted by two test assistants who will
stop you in case of any unsafe situation.

5. MT II-2: You are standing on the sidewalk. Walk on the sidewalk in front of you until
you are told to stop (about 250 m). There will be static and/or dynamic obstacles on the
path that you should avoid. There are two small side streets that you will cross, which
are not equipped with traffic lights or pedestrian crossings. Report if you think it is safe
to cross, otherwise stop. You will be closely assisted by two test assistants who will stop
you in case of any unsafe situation.

The users were NOT informed about the scene layout, meaning there were no instruc-
tions on the number, location and size of objects or about the length of the course they are
supposed to follow.

(a) (b)

(c) (d)

Figure 6. Examples of testing scene set ups for mobility tests in uncontrolled environments: (a) Walk-
ing on the sidewalk (45 m path), static and dynamic obstacles on the path, bus stop (MT II-1);
(b) walking on the sidewalk (250 m path), static and dynamic obstacles on the path (MT II-2);
(c) geolocation of MT II-1 testing scenario; (d) geolocation of MT II-2 testing scenario.

3.8. Performance Metrics

The following metrics were used to assess the performance for the perception tests:

• The accuracy is computed based on correct or incorrect answers given by the user to
each of the addressed questions in each tested scenario.

• Completion time is computed as the time between the moment when the SoV system
is turned on at the beginning of the test (this is also when the user starts perceiving
the environment) and when the answer to the last question is provided by the user.
That is, the completion time is measured per test and not per task.

A perception test is considered as completed with success if the average accuracy over
all the tasks (questions) in the test is greater than 85%.

The metrics used to assess the performance for the mobility tests are:

• The accuracy for a task is reflected by identification of the elements of interest
(e.g., wall, corner of the building, hanging object, bus stop), and/or leaving the
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testing area (i.e., distancing from the indicated shoreline, leaving the sidewalk by
walking to the street).

• The number of collisions, where only major collisions with obstacles are considered. By ma-
jor collisions, we mean contacts with objects the participant was completely surprised
about, while minor collisions are considered when the user brushes the obstacles.

• The number of cane hits was accounted for in some scenes, considering only the
hits on obstacles.

• Completion time is measured between the moment when the SoV system is turned
on at the beginning of the test (this is also when the user starts perceiving the environ-
ment) and when the task is finalized with success.

A mobility test is considered as completed with success if the elements of interest
have been identified and the user has not left the testing area, irrespective of the number
of collisions or completion time. Due to the high variance of the number of obstacles on
the MT II-2 course between the tests performed with different users and between tests
with different modalities for each user, a supplemental measure was introduced: Adjusted
Completion Time. This measure allows for comparing between different instances of the
same test, by weighting the actual measured time taken to complete the course with the
number of extra obstacles found on the course. We consider that the course contains a
fixed number of obstacles in all instances (represented by trees, poles, benches, bushes),
besides which, a number of extra obstacles, static or dynamic, were present on the course
(people, parked cars, dynamic cars, bicycles). Thus, we define the Adjusted Completion Time
(ACT) for scenario MT II-2, to be:

ACTMTII−2 = CT × Oa

Ocrt
, (1)

where CT is the measured completion time, Oa is the average number of extra obstacles,
over all test instances of all users in mobility scenario MT II-2, and Ocrt is the number of
extra obstacles in the current test instance. Thus, if the number of extra obstacles in one
test is higher than the average number of extra obstacles over all MT II-2 tests, the ACT
value will be lower than the measured completion time (CT).

3.9. Ethical Aspects

All the investigations of the present study that involved tests with human subjects
were carried out following the rules of the Declaration of Helsinki of 1975 (https://www.
wma.net/what-we-do/medical-ethics/declaration-of-helsinki/, accessed on 5 July 2021),
revised in 2013. According to point 23 of this declaration, an approval from the Research
Ethics Committee of the “Gheorghe Asachi” Technical University of Iasi, Romania, was
obtained before undertaking the research: research ethics assent no. 13582/05.07.2016 for
the activities of the project no. 643636 (H2020), Sound of Vision—Natural Sense of Vision
Through Acoustics and Haptics. Before starting any testing (e.g., questionnaire or “first
hands on” period), the participants were informed about the project aims, the general
function of the device and the aim of the tests. Further, the participants were informed
about the test methods, their tasks and about possible risks involved in the testing but also
the project teams, efforts to minimize them. Additionally, the participants could agree on
being filmed for the project purposes. Afterwards, the participants confirmed that they
were informed and agreed on participating by signing the informed consent. According
to the ethical approval requirements, that restrict reporting of the individual data, in the
following, all users will be referred to as male, independently of their gender. Further,
the age of the users will not be reported individually but they will be referred to as young
(20–30), middle-aged (31–39) and older users (40–50).

4. Results of the Usability Experiments

Four visually impaired users, aged between 20 and 42, one female and three male,
participated in training and testing sessions which took place at the Technical University

https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/
https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/
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of Iasi. An overview of relevant information regarding the user profiles is presented in
Table 4. Three of the testers were already familiar with the SoV system, since they were
also invited to the training and testing sessions with an early SoV prototype. However,
because improvements have been made (hardware, software, audio and haptic models)
since the last sessions of training/testing, these users undergone one training session in
VTE and indoor in order to refresh their memory and to present them the new features
of the system. Furthermore, a new user, without any previous experience with the SoV
system participated in the training/testing sessions. The newcomer followed the procedure
of training and testing in VTE and indoor before outdoor sessions. He had to familiarize
with the system and to learn its operating modes (audio and haptic). The users belonged
to categories 4 and 5 of visual impairment as defined by the World Health Organization
(WHO). Two users belonged to category 4, a category of blindness, meaning that visual
acuity is less than 10% (FC at 1 m) and equal to or better than light perception. Two users
belonged to category 5, total blindness, meaning no light perception. None of the 4 users
use echolocation to guide their interaction with the environment. Users of category 4 were
NOT blindfolded during the training and testing sessions. The main purpose of the tests
was to evaluate the usability of the system in the “wild”. Thus, blindfolding the users
would be in contradiction with the realistic way in which they would use the system.

Due to light conditions, weather and also being restricted by users’ time to participate
both in training and testing in outdoor scenarios, the results detailed below are obtained
with a minimum training time. With proper training, we assume that users will be able to
improve and will obtain better or even excellent results. Thus, it is important to keep in
mind that the results listed are based on minimal training in outdoor scenarios.

Average accuracy and completion times in the perception tasks are presented in
Figure 7a,b. The most time consuming test was PT I-2 (first complex scene in which
dynamic objects were introduced), while the smallest accuracy was recorded for the PT I-3
scene (first complex scene in which elevated objects were introduced). However, perceiving
elevation of objects was not the most difficult task. Moreover, the perception of almost all
object properties improved from PT I to PT II thanks to the additional training time with the
system between the testing sessions. The only exception is represented by the dynamicity
of objects. Due to the powerful and distracting sound made by the negative obstacles,
3 out of 4 users were not able to correctly identify if the scene contains a dynamic object or
not, when holes in the ground were present. However, users ranked above 80% accuracy
regarding special objects: they obtained 100% accuracy in counting them, 83% accuracy in
indicating the correct distance and 91.6% accuracy in indicating the correct direction.

The perception tests conducted in ego-static scenarios helped us to conclude that the
participants using the SoV device are able to perceive the environment even if they are not
moving, and all users obtaining an average accuracy greater or equal to 85% in both types
of scenes. The overall average accuracy in the perception tests was 89.3%.

Thanks to the improvements in audio models (danger mode and to different encodings
for special objects) users correctly identified obstacles (possible dangers) and special objects
(hole, wall) in static environments. As a result, all of them correctly identified the special
objects (100% accuracy) and three out of four users correctly pointed to the direction and
approximated the distance to the special objects. As we have mentioned before, in complex
scenes, where both negative obstacles and dynamic obstacles are present, participants had
difficulties in identifying the presence of a dynamic object in the scene (mostly because their
attention is directed to the negative obstacle), but the accuracy of identifying and localizing
static objects increased even with a small amount of training. Moreover, the perception of
dynamic objects was the least trained aspect in the VTE sessions, even no training at all
was performed by User 4.
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Table 4. Description of the SoV users.

User 1 User 2 User 3 User 4

age: young,
middle-age, old middle-age old young young

visual impairment
category (according to

WHO)
4 5 5 4

travelling in unknown
environments

accompanied by
sighted person

accompanied by sighted
person

accompanied by
sighted person

accompanied by sighted
person

white cane user
uses the white cane but
is not an experienced

user

uses the white cane but is
not an experienced user no no

level of experience
training and testing

beginning with the first
prototype

training and testing
beginning with the first

prototype

training and testing
with the prototype
before the final one

no previous training and
testing

preferred audio model
the expanding sphere
model with the impact

sounds

the expanding sphere
model with the bubble

sounds and the flashlight
audio encoding

the expanding sphere
model with the bubble

sounds,
the bubblestream and

flashlight

the expanding sphere
model with the impact

sounds

preferred haptic
model closest point closest point closest point closest point

others
likes to sing, passionate
about smartphones and

IT technologies

active member of the
local blind community,
participates in different
competitions and social
activities dedicated to

visually impaired

studies foreign
languages

loves music, plays 7
instruments (e.g., flute,
pan, oboe), studies pan

flute at the Arts
University, participates in
various cultural activities

(a) (b)

Figure 7. (a) Average accuracy and completion time over all users in perception tests (b) Average per task accuracy over all users in
both perception scenarios.

Another important aspect addressed in the evaluation was the comparison between
SoV and the white cane in mobility scenarios. To this end, scenarios MT I (walking by a
wall) and MTII-2 (walking on the sidewalk) were employed with three modalities: using
the SoV device together with the white cane, only using the white cane, only using the
SoV device. As expected, the average time for completion was the lowest when using
the white cane in both scenarios (Figures 8 and 9). With the SoV system, users can walk
at a reasonable distance from the wall in MT I, without the need to hit it with the cane
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(average of 23 cane hits when using the white cane only, compared to 3.5 hits when using
the white cane and SoV) and could easily detect the corners of the buildings. Users with no
experience of either of the two devices tend to walk slower when using both modalities
than only with either of them, as the amount of information coming from both devices can
be overwhelming. This is also confirmed by the results of the MT II-2 test: the average
time (adjusted based on the average number of additional obstacles on the course in each
modality) to complete the course in the conditions with a single assistive device (cane only
and SoV only) was very similar, but much less than in the condition with both devices.

Figure 8. Average accuracy, collisions and completion time over all users in mobility scenario MT I-1
(walking by a wall) when using the SoV system alone, SoV and white cane, white cane alone.

Figure 9. Average results over all users for the MT II-2 scenario (walking on the sidewalk) with the
3 modalities: SoV, white cane, SoV and white cane.
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An overall measure for expressing the completion rate of the tasks with a system is
the effectiveness. It can be used to evaluate the current version of the SoV device, being a
measure that embeds accuracy and task completion. Considering the following notations
N-the number of the scenarios, R-the number of users, nij the result of coming through
scenario i by respondent j, if the user successfully completes the task, then nij = 1, if not,
then nij = 0, tij the time spent by user j to complete task i. If the task is not successfully
completed, then time is measured until the moment the user quits the task; the overall
product effectiveness E can be computed using:

E =
∑R

j=1 ∑N
i=1 nij

R × N
× 100%, (2)

its statistic error being:

σ =

√
E × (100 − E)

R
(3)

The data used for computing the effectiveness of the SoV system was obtained by
merging all tests (perception and mobility). A number of 65 scenarios for all four users
were considered. If a task i is performed by user j with accuracy greater than 85%, then
nij = 1. Otherwise, nij = 0. Based on this data, the effectiveness of the SoV system is
E = 88.85%, with a statistic error σ = 15.74%.

Taking into account that for successful task completion a high accuracy threshold of
85% was considered, the value of the obtained effectiveness underlines a very good overall
performance of the SoV system.

An exploration of the individual performance of each of the four users is provided as
Supplementary Material for the paper.

5. Discussion

To summarize, the initial questions we posed were all addressed with the performed
tests. In the following, we provide a discussion of the combined results with respect to
each aspect that was evaluated.

Are the visually impaired (VI) users able to perceive the environment (perception)? Are they
able to identify obstacles and specific objects (negative obstacles, hanging obstacles, signs, walls)
which define the added value of SoV compared to using the white cane? Is the system usable in real
life environments and under real life circumstances (outside laboratory setups)?

Identifying the objects in the environment and their individual properties (position,
size, elevation) is important for both perception and mobility. Perception of the environ-
ment with the SoV system was therefore evaluated in both ego-static and ego-dynamic
scenarios. Evaluation of perception was specifically addressed in ego-static scenarios in the
virtual training environment and the tests performed in real-world scenarios. The percep-
tion tests revealed impressive accuracy scores in counting the objects in real-world complex
scenes (97.5%). The participants could also identify their distance well (86.45% accuracy)
and direction (95.8% accuracy). Detecting the elevation of objects is important for avoiding
head-height obstacles. As users noted, it is sufficient to be aware of the presence of the
obstacle, not necessarily its exact elevation. Still, understanding this property with the
help of the SoV device appeared to be easy, given the 91% accuracy obtained in real-world
outdoor tests.

Identification of the presence of special objects in the scene was performed with
very good results. Localizing walls proved to be easy to perform with the SoV system
(100% accuracy obtained in the tests). This was also the case for identifying holes in the
ground, represented by missing sewer caps in real-world outdoor tests (100% accuracy
in identifying their presence in the scene, 87.5% accuracy in determining their direction
and 75% for their distance). Another added value of the SoV device compared to using the
white cane lies in the identification of signs. This aspect was tested as part of a mobility
scenario involving walking on the sidewalk and identifying a bus stop. Remarkably, this
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task was completed with a 100% success rate and was considered very easy to perform by
all the participants.

The perception of dynamic obstacles was also evaluated. It seems that identifying
the dynamicity of objects (i.e., whether an object is moving or not) is more difficult to
perform when special objects (e.g., holes in the ground) are also present in the scene. As the
participants themselves explained, the negative obstacles are represented with a powerful
sound that draws most of their attention. Aspects that require more concentration can
therefore be misinterpreted. Still, it is important to note here that the perception of dynamic
objects was the least trained aspect, so there is room for improvement.

The tests performed outside laboratory setups revealed that the individual properties
of objects in complex scenes can still be perceived, even in natural outdoor scenes in the
presence of high environmental noise. The participants in the tests obtained an overall 89.3%
success rate in identifying object properties in such scenarios. The easiest to understand
were the number and direction of objects, while the most difficult aspect was whether an
object was moving or not (dynamicity).

Are the VI users able to use the information from the SoV device to guide their interaction
with the environment (mobility)? Are they able to move around and avoid obstacles? Are they able
to move around and identify targets (e.g., bus stop, corner of a building)? How is their mobility
performance with the SoV system compared to traditional assistive devices (i.e., white cane)?

Mobility in outdoor environments was evaluated in the tests performed. The main
aim was to assess the system usability in real-life environments and also its added value
compared to the white cane. The results of these tests show that the SoV system offers
the clear advantage of informing users about the presence of objects which could not be
otherwise detected with the cane (head level objects, signs) or that could be missed by it
(holes in the ground). Moreover, the system provides a good solution for detecting walls,
which are frequently used by VI people as a shoreline during navigation. With the SoV
system, users can walk at a reasonable distance from the wall, without the need to hit it
with the cane and could easily detect the corners of the buildings. Head level obstacles were
identified and avoided with 100% success rate in the tests. The primary reason for failure
was when the participants walked too fast while “looking” down, so that the head-height
obstacles (i.e., tree branches) were out of the camera’s field of view until they were very
close. This result also emphasizes the need to train the VI users to hold their head in
positions similar to those of the sighted and scan the environment with the cameras like
the sighted do with their eyes.

It is important to note that, while most of the participants had some level of experience
with the system in VTEs and indoors, their outdoor training time was minimal (average of 2 h).

The SoV system offers a rich perception of the environment, which is not by far
available with the white cane. White cane users have no to very little information about
the environment especially in static scenes (where they do not move). They can perceive
only the objects in their immediate proximity, as far as they can scan the scene with the
white cane, no information is available further than the length of the white cane. On the
other hand, the SoV system offers the possibility to acquire information about surrounding
objects further away from the user (5–10 m), so one can have a better, more complex
and early understanding about the environment. Furthermore, even when users cannot
successfully identify if an object is hanging, they are still able to perceive its presence, while
with white cane it is almost impossible to detect a hanging object without bumping into it.

With minimal training on the SoV prototype outdoors, the users could perceive and
navigate in the testing environments with very good accuracy. An overall performance
analysis revealed an effectiveness of 88.85% for the SoV device. The effectiveness of a system
is a measure that indicates the completion rate of the tasks with the system. The value was
obtained considering all perception and mobility tasks performed by the users, where a
task was considered successfully completed if the accuracy per task was higher than 85%.
That is, the users were able to complete 88.85% of the tasks with an accuracy greater than 85%.
The most difficult task for the users was to identify the dynamicity of objects (i.e., to count
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the dynamic objects), especially in ego-static scenarios and when negative obstacles were
also present Figure 7b. The users reported that, in these scenes, they mainly focused on
the negative obstacles due to the powerful and distracting sound associated with it. Still,
the perception of dynamic objects was the least trained aspect in the VTE and indoor sessions.

While the elevation of objects was not identified with maximum accuracy in perception
tests, the users considered that avoiding hanging obstacles was easy to perform in mobility
tasks. This feedback is also confirmed by users’ performance results in task MT I-2, where
all participants were 100% accurate in identifying and avoiding the tree branches.

The tests with special objects indicate that they could easily be perceived. The VI users
could identify the presence of walls, holes in the ground and bus stop signs with 100%
accuracy. They indicated the correct distance to such objects in 83% of the tests, and the
correct direction in 91.6%.

With minimal training in using the SoV system outdoors, the users could perform
the mobility tasks with very good accuracy. When comparing SoV with the white cane,
we found out that, for our sample of rather inexperienced white cane users, mobility with
the SoV device was accomplished with performance comparable to one with the white
cane, and sometimes better. Analyzing the average walking speed over all users and all
scenarios in which each modality was used revealed that, while using the white cane is the
fastest, the SoV system has the advantage of reducing the average number of collisions.

User feedback was collected through questionnaires containing task specific questions,
general questions about the system as well as individual user comments and suggestions.
All items were designed to fit an answer format of a 5-point Likert-like scale, where 1
corresponds to strong disagreement and 5 corresponds to strong agreement. The feedback
on how the system helps the users in accomplishing the tasks is summarized below as
AVG (STD) values over all perception and mobility tests and all users:

T1—I found it easy to do this task with the device. Perception tests—4.39 (0.74),
Mobility tests—4.70 (0.47)

T2—The device provides a good solution to problems I encounter in this task. Percep-
tion tests—4.54 (0.64), Mobility tests—4.80 (0.41)

T3—I am satisfied with the amount of time it took to complete this task. Perception
tests—4.50 (0.75), Mobility tests—4.85 (0.37)

All users liked the device, for both perception and mobility. None of them believes it is
unnecessarily complicated. They found it rather easy to use (to operate and switch between
modes). They all disagree regarding the possible inconsistencies of the system and believe
it works similarly in both the virtual training and testing environment and the real world.
They are confident that most people would learn to use the device quickly. They don’t find
the device cumbersome to use, and although they are expecting design improvements for
its commercial version, they were satisfied with the shape and functionality of the tested
prototype. They were confident when using the device, and the confidence grew even
more after the mobility tests. The visually impaired participants felt safe when using the
device, and this feeling was even more emphasized for the mobility scenarios. Half of
the participants thought that the device was comfortable, while the other two suggested
several improvements. They all agreed that the SoV device would enhance their capacity
for leisure activities, especially after going through the outdoor mobility sessions.

6. Conclusions

With minimal training in using the SoV system outdoor, the perception and mobility
in the environments were achieved with very good accuracy. The tests revealed 88.85% ef-
fectiveness (task completion rate) of the SoV system. Regarding the perception, the system
could be successfully used for perception (89.3% average accuracy) in noisy outdoor envi-
ronments, without the environment sounds to have an obvious effect on the performance
of perceiving the environment. The hear-through feature of the SoV headphones was
found very useful by the users. Perceiving the dynamicity of obstacles can pose difficulties,
especially in the presence of negative obstacles, which are signaled by the system with
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a very powerful sound. In complex environments, the perception of individual obstacle
elevation can pose difficulties to the visually impaired users. However, they all considered
this to not be a major issue, since they can perceive the presence of these obstacles with
the normal encoding and further have a distinctive feedback with the danger mode when
approaching them closer than 1m. Even with a small amount of additional training time,
perception of the environment improved from one testing session to a subsequent one.

With minimal training, the system could be successfully used in outdoor real-life
environments to perform various mobility tasks. The visually impaired participants re-
ported that performing mobility tasks with the SoV device was easier than building a
detailed perception of complex scenes. They were also more satisfied about the solution
provided by the SoV system for these tasks and by the time it took to complete them
than for the perception tasks.

For inexperienced white cane users, mobility with the SoV device was accomplished
with performance comparable to using the cane, and sometimes better. Users more expe-
rienced in using the white cane tend to rely more on the cane than on the system, when
provided with both assistive devices. Less skilled white cane users chose to rely more on
the SoV system. When using both modalities, users walk slower than only with the SoV
system, as the amount of information coming from both devices can overwhelm users
inexperienced with either of them.

The added value of SoV compared to the white cane was confirmed by the participants
to consist in: providing early feedback about static and dynamic objects, providing feedback
about elevated objects, walls, negative obstacles and signs.
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Abstract: This paper presented the assessment of cognitive load (as an effective real-time index
of task difficulty) and the level of brain activation during an experiment in which eight visually
impaired subjects performed two types of tasks while using the white cane and the Sound of Vision
assistive device with three types of sensory input—audio, haptic, and multimodal (audio and haptic
simultaneously). The first task was to identify object properties and the second to navigate and avoid
obstacles in both the virtual environment and real-world settings. The results showed that the haptic
stimuli were less intuitive than the audio ones and that the navigation with the Sound of Vision
device increased cognitive load and working memory. Visual cortex asymmetry was lower in the case
of multimodal stimulation than in the case of separate stimulation (audio or haptic). There was no
correlation between visual cortical activity and the number of collisions during navigation, regardless
of the type of navigation or sensory input. The visual cortex was activated when using the device,
but only for the late-blind users. For all the subjects, the navigation with the Sound of Vision device
induced a low negative valence, in contrast with the white cane navigation.

Keywords: sensory substitution; cognitive load; brain activity; navigation; multimodal; audio; haptic

1. Introduction

At the world level, approximately 2.2 billion people have a vision impairment or suffer
from blindness, caused primarily by uncorrected refractive errors, cataracts, age-related macular
degeneration, and glaucoma. The majority of people with vision impairments are over 50 years
old, originating especially from low and middle-income countries [1]. The purpose of the Sound
of Vision project (SoV) [2] was to develop an assistive system for the blind and visually impaired
users that would facilitate navigation and obstacle detection. In this paper, we presented a study of
cognitive load assessment and brain activation evaluation during an experiment in which eight visually
impaired subjects performed various object detection and navigation activities while using both the
white cane (a navigation aid they use on a daily basis) and the SoV device, which provided three
types of sensory input—audio cues delivered through headphones, haptic cues delivered as vibrations
applied on a vest that was placed on the user’s abdomen, and a combination of both audio and haptic
information, called the multimodal sensory input. We performed a metrics analysis, cognitive load,
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working memory assessment, brain activity, visual cortex evaluation, and the identification of emotions
during navigation in the real-world environment.

Section 2 presents an overview of mobility assistive devices, Section 3 introduces the biophysical
signals and cognitive load, Section 4 describes the Sound of Vision device, Section 5 details the method,
Section 6 presents the results and a discussion, and finally, Section 7 provides the final conclusions and
future research directions.

2. Overview of Mobility Assistive Aids

The absence of visual information in the case of blind individuals can be substituted by conveying
auditory and tactile stimuli, separately or simultaneously, through specialized assistive devices.

2.1. Auditory Vision Sensory Substitution

Auditory vision sensory substitution (AVSS) devices [3] map the image “seen” by the camera
into a matrix of active audio sources. The diversity of AVSSs is very large, ranging from optophone-like
systems [4] to devices that use spatialized 3D sounds. The optophone (or the piano transform device)
scans the image from left to right and converts the detected input into sound cues. The most
well-known optophone is the vOICe [5], where the pixels’ vertical position is mapped to frequency,
and their brightness is mapped to sound intensity. In other AVSSs [6,7], height is correlated to
frequency distribution in the horizontal plane to binaural loudness, and brightness is encoded as
sound intensity. In pitch transform systems [7,8], distance is related to sound frequency, while in
verbal transform systems [7,9], objects are assigned to synthetic voice recordings. A problem of most
optophone-like modern systems is that they overwhelm the users with too much output information,
increasing cognitive load, effort, and concentration. This drawback can be overcome by reducing
scene complexity, by maintaining only the salient characteristics and relevant objects, and by applying
an effective sonification technique in order to provide the users a natural, effective, and easy to
understand environmental representation. Modern AVSSs use binaural 3D sounds spatialized with
generic (prerecorded, stored in large databases) or individualized head-related transfer functions
(HRTFs). Individualized HRTFs are preferable for creating 3D sound as they are more accurate and fit
the user’s auditory characteristics.

2.2. Tactile Visual Sensory Substitution

Tactile visual sensory substitution (TVSS) systems use a matrix of controllable elements that
provide spatial and temporal environmental information on the skin, either through kinesthetic or
cutaneous sensations. In this type of device, a camera is used to acquire visual input that is consequently
transformed into a tactile rendering via the multi-dimensional pin array, facilitating reading, shape,
and face recognition [10–12]. One advantage of using TVSS devices is that the tactile sense, contrary
to the auditory one, is less used and demanded in everyday activities. Thus, the user can receive
cutaneous (awareness and stimulation of the outer surface of the body [13]) and kinesthetic (awareness
of the limb position and displacement [10]) cues, without hampering locomotion or auditory perception
at all [14]. On the other hand, a drawback lies in the fact that the capacity of the tactile channel
is restrained to a limited maximum number of actuators and patterns to be applied. In addition,
such devices cannot be used to a large extent because they are tiring and uncomfortable.

2.3. Auditory Tactile Visual Substitution Devices

When the scene is too difficult to be mapped onto the tactile array, the auditory channel is
additionally recruited in order to enhance environmental representation, creating auditory tactile
visual substitution (ATVS) devices. The first multi-sensory device was Nomad [15]. Tactile cues are
delivered through a touch-sensitive tablet, and the auditory information consists of synthesized voice
recordings. The Heard and Felt Vision Effects (HiFiVE) [16,17] system uses moving speech-like sounds
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(tracers—area tracers and shape tracers), binaural panning, and tactile effects in order to map visual
images to an audio-tactile representation.

3. Biophysical Signals and Cognitive Load

3.1. Electroencephalography

Electroencephalography (EEG) can provide neurophysiological markers of cognitive-emotional
processes induced by stress and indicated by changes in brain rhythmic activity [18,19]. EEG signal
processing techniques play a significant role in quantifying cognitive load [20–24]. Bos et al. [20]
showed that cognitive load was an indicator of the learning progress. Berka et al. [22] extracted features
from EEG signals for monitoring cognitive workload and task engagement. Nilsson et al. [23] showed
learning outcomes from the subjects when they navigated a hypermedia environment. Scott et al. [24]
also showed that a navigational map could create significantly more germane or extraneous cognitive
load. Therefore, EEG/ Electrodermal Activity (EDA) signals are used to measure cognitive load and
affective responses, and the overall process is explained in the following section.

Cognitive load and affective responses may impact the learning progress. The detection of reliable
cognitive load and affective responses would improve the design of emotional intelligent mobility
systems for the visually impaired people (VIPs). The complexity of the tasks is quantified in terms
of cognitive load index and affective index, considering two well-established metrics in the scientific
literature—the event-related desynchronization (ERD)/event-related synchronization (ERS) index and the
left-right asymmetry index.

Affective responses directly influence the processes of cognitive learning. However, the challenges
of learning can evoke negative affective responses [25]. Emotion assessment is a challenging and
demanding task because people are not always able to express their emotions verbally [26]. Bos [20]
showed that cognitive load could indicate changes in the learning process. He proposed an approach
to determine the optimal placement of a limited number of electrodes, and then these electrodes were
placed in an experiment aimed at determining arousal and valence. Left frontal inactivation is an
indicator of a withdrawal response, which is often linked to negative emotion. On the other hand,
right frontal inactivation is a sign of an approach response or positive emotion. High alpha activity
(8–12 Hz in the EEG frequency band) is known to be an indicator of low brain activity.

Researchers have addressed the intertwining role of affective responses, learning, and cognitive
load. Bower et al. [27] introduced the following hypothesis to study learning patterns: (1) a positive
emotion usually increases the learning process through attention and motivation, (2) a positive emotion
improves learning by enhancing cognitive load, and (3) a negative emotion decreases the learning
process. Cattaneo et al. [28] employed the cognitive load theory for the understanding of the perceptual
and neurocognitive mechanisms; however, there are still many open questions on how emotion and
cognitive load can ease the learning process of the visually impaired people.

3.2. Electrodermal Activity and Heart Rate

Electrodermal activity (EDA) is a well-known indicator of physiological arousal and stress
activation in affective computing [29,30]. It is more sensitive to emotion-related arousal variations
as opposed to physical stressors, which can be better reflected by heart rate (HR) measurements.
Blood volume pulse (BVP) patterns can also reflect transient arousal and cognition processes [31].
Two outdoor mobility studies from the early 1970s have suggested that some form of psychological
rather than physical stress is responsible for visually impaired people’s increased HR versus sighted
pedestrians [32,33]. However, certain mobility tasks (for example, stairs climbing) may result in
an interactive psychological stress effect and momentary physical workload; thus, cardiovascular
measures may be less suitable than EDA.
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4. The Sound of Vision Device

Spatial navigation is a category of spatial cognition related to performing tasks, such as following
paths, detecting obstacles, and reaching targets. It is based on developing, maintaining, and recalling
an internal representation of the environment [34,35]. This internal representation depends on the
spatial relation between entities and on the subject’s position, being classified into two categories:
egocentric—the navigator is in the center of the coordinate system, and allocentric—the reference
external to the navigator.

4.1. Technical Description

Sound of Vision is a wearable device that allows a visually impaired user to perceive and navigate
the environment. It works by permanently scanning the environment, extracting essential features,
and rendering them to the user through audio and haptic means.

The Sound of Vision final prototype includes an integrated custom hardware solution and a
complex software solution, supporting the real-time operation of the device, as well as training tools
and materials.

The hardware components of the system are:

− a headgear, including a 3D acquisition unit (depth camera for indoor or low light outdoor
conditions, stereo camera for outdoor or bright light conditions, head and body inertial
measurement unit (IMU) for body orientation) and an audio rendering unit (mounted on
the head);

− a haptic belt with a matrix of 60 vibrating motors (six rows and 10 columns, placed on the
abdomen);

− a processing unit: a small laptop with powerful CPU and GPU units (in a backpack);
− a wireless remote control (in the pocket).

When scanning the environment, the user can select from two different models for both audio
and haptic: the discrete model (which renders the objects sequentially) and the continuous model
(which provides real-time information at once about all the objects in the field of view). They are
divided into sub-models and have different variations, as well as additional features for safe and reliable
navigation: Danger mode—alerts about proximity objects and prevents collisions, Flashlight—enables
the rendering of an object’s distance in front of the user, texts and special signs detection and best free
space—which indicates a navigable opening between surrounding objects.

The user movement is guided solely by the Sensory Substitution Device (SSD) with no additional
feedback from the assistant or from other sources (i.e., maps from Google or GPS coordinates from a
GPS device). The SSD device generates audio and haptic signals that are an encoded representation of
the environment in the proximity of the user. Through intensive training, the user gains fluency in
understanding the audio and haptic encoded feedback issued by the SSD device, and then he/she can
make proper decisions for further movement in the environment.

Like any other person, the VIP wants to walk in the direction of the sound source. The SoV device
scans the environment, detecting the obstacles and their features, and sends audio or/and haptic stimuli
to users. These stimuli help the VIP to avoid obstacles and to find a secure path to the sound source.
Obviously, the real scene and the stimulation are changed/updated according to the VIP’s route, like in
a maze. Depending on their perception, the VIPs may choose different paths.

4.2. The Focus of the Study

In line with the SoV project overall goals, the aim of this study was to evaluate the VIPs’ cognitive
load and emotional stress in real-world mobility experiments, in two cases: navigation with white cane
and navigation relying on the SoV prototype with audio, haptic, or audio and haptic (multimodal)
codification. The research questions we pursued were based on the following comparative assessments
of cognitive load:
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• when using the Sound of Vision device with audio vs. haptic vs. multimodal input;
• when using the Sound of Vision device vs. white cane during a navigation task in the

real-world environment.

Based on some achievements presented in scientific papers and on the valuable previous
experience [36–39], the experiments were oriented to collect EEG and physiological (EDA and
HR) signals in five different mobility tasks in order to highlight the VIPs’ cognitive load and stress in
correlation with some events (collisions or total confusion) captured from the recorded videos.

As presented above, it has been proven by many studies that EEG is a promising and common
approach to measuring cognitive load (CL), working memory load, emotional states, and any cerebral
signals denoting cortex responses to specific stimuli. CL was an effective real-time index of task
complexity backed up by behavioral evidence. Complementary, the peripherical physiological
measurements reflected arousal and stress activation (EDA) and transient processes in arousal and
cognition (HR). The mobility tasks did not include a consistent physical effort, so HR could be also
considered in a multimodal approach.

An important aspect of this work was related to the VIPs’ preference and long-term accommodation
to navigating using the white cane, as they were educated to use it from the moment they lost sight
or from childhood. Although the SoV device offered much more information about the environment
(the number of nearby objects, their position and properties, the presence of specific objects, and so on),
it was expected that for the first tests, the VIPs would have lower cognitive load and better performances
during the benchmark task with the white cane than with audio or haptic stimuli. Obviously, the length
of the accommodation period with the SoV device depended on each VIP’s education and ability
to learn. It was important for this study to understand how easily the SoV stimuli were perceived
and processed by a VIP and which navigation modality (audio, haptic, or audio and haptic) was less
stressful and more quickly accepted. We expected that audio mobility would outperform the haptic
and fusion mobilities, knowing that blind people generally have a well-developed hearing sense.

Additionally, the VIPs’ visual cortex excitation by audio and haptic stimuli during navigation
was investigated, expanding the existing literature [40,41] that has reported brain activity in the visual
cortex during EEG measurements for blind people who have received visual information through
sensory substitution devices (SSDs).

To our best knowledge so far, this paper was the first one to present a comparative study regarding
VIPs’ stress, cognitive load, and visual cortex excitation while navigating in the real-world using a
common white cane vs. a sensory substitution device.

5. Materials and Methods

This experiment has been carried out using the Acticap EEG device with 16 electrodes, provided
by Brain Products GmbH from Germany and Shimmers Multisensory provided by the Shimmer
Sensing company from Dublin, Ireland.

5.1. Experimental Setup

The aim of the experiment was to obtain a dataset, as large as possible, with EEG and physiological
signals during the trials designed for traveling in fixed scenarios with the help of the SoV device [42].
There were two user setups. The first one was the virtual training environment (VTE) setup that was
used to train the subjects and accommodate them with the audio and haptic encoding models prior to
using the system in real-life scenarios [43,44]. The second setup (Figure 1) was the real-world (RW)
setup used in an indoor controlled environment and outdoors.
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The difference between the VTE and RW setups consisted mainly of the video streaming sources
that feed the processing and control unit. For VTE, the video stream was provided by a virtual reality
serious game in which the VIP navigated using the keyboard or a joystick. In the VTE tests, the VIP
wore the headset consisting of a structure sensor stereo video camera and an IMU sensor [45,46],
but only the IMU signal was used in order to orient in the virtual environment by head movements.
For the RW setup, the video stream was provided by the structure sensor (indoor use of the system) or
stereo video camera (outdoor use of the system).

The SoV system used in the RW experiments is depicted in Figure 2 and consisted of two
computing systems: the first one was the processing and control unit (PCU) attached to the VIP,
and the second one (the tablet from Figure 2) was used by the assistant who controlled how the trial
was performed. Via a remote connection with the PCU, the assistant could adjust parameters, select
scenarios, and enable physiological signals recording. The PCU ran the SoV runtime application,
which sensed the environment and provided audio and haptic stimuli. It also recorded physiological
data from the user who performed the navigation tasks. The IMU signals were used to determine
the user’s body and head orientation that was further used to render the audio and haptic output in
accordance with the RW scene. The VIP had the opportunity to select the most appropriate audio or
haptic encoding by using a remote control connected to the PCU. During navigation, there was no
communication between the VIP and the assistant. The VIP walked autonomously based only on the
stimulation provided by the SSD. The test taker’s task during tests was to ensure that the system was
working and that the VIP received correct clues. He did this by using a tablet connected wirelessly to
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We used a lightweight laptop (Dell XPS) and two cooling fans in order to cool down the laptop,
which are part of the SoV prototype for experimental purposes. The experimental system (laptop,
battery, fans, and EEG device) weighed no more than 3.5 kg, and the users did not feel uncomfortable
due to the weight and/or heat. Actually, a lighter version of the SoV system—more energy-efficient
and low cost—is under development.

A print screen from the serious game called “treasure hunt” (TH) is presented in Figure 3. The VIP
had to use the joystick in order to position himself in the virtual scene, exactly where the sound source
originates. In RW, the user had to navigate through an indoor environment in order to reach a target
sound source while avoiding cardboard box obstacles of various dimensions (Figure 4).
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We conducted EEG and EDA/HR recordings during experimentation in RW, under two conditions:
white cane only (for the participants who used this mobility aid on a regular basis) and SoV device
only. The scenes were tested using the audio encoding, the haptic encoding, and both the audio and haptic
encodings (multimodal) with the SoV device, 5 trials each. In order to minimize the required testing
resources, the users had the opportunity to choose the sonification model and tactile stimulation [47–49]
that best suited their level of perception and understanding.

The static scenes (1R) were tested with the discrete model, while the dynamic scenes (TH) were
tested with the continuous model in both virtual and real-world environments.

In the discrete (or iterative) model, the scene was rendered in a loop, one by one. A sphere was
constantly expanding its radius until 5.25 m with a speed of 2 m/sec. Auditory and tactile stimuli were
provided when this sphere intersected scene objects, allowing distance detection, as well as comparing
the distance between objects. The continuous model rendered an entire scene at once, providing
instantaneous information via audio and haptic.



Sensors 2020, 20, 5821 8 of 30

VTE tests were recorded automatically by the SoV system, while RW tests were recorded manually
by testing assistants. Furthermore, each trial in a test was videotaped for annotation purposes. The time
needed to finish every trial and the accuracy were saved: number of collisions between user and
obstacles, number of cane contacts with objects, time duration, together with path length followed.

Each test consisted of 5 trials, and each one was assigned to a fixed path/boxes arrangement for
TH, as it is presented in Figures 5–9.
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5.2. Data Collection

In this study, 15 VIPs were involved in training and testing tasks in the virtual environment and
real-world settings, using the SoV prototype and different releases of the SoV runtime. After each testing
stage, important improvements were made to the hardware and software resources, including audio
and haptic encodings based on the VIPs’ feedback. Finally, only 8 complete datasets (corresponding to
3 females and 5 males, aged 20–42) with fully validated data were retained and subsequently analyzed.
All the participants provided informed consent approved by the research ethics committee of the
institutions involved in the project (Approval number: 9083/15.05.2017). One hour before performing
the tests, the VIPs did not drink coffee nor black tea, and also smoking was forbidden before or during
the experiments.

For EEG and additional physiological measurements, the following equipment was used:

• a BrainProducts V-Amp 16 amplifier and an EasyCap helmet with 19 sintered Ag/AgCl miniaturized
passive electrodes for EEG signal acquisition with a sampling rate of 512 Hz;

• a Shimmer3 GSR+ unit sensor for measuring electrodermal activity/galvanic skin response
(EDA/GSR) and continuous HR;

• a video camera or smartphone for video recording in real-time.

The acquisition procedure used 16 electrodes, namely Fp1, F7, F3, C3, P3, P7, C4, O1, O2, Fp2,
F8, F4, C4, P4, T8, P8, and an ear reference, placed according to the 10-20 international system.
The sampling rate was 512 Hz, and the AFz electrode was connected to the ground. To ensure reliable
EEG raw data, the impedance of each electrode was maintained below 5 kΩ, by using a good abrasive
gel. The OpenVibe open source software was used for EEG acquisition. The OpenVibe server acquired
the EEG signals, and the OpenVibe client saved or sent the raw data as a stream. The Shimmer GSR
unit sent the acquired data via Bluetooth.

The data acquisition process is outlined in Figure 10. An important part of the acquisition process
is the usage of the lab streaming layer (LSL) protocol [50] so that each data component had to provide
a stream of data as output. For the components that do not natively provide LSL output streams,
simple adaptors had to be designed, as in the case of the data provided by the EDA/GSR device.
The EEG data was available as an LSL stream provided by the OpenVibe application. The applications
developed in this project (VTE and SoV runtime) provided LSL streams to source events that were
internally generated and of interest for later analysis. The data was stored in a tabular format inside
hdf5 files [51], together with a timestamp provided by the LSL.
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In what concerns video recording and annotations, the mp4 video files recorded during the
tests were annotated with Chronoviz [52]. The events: Start (beginning of the recording), Collision,
Find (find the source/treasure), Lost (lost control), TouchCane (only for the test with the white cane),
Stop (end of the recording) were considered. For each mp4 file, a CSV file with annotated events and
corresponding Unix timestamps was generated.

Alternatively, if Chronoviz could not be used due to system constraints (Chronoviz needs a system
with Mac OS X 10.6 or later), a Python script was designed to synchronize the data streams acquired by
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the processing unit with the video recordings of the experiment. The script aligned the timestamps of
the samples in the acquired data streams (provided as csv files) with the timing information found in
the video recording. The application ExifTool [53] was used for gathering timing information from the
movie files. The data streams were trimmed or padded in order to fit the movie length. The script
detected and reported any timing misalignments and provided means to fine-tune the synchronization
process. The resulting adjusted data streams and movies could be annotated later in a similar way as
in Chronoviz. The synchronization process is presented in Figure 11.
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5.3. Data Acquisition and Preprocessing

The acquired brain waves were pre-processed. We applied a band-pass filter for 0.5–100 Hz,
a notch filter to remove power line contamination at 50 Hz, and a band-pass filter to obtain frequency
bands of interest (delta, theta, alpha, beta, and gamma). The artifacts (involuntary eye blinks, muscle
movements, brief amplifier saturations) presented in the EEG signals were removed using an online
Savitzky-Golay filter. The EEG data obtained after pre-processing were baseline-normalized by
subtracting for each participant and for each channel the mean of the resting state recordings (recorded
in the laboratory during the VTE sessions).

The Shimmer software for EDA acquisition could not be efficiently used in the SoV setup (Figure 1),
and therefore the streams from the sensor were acquired over Bluetooth at 16 Hz. The skin resistance
values (y, µS) were computed from the Shimmer ADC values with the following linear function:

y = p1× x + p2 (1)

where p1 and p2 are parameters specific to the range setting and can be selected from the datasheet of
the sensor. If the electrodes are not tightly attached and lose contact with the skin, motion artifacts
(high-frequency noise) can be present in the acquired signals. A low pass filter was applied to remove
high-frequency noise, which can be attributed to movement artifact and other noise components.
A cutoff frequency of as low as 1–5 Hz could be used without affecting the data of interest due to the
slowly varying nature of the EDA responses.

5.4. Data Analysis

Within the broader framework of the SoV project, the aim of this study was to explore the VIPs’
brain activity during navigation tasks with the help of an SSD based on audio, haptic, and multimodal
encoding, compared to white cane navigation. The research was focused on assessing cognitive load,
visual cortex excitation, and emotions evaluation during RW navigation. For each exploration, the EEG
signals were selected according to the analyzed brain lobes and the power spectrum, and the asymmetry
between the two cortex hemispheres was calculated.

Usually, CL is investigated in the channels corresponding to the frontal lobe, which reflect the
activity of short-term memory and consists of calculating frontal-asymmetry, meaning the difference
between the logarithms of the power spectrum of the left and right hemispheres divided by the
logarithm of the total power spectrum of both hemispheres. There is no single standard way to
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calculate asymmetry, and some authors use the difference or the ratio between the spectral powers
of the signals on the right and the correspondents in the left hemisphere. Anyhow, higher asymmetry
reflects a strong workload, while lower asymmetry reflects avoidance and relaxation [54].

CL is strongly related to emotional well-being states. The “feeling good” aspect of well-being
deals with the balance of positive emotions vs. negative emotions. Well-being reflects a person’s ability
to identify and respond to the challenges of everyday life, even painful and unpleasant events [55].
Hawthorne presented an extensive study on how feeling good might contribute to cognitive load in
different ways [55].

Certain states can be more accurately investigated if the EEG waves are analyzed in the five
specific bands: delta, theta, alpha, beta, and gamma. The delta waves reflect the unconscious states,
and it is usually recorded in deep dreamless sleep. The theta waves are typically associated with the
subconscious mind, sleeping, dreaming, meditation, or even artistic creation. The alpha waves are
visible in all the cortex lobes and give valuable information regarding brain activation and the relaxed
(but yet aware) mental state. High alpha activity has been correlated to brain inactivation. The beta
waves are correlated to high mental activity, more prominent in the frontal cortex but visible over other
lobes as well. The alpha and beta waves are the most used to classify workload using EEG. The gamma
waves (>30 Hz) reflect hyper brain activity and have become more and more studied as the sampling
frequency of the acquisition systems has increased [56].

Regarding visual cortex (VC) excitation, it must be specified that it was not known before the
year 2000 whether the visual cortex could receive input from other sensory modalities besides the eyes
through the lateral geniculate nuclei. Afterward, the EEG measurements have revealed that the VC
activity is higher for blind subjects during rest or auditory/tactile tasks than in normal control. Without
a certain demonstration, Sadato et al. suggested that in blind subjects, the cortical areas normally
reserved for vision might be activated by other sensory modalities [57]. In 2003, Burton reviewed
various brain imaging studies, which investigated the visual cortex activity of VIPs during nonvisual
tasks, such as hearing messages, Braille reading, or even sensory discriminations of tactile or auditory
stimuli, and concluded that the loss of vision did not lead to a permanent inactivation of the visual
cortex [58]. A scientific report from Georgetown University Medical Center concluded in 2010 that
“people who have been blind from birth make use of the visual parts of their brain to refine their
sensation of sound and touch” [59]. In recent years, several studies have highlighted enhanced auditory
processing in blind persons to partially compensate their impairment, with greater sensitivity of the
other senses. It has been proved that the VC plasticity allows this cortical lobe to be colonized by the
auditory and somatosensory systems in the case of congenitally blind persons. The study conducted
by Campus et al. revealed that the occipital activation to sound was strong in sighted persons and
much lower in blind persons [60]. Another valuable conclusion was that the occipital lobe of sighted
subjects played a major role in the reconstruction of the environmental spatial metrics and that vision
loss blocked this process. Obviously, it is expected to remark differences in VC excitation between the
people who are blind from birth and those who lost their sight later and know what color, distance, or
shape mean. For this analysis, the O1 and O2 electrodes are the most important, but also the Oz and
the electrodes from parietal lobes should be considered in an extensive study.

In terms of evaluating emotions, it is well known that the amygdala is responsible for the perception
of emotions, such as anger, fear, and sadness. The pre-frontal cortex and the hippocampus (located in
the medial region of the temporal lobe) are highly correlated to emotional activity [56,61]. Because the
right hemisphere is associated with negative emotions (i.e., fear or disgust), and the left hemisphere
is highly activated by positive emotions and motivation (i.e., happiness and satisfaction), the EEG
asymmetries in the frontal and parietal lobes are relevant for valence and arousal assessment [56].
A thorough evaluation can be performed if the signal analysis is performed on the EEG frequency
bands of alpha, beta, and gamma. According to these findings and based on some other studies related
to efficient EEG channels selection for emotion recognition, Zhang and his coworkers recommended
the following set of electrodes: Fp1, Fp2, F7, F8, C3, FC5, FC2, AF4 (frontal lobe), T7, T8 (temporal
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lobe), O1, Oz (occipital lobe), and P3, P4, Pz, PO4 (parietal lobe) [62]. For emotions assessment in this
study, only the channels C3, C4, T7, T8, P3, P4, F3, and F4 were considered due to the limited number
of electrodes of the EasyCap helmet. The asymmetry in the pre-frontal lobe was presented in CL
evaluation, and O1 was not considered because the standard list refers to sighted people, and, in our
approach, the visual cortex was subjected to special attention.

6. Results and Discussion

6.1. Navigation Metrics Analysis

As mentioned above, the EEG, HR, and EDA (GSR) signals were acquired for the treasure hunt
tests, using the white cane or the SoV device with three spatial information encodings—audio, haptic,
and multimodal (audio and haptic). Besides the video recordings and the files containing the data
obtained during the experiments, important metrics regarding navigation were collected for each
user involved in the study: the time required to accomplish a trial, the length of the path, the number of
major or minor collisions, and also the numbers of white cane contacts with the obstacles. All these data are
summarized in Table 1 and reflect the cumulative performance of all the users for each scenario type.

Table 1. Cumulative experimental data for the treasure hunt (TH) tasks—navigation with the Sound of
Vision (SoV) device and white cane.

Codification Scenario
Type Collisions Total Number Path Total Distance (m) Total Time (s)

Audio

A 12 33.69 293
B 10 44.36 299
C 22 42.8 261
D 18 41.8 306
E 20 62.05 409

Haptic

A 13 28.3 179
B 11 39.1 221
C 17 41 261
D 20 44.1 255
E 34 54 440

Audio and Haptic

A 7 33.35 236
B 14 39 267
C 15 47.3 327
D 12 51.6 271
E 24 56.5 345

White cane

A 4 23.27 204
B 5 28.8 205
C 6 27.8 213
D 2 30.16 206
E 6 37.77 255

Figures 12–14 present the averages of time duration, number of collisions, and traveled distances
for RW navigation with the help of the white cane and SoV device, in case of all the five obstacle
arrangements (A to E). A+H stands for audio and haptic (multimodal). In the case of the short
and easy routes, the walking durations were very similar for audio stimulation and cane traveling,
while the haptic and multimodal stimulation required less time than the white cane. Only for the most
complicated test scenario (E), the cane and multimodal tasks were performed in a shorter time than
with haptic and audio input. It is known that the VIPs usually walk slowly, and it was encouraging
that the SoV device did not slow down the movement of the users.
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We noticed a higher number of collisions when using the SoV device in comparison to the white
cane navigation. This fact was expected because usually, the VIPs touch the objects with the cane
along their path, avoiding the great majority of collisions. The average distances did not differ too
much between cane and SoV navigation, except for the SoV audio mode, for which the routes were
significantly longer regardless of the testing scenario.

From Table 1 and Figures 12–14, it can be concluded that the required time, the length of the
path chosen by each VIP according to his/her perception of the SoV stimulation, and the number of
collisions depended on the complexity of the scene and on the user’s training and ability to adapt
to a new navigation aid. Obviously, the time, length of the path, and the number of collisions were
much higher for the scenes C, D, and F. Some VIPs had better results with the audio mode and others
with the haptic mode, but the number of collisions was higher for the haptic mode. As expected,
the metrics for the white cane navigation were better because the VIPs were accustomed to using it on
a daily basis. As a particular conclusion, the VIPs’ navigation performance with the SoV device was better in
the case of the multimodal encoding, in terms of duration and number of collisions. On the other hand, no
general conclusion could be drawn because the number of VIPs involved in the experiments was small,
and also a VIP could have learned the scenes during the first trials and performed better during the
last trial, even if the experiments were randomly conducted.

6.2. Cognitive Load Analysis

Figures 15 and 16 present the total cognitive load for all the validated experiments and the five
test scenarios, in the case of both the SoV device and white cane navigation. In the case of SoV
navigation, we computed the average of the audio, haptic, and multimodal stimulations. Regardless
of the difficulty of the test scenario (A is the easiest, and E is the most difficult), high values of CL
were observed for the electrodes related to the frontal cortex (O1 especially, in the vision area) if the
SoV device was used. The increase of frontal cortical activity was expected, but the activity of the
visual cortex (VC) was worth being investigated because it supports some previous opinions about VC
activation in the case of the VIPs who received various environmental sensory stimulation. It should
be noted that the brain activity corresponding to the O1 channel was significantly higher than for the
O2 channel for both types of navigation, resulting in an increased emotional state.
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In Figure 17, we present the total CL for the scenario treasure hunt (TH), configuration C. The main
conclusion was that there was a significant increase in the CL index (indicated as a negative fluctuation
according to the CL index definition) in the case of using the SoV device with audio, haptic, and multimodal
stimulation in comparison to white cane navigation. The conclusion was similar in the case of the other
testing scenarios (TH, configurations A, B, D, and E).
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In contrast to the CL values presented in Figures 15 and 16 for each electrode, the global CL index
was calculated on average for all brain waves for all users, aiming to have a general representation of the
brain activity. The short box related to cane traveling meant that the data consistently hovered around
the center value, denoting a similar effort for all users, and the whiskers indicated a quite limited
distribution as well. In the case of using the SoV device with audio, haptic, and multimodal stimulation,
the taller boxes indicated more variable data, and the whiskers showed a wider distribution, namely
more scattered data. The different ways in which the users perceived the haptic and sonification
models could explain this conclusion, which anyway was in accordance with the plots depicted in
Figures 12–14. The consistency of the experimental data and the preprocessing accuracy were proved by
the lack of outliers in the total CL indexes. Although the median value for haptic stimulation was closer
to the median for cane walking, the distribution of global CL was the widest one. It could be observed
that multimodal stimulation had the effect of reducing the spread of the global CL index. The tactile
and auditory stimuli were processed by distinct lobes of the cerebral cortex with significant differences
in CL, and this should explain the negative skewness in the case of cane and haptic stimulation and the
positive skewness in the case of audio and multimodal stimulation. The conclusion was similar for the
other testing configurations (A, B, D, and F) of the TH scenario.

6.3. Brain Activity Analysis

Besides this general evaluation of cognitive load, it was relevant to explore how the VIPs’ cortical
lobes were activated during walking on certain routes with the white cane or guided by the SoV
device using the three input encodings. Particular reactions were expected, depending on the type
of visual impairment and on the users’ training or education. For this, the analysis of the individual
frequency bands was performed according to the literature guidelines. First of all, the alfa waves
were investigated, especially in the frontal lobe, taking into account that there is an inverse relationship
between alpha power and cortical activity; namely, more brain activity (engagement) means less alpha
power [63]. A more detailed analysis should be done if the alpha-1 (lower alpha, 7–10 Hz) and the
alpha-2 (higher alpha, 10–13 Hz) frequencies were considered because it is well known that alpha-1
is related to response inhibition and attentional demands, and alpha-2 reflects task performance in terms of
speed, relevance, and difficulty [64]. It has been proved that people with relatively increased left-frontal
alpha activity are more motivated and focused in a positive way, and their related emotions are joy or anger.
In contrast, the increase of right-frontal activity denotes a more negative motivation accompanied by fear, sadness,
and disgust [63,65]. The asymmetry was calculated based on the difference between the logarithms of
the spectral powers from the left and right brain hemispheres.

For a more accurate assessment of brain activity related to users with different perceptions and
visual impairments, the envelopes of the alpha1 and alpha2 bands asymmetries were depicted for the
considered navigation tasks, and the collisions annotated with Chronoviz were marked with black
dots. It must be mentioned that the acquired signals for navigation with the cane or with the SoV
device had different lengths, according to the time required to perform the task and the path chosen by
the user, as it is presented in Table 1. The brain activity exploration was oriented towards analyzing
the late visual impaired users in a group and the subjects who were born blind in another group.

In Figures 18 and 19, the envelopes of the asymmetries depicted are related to a user who was
born blind (early-blind). He usually navigates using the cane, and he took part in all the training
sessions in the virtual environment and ego-static real-world tests. A significant difference between
navigation with the cane and the SoV device was observed only for the audio encoding, in terms of response
inhibition and attentional demands. Although SoV is a completely new device that implies a different way
of navigation, however, the consistent training in the virtual environment and the ego-static real-world
tests helped a lot the user to accommodate to the encodings. The greater attentional demand (reflected
by the alpha1 waves) was evident for audio stimulation, and it could be assumed that this was due to the
fact that the VIPs usually rely heavily on the environmental noise when they navigate. They also try
to perceive natural noises when the SSD sonification is conveyed to them. From the perspective of
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alpha2 frequencies, meaning speed and task difficulty, for this user, for all the encodings, the values obtained for
navigation with the SoV device were significantly higher than those obtained in the case of using the white cane.
Anyhow, this conclusion was expected, considering the novelty of the SoV system for the users and the
fact that the VIPs walked relying on the white cane in a natural style for a long time. The collisions
(marked with dark dots) were well correlated with the inflection points of the envelopes’ variations.Sensors 2020, 20, x FOR PEER REVIEW 19 of 31 

 

 
Figure 18. The envelopes of the alpha1 asymmetries for a user who was born blind. 

 
Figure 19. The envelopes of the alpha2 asymmetries for a user who was born blind. 

In Figures 20 and 21, the envelopes presented correspond to a user from the late-blind group. 
He lost his sight at 17, has a good education, and usually navigates accompanied by a family member, 
without using the white cane. He quickly got used to the SoV device and got good scores in the 
training sessions. In this study case, the alpha1 asymmetry values (Figure 20) were higher for the 
cane navigation (even the necessary time was shorter), compared to those obtained for SoV 
navigation, regardless of how the environmental information was encoded. This demonstrated a 
higher concentration for the cane navigation and good and fast accommodation with the SoV device. The alpha2 
asymmetries (Figure 21) highlighted increasing difficulties for the audio and multimodal encoding tasks. 
However, the range variations of the alpha1 and alpha 2 asymmetries were similar for the two users 
considered. This suggested that an early and a late VIP had the same cognitive load, but there were 
differences between the navigation tasks: cane vs. SSD and between the different types of encodings 
(audio, haptic, and multimodal). 

0 5 10 15 20 25 30 35 40 45
Time (sec.)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Envelope Asymmetry Alpha 1

Cane
SOV A
SOV H
SOV AH

0 5 10 15 20 25 30 35 40 45
Time (sec.)

-0.1

0

0.1

0.2

0.3

0.4

0.5
Envelope Asymmetry Alpha 2

Cane
SOV A
SOV H
SOV AH

Figure 18. The envelopes of the alpha1 asymmetries for a user who was born blind.
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Figure 19. The envelopes of the alpha2 asymmetries for a user who was born blind.

In Figures 20 and 21, the envelopes presented correspond to a user from the late-blind group.
He lost his sight at 17, has a good education, and usually navigates accompanied by a family member,
without using the white cane. He quickly got used to the SoV device and got good scores in the training
sessions. In this study case, the alpha1 asymmetry values (Figure 20) were higher for the cane navigation
(even the necessary time was shorter), compared to those obtained for SoV navigation, regardless of
how the environmental information was encoded. This demonstrated a higher concentration for the
cane navigation and good and fast accommodation with the SoV device. The alpha2 asymmetries (Figure 21)
highlighted increasing difficulties for the audio and multimodal encoding tasks. However, the range variations
of the alpha1 and alpha 2 asymmetries were similar for the two users considered. This suggested that
an early and a late VIP had the same cognitive load, but there were differences between the navigation
tasks: cane vs. SSD and between the different types of encodings (audio, haptic, and multimodal).

Besides the two particular cases presented above, an overview of the CL analysis is presented in
Figures 22–25. By averaging the results for all the VIPs (early- and late-blind), in case of the most difficult
trial (scenario E), it could be concluded that the alpha1 asymmetries for audio and multimodal codifications
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were a little higher (~0.2) compared to the cane and haptic modality (~0.1). The variations within the whole
asymmetries data set are displayed in the whisker plot from Figure 24.Sensors 2020, 20, x FOR PEER REVIEW 20 of 31 
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Figure 22. The average of the alpha1 asymmetry for all the users.
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6.4. Visual Cortex Activation Analysis

Some previous studies have revealed the presence of visual cortex activity in the case of the
VIPs if a sensory substitution system creates an “information map” of the environment. Therefore,
the total cognitive load (TCL) for electrodes O1 and O2 was investigated. Preliminary investigations
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of the experimental data showed that there was a major difference between the VC activity of the
late-blind persons and of those who were born blind. Thus, a general conclusion regarding all VIPs
could be drawn.

The asymmetries of TCL in the visual cortex for UserA (early-blind) and UserB (late-blind) were
calculated. In Figures 26 and 27, the upper envelopes for TCL values are represented for UserA and
UserB. UserA was a born blind person, and, in his case, the asymmetry of the cane task was twice greater
than the asymmetries of SoV tasks. In line with some previous research, it is possible to associate the
VC activity of the cane task with the fact that parts of his visual cortex were activated to refine his
sensations and usual activities. In contrast, the late-blind person’s VC activity in SoV tasks was much
higher than in the cane task (which was negative) and more than five times higher than UserA’s visual activity.
The limited number of VIPs from each group (five early- and three late-blind users) did not permit
to obtain valuable statistical results, but for all the late-blind persons guided by audio and haptic stimuli,
the average asymmetry of VC was around six times greater than that of the persons born blind, as can be seen
in Figures 28 and 29. Another important observation was that VC asymmetry was lower in the case of
multimodal stimulation than in the case of separate stimulation (audio or haptic). It must be emphasized
that there was no correlation between visual cortical activity and the number of collisions during navigation,
regardless of the type of navigation or sensory input.
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6.5. Emotions Assessment During Real-World Navigation

As presented in the previous chapter, the emotional influence is a vast topic on which, from the
dimensional perspective, the valence and arousal dimensions are advocated by Russell [66]. Arousal
expresses calmness or excitement, whereas valence expresses a negative or positive effect. According to
the comprehensive literature, left frontal inactivation is an indicator of a withdrawal response, which is often
linked to a negative emotion, and right frontal inactivation is a sign of an approach response or positive
emotion. Therefore, the ratio of right and left asymmetry (valence state—VS) was computed with
the equation:

VS = log
(PSR

PSL

)
(2)

where PSR and PSL are the power spectrum values of the right and the corresponding left hemisphere
channels in a specific frequency band. The channels T7-T8, which are considered the most relevant for
emotions assessment, but also C3, C4, P3, P4, F3, and F4, were considered based on the theoretical
statements from the previous chapter [62].

In addition, the HR and EDA signals acquired during the tests were processed according to the
standard approaches described in the literature [65]. The root mean square of the successive differences
(RMSSD) values were calculated for the HR recorded using the Shimmer sensor. A low RMSSD value
means a high HR, denoting a strong concentration, emotion, or physical effort, whereas a high RMSSD
value corresponds to resting or to a relaxing activity. The HR values in the resting state for the involved
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users were different according to their age and personal rhythm. Therefore, the percentage of variation
of RMSSD compared to the resting state was calculated. By pre-processing the signals acquired with
Shimmer, the EDA signals (µS) were obtained. Then, the deconvolution performed using the Ledalab
software provided the phasic and tonic components and skin conductance responses (SCRs)—abrupt
increases in the conductance of the skin, measured in µS, were calculated.

Firstly, the global VS of all the users and all the performed tests was calculated for the chosen
pairs of electrodes. The result is graphically depicted in Figure 30. The C3 and C4 electrodes were
considered because their waves could be associated with hippocampus activity, together with T8-T7,
which obviously are the most relevant for assessing emotions [65]. The VS calculated using the T8-T7
pair (T8 in the right hemisphere denotes negative emotions and lack of motivation, in contrast to T7)
indicated a low positive valence for cane navigation and a negative valence for SoV navigation, in accordance
with the cumulative time, distance, and the number of collisions from Table 1. For the parietal lobe,
the P4-P3 pair indicated a moderate VS for cane navigation and low VS for SoV navigation. The pair C4-C3
reflected a low positive valance, close to the neutral state. The same observation applied for the F4-F4
pair, for which the low negative valence in the SoV navigation using the audio encoding must be taken
into account.

Sensors 2020, 20, x FOR PEER REVIEW 24 of 31 

 

expresses calmness or excitement, whereas valence expresses a negative or positive effect. According 
to the comprehensive literature, left frontal inactivation is an indicator of a withdrawal response, which is 
often linked to a negative emotion, and right frontal inactivation is a sign of an approach response or 
positive emotion. Therefore, the ratio of right and left asymmetry (valence state—VS) was 
computed with the equation: 𝑉𝑆 = 𝑙𝑜𝑔 ቀௌೃௌಽቁ  (2) 

where PSR and PSL are the power spectrum values of the right and the corresponding left hemisphere 
channels in a specific frequency band. The channels T7-T8, which are considered the most relevant 
for emotions assessment, but also C3, C4, P3, P4, F3, and F4, were considered based on the theoretical 
statements from the previous chapter [62]. 

In addition, the HR and EDA signals acquired during the tests were processed according to the 
standard approaches described in the literature [65]. The root mean square of the successive 
differences (RMSSD) values were calculated for the HR recorded using the Shimmer sensor. A low 
RMSSD value means a high HR, denoting a strong concentration, emotion, or physical effort, whereas 
a high RMSSD value corresponds to resting or to a relaxing activity. The HR values in the resting 
state for the involved users were different according to their age and personal rhythm. Therefore, the 
percentage of variation of RMSSD compared to the resting state was calculated. By pre-processing 
the signals acquired with Shimmer, the EDA signals (μS) were obtained. Then, the deconvolution 
performed using the Ledalab software provided the phasic and tonic components and skin 
conductance responses (SCRs)—abrupt increases in the conductance of the skin, measured in μS, 
were calculated. 

Firstly, the global VS of all the users and all the performed tests was calculated for the chosen 
pairs of electrodes. The result is graphically depicted in Figure 30. The C3 and C4 electrodes were 
considered because their waves could be associated with hippocampus activity, together with T8-T7, 
which obviously are the most relevant for assessing emotions [65]. The VS calculated using the T8-
T7 pair (T8 in the right hemisphere denotes negative emotions and lack of motivation, in contrast to 
T7) indicated a low positive valence for cane navigation and a negative valence for SoV navigation, in 
accordance with the cumulative time, distance, and the number of collisions from Table 1. For the 
parietal lobe, the P4-P3 pair indicated a moderate VS for cane navigation and low VS for SoV navigation. The 
pair C4-C3 reflected a low positive valance, close to the neutral state. The same observation applied 
for the F4-F4 pair, for which the low negative valence in the SoV navigation using the audio encoding 
must be taken into account. 

 
Figure 30. Average valence state (VS) for all visually impaired people (VIP). 

The global percentage variation rate of RMSSD compared to the resting state decreased with: 
21% for cane navigation, 39% for SoV navigation using the audio encoding, 44% for SoV navigation 
using the haptic encoding, and 41% for SoV navigation using the multimodal encoding. By 

Figure 30. Average valence state (VS) for all visually impaired people (VIP).

The global percentage variation rate of RMSSD compared to the resting state decreased with: 21%
for cane navigation, 39% for SoV navigation using the audio encoding, 44% for SoV navigation using
the haptic encoding, and 41% for SoV navigation using the multimodal encoding. By computing the
global SCR index, the following values were obtained: 0.18 for white cane navigation, 0.61 for SoV
navigation using the audio encoding, 0.76 for SoV navigation using the haptic encoding, and 0.71 for
SoV navigation using the multimodal encoding.

The trials were performed randomly within the same navigation type (cane or SoV) and for the
same user, and no significant differences of the RMSSD values were remarked between the trials, even
if they had different durations. Moreover, a slight increase (corresponding to an HR decrease) was
observed towards the end of most of the tests. The users were not subjected to intense physical activity
because they walked on the plain ground; however, the average of HR values was a little bit increased
in comparison to the VTE tests. On the other hand, the EDA signals were sensitive to most of the
collisions, especially in the case of the SoV navigation.

In Figures 31 and 32, we present the VS values for the two special users (UserA and UserB). In the
case of UserA, who was intensively trained in the VTE and in the RW, the valence was positive but very
close to the neutral state for all the navigation types, with the remark that the valence for SoV navigation was a
little bit higher than for cane navigation. His RMSSD and SCR values did not differ significantly between
the navigation modes.
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Analyzing the results for UserB, who is usually guided by a family person, it is obvious that for
him, navigating using the white cane induced a neutral to low negative valence, and navigating using
the SoV device gave him more security, satisfaction, and a more comfortable state. This was underlined
by a decrease of the RMSSD percentages and an increase of SCRs for all navigation modes.

In Figures 33 and 34, the evolution in time of the VS for the T8-T7 pair is represented for UserA
and UserB in order to highlight the slow evolution of valence during a trial. In general, the collisions
did not essentially affect the valence changes, as in the case of the cognitive load assessment.Sensors 2020, 20, x FOR PEER REVIEW 26 of 31 
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6.6. Limitation of This Study

The limitations of the current study reside in the fact that we performed the tests with a small
number of users for both categories (early-blind and late-blind). Although the results were interesting
and in line with the existing literature, a more thorough evaluation should be realized. In addition,
the EEG recordings were performed using a limited number of electrodes. As future directions, we
plan to use a more advanced EEG recording device, with a higher number of electrodes, and to improve
the SoV device so that it would be lighter and more comfortable to be worn.

The results of real-world experiments were strongly influenced by a consistent training period,
similar to all users, which requires a great deal of time. Future work can extend the realistic scenarios
of RW traveling for enhancing the impact of the study.

7. Conclusions

This paper presented an experimental framework and a study based on EEG, HR, and GSR signal
analysis, aiming to assess the brain cortex activation and affective reactions of the visually impaired
persons to the stimuli provided by a sensory substitution device used for navigation in real-world
scenarios, compared to the white cane navigation. The study was focused on the evaluation of working
memory load, visual cortex activation, and emotional experience when the VIPs perceived audio,
haptic, and multimodal stimuli during a navigation task in five different types of scenarios.

The choice of the Brain-Computer Interface (BCI) equipment proved to be inspired because its
characteristics allowed a good acquisition of EEG signals simultaneously with the use of the SoV device.
The same BCI equipment has been employed successfully in other studies of our own concerning
multimodal neuromotor rehabilitation [67,68]. An important feature of the experimental setup is the
ability to synchronize the data streams and to align the acquired signals with the events extracted from
the video recordings. The training performed in the VTE and the ego-static tests performed indoors
had an essential role in preparing the users to perceive distances, positions, and object dimensions only
by means of the audio, haptic, and multimodal stimuli, giving confidence to all of them in using the
SoV device. The aim was to provide all users the ability to automatically understand the complexity of
a scene. Besides, during the VTE training, multiple resting sessions were recorded for all volunteers,
which had an important role in establishing a baseline.

The perception of audio and haptic stimuli using the SoV device was assessed in terms of cognitive
load, pleasantness, excitement, and events, for all the visually impaired users, as well as for the specific
categories (early-blind or late-blind). All in all, the haptic stimuli appeared to be less intuitive than the
audio stimuli.
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The analysis showed that navigating with the SoV device increased the cognitive load and the working
memory (lower accuracy and longer response times). The analysis of the EEG data revealed the usage of
verbal working memory in the posterior parietal cortices. The obtained results indicated that the left-right
asymmetry of the prefrontal cortex had distinguishable characteristics when the VIPs were navigating
in real-world environments with a wide range of obstacles.

The visual cortex exploration revealed a significant activation when using the SoV device, only for the
late VIPs. The low VC activity of congenitally blind persons during SoV navigation could be related to
brain plasticity, which allows the auditory and somatosensory systems to extend their functionality in
that part of the cortex.

Finally, we assessed the valence state of the users when navigating in unfamiliar indoor
environments based on mobile monitoring and a fusion of EEG and physiological (EDA and HR)
signals. For the generic VIP population, the use of the SoV device induced a low negative valence in contrast
with cane usage. But the findings differed for the specific categories of sight loss (early- and late-blind),
pointing out the particular needs/difficulties faced by each category of VIP.

This study proved once more that sensory substitution is an alternative method, which helps the
blind people to acquire information about the surrounding space and to navigate independently in
unknown real-world environments, safely and comfortably, after substantial training.

The findings hopefully empower the knowledge of how the visually impaired persons are stressed
and emotionally affected by SSD navigation and contribute to the development of the intelligent
navigation devices, aiming for the VIPs’ safety and well-being. The results of our work can inspire
researchers working in the field of IoT devices comprising sensors, antennas, and Bluetooth, which
have created navigation rules based on a fuzzy controller [69], GPS embedded in a stick with voice
recognition for obstacles detection [70], computer vision-based assistants [71], or assistive systems
relying on wearable smart glasses and mobile applications [72].

Valuable research projects have investigated the efficiency of intelligent sensory substitution
devices [73], and, in this context, our research brought an important contribution by analyzing
EEG and physiological signals in order to assess the cognitive effort and emotional state of users in
real-world navigation.
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Neuromotor Recovery Based on BCI,
FES, Virtual Reality and Augmented
Feedback for Upper Limbs

Robert Gabriel Lupu, Florina Ungureanu, Oana Ferche,
and Alin Moldoveanu

Abstract Recently investigated rehabilitative practices involving Brain-Computer
Interface (BCI) and Functional Electrical Stimulation (FES) techniques provided
long-lasting benefits after short-term recovering programs. The prevalence of this
revolutionary approach received a boost from virtual reality and augmented reality,
which contribute to the brain neuroplasticity improvement and can be used in
neurorehabilitation and treatment of motor/mental disorders. This work presents
a therapy system for stroke rehabilitation based on these techniques. The novelty
of the proposed system consists of including an eye tracking device that detects the
patient’s vigilance during exercises and warns if patient is not focused on the items
of interest from the virtual environment. This additional feature improves the level of
user involvement and makes him/her conscious of the rehabilitation importance and
pace. Moreover, the system architecture is reconfigurable, and the functionalities are
specified by software. The laboratory tests have validated the system from a tech-
nical point of view, and preliminary results from the clinical tests have highlighted
the system’s quick accommodation to the proposed therapy and fast progress for
each user.

1 Introduction

Rehabilitation is an important part of recovery and helps the patient to become
more independent after a stroke or a motor/mental disorder. In the last decade, the
Brain-Computer Interface (BCI), the Virtual Reality (VR) and the Functional Elec-
trical Stimulation (FES) techniques are widely used in more complex and efficiently
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systems aiming to bolster the rehabilitation process. In this context, different specific
devices became affordable, and many research groups and health institutions are
focused on motor, cognitive or speech recovery after stroke (Stroke Centre from
Johns Hopkins Institute0, ENIGMA-Stroke Recovery, StrokeBack) [1–3].

In this paper, we present an affordable system for recovery of patients with neuro-
motor impairments following strokes, traumas or brain surgery. It relies on a brand
new idea—recovery through augmented and magnified feedback—that creates new,
distinct possibilities to overcome block stages typical to early recovery, to stimulate
recovery through neuroplasticity. The system was customised and tested for upper-
limb recovery but can be tailored for any other particular purpose. Another own idea
of our approach is that the tasks and guidance are provided by a virtual therapist—a
new concept in the field of rehabilitation and considered extremely promising by the
healthcare professionals. Besides others research projects dedicated to upper limb
recovery (RETRAINER, NIHR) [4, 5] or very recent published works [6, 7], our
solution makes use of an eye-tracking method to provide a warning if the patient
stops concentrating during exercises.

The purpose of the proposed recovery system is to help in fulfilling the causal
chain/loop of recovery, consisting mainly of three steps: motor act is performed or
attempted, by the patient, with or without external help; the patient observes sensa-
tions and results (visually, haptic or proprioceptive); the patient’s cortex associates
the motor act with the observations and gradually learns and perfects the motor act.
Most techniques and systems for neuromotor recovery only pay attention to themotor
act performance, neglecting the essentiality of observation. The system handles the
whole recovery causal chain in a unified way. Previous versions and facilities of
presented recovery system were designed and implemented in the framework of
TRAVEEproject [8] and are presented in a comprehensivemanner in some published
papers [9–12].

From a user’s point of view, the system has two main components: one that is
dedicated to the patient that undergoes the rehabilitation process after stroke, and one
that is dedicated to the therapist—the clinician that guides the rehabilitation session
[8]. The complex system dedicated to stroke rehabilitation involves devices and
software that immerse the patient in aVirtualEnvironment to identify themselveswith
the presented avatar, as well as devices dedicated to support his/her movements and
providing complex feedback during the exercises. The component for the therapist
is aimed mostly at providing intuitive tools for configuring the rehabilitation session
composition and the devices used for each exercise, as well as to monitor the activity
of the patient.

2 Materials and Methods

The system is designed to support three main features: patient monitoring, patient
training and stimulation and data analysis and processing, Fig. 1a. Devices for the
first two features are each optional “plugin” components of the system. Hence, the
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Fig. 1 a The system architecture; b Sense—analyse—respond mapping functions

system can be tailored to use all of the devices together, but not all of them aremanda-
tory. Results of processed raw data from monitoring devices are used to trigger the
stimulation devices with respect to rehabilitation exercise [11]. The software has an
event driven architecture to manage needs like real-time data processing, communi-
cation and security, data access/storage, patient condition and working conditions,
interoperability [9]. The running processes are managed through the sense-analyse-
respond approach shown in Fig. 1b. In the “sense” component, monitoring devices
capture and process data in real-time. “Analyse” refers to continuous evaluation of
the processing results (when clause of the when-then rules) in order to decide to
“respond” by executing the then clause.

From the first category, the used hardware devices manage the system functions of
continuous patientmonitoring during the exercises and themovement and stimulation
of the upper limb that needs to be rehabilitated. The processing and control unit
(PCU) determines the correctness of the exercise performed by the patient based
on information received from used monitoring devices. The same information is
used to update the patient avatar from the virtual environment in which the patient is
immersed through the use of VR glasses (HMD). If more than one monitoring device
is used, then the system aggregates and synchronizes the gathered information to
interpret the status and actions of the patient. The following monitoring devices have
been tested: g.tec gUSBamp & gBSanalyze, Kinect V2, Leap Motion, video cam +
ArUco markers, Myo armband, EMG, DGTech glove.

The stimulation devices are used to restore and to maintain muscle tone and/or
to assist the patient when performing the recovery exercises. The processing and
control device synchronize all events and decisions to allow the system to act as a
whole. Both hardware equipment and software components are selected to fulfil the
system constraints regarding the performance and operational safety. The following
stimulation devices have been tested for the best setup and configuration: Oculus
Rift/HTC Vive, headphones, Motionstim 8, robotic glove, wireless sticky vibrating
motors.
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3 Results and Discussion

The system functions dedicated to the therapist are related to patient configuration
(search, add and edit), session configurations (patient profile, session content and
length, selecting the devices used by each exercise and their configuration), session
supervision (through graphs that represent the essential parameters regarding the
session in real time) and session history [10], Fig. 2a.

The doctors in the TRAVEE project consortium selected the available exercises
and included the most common rehabilitation exercises. These include the Finger
Flexion-Extension, the Palm Flexion-Extension, the Forearm Flexion-Extension and
the Arm Adduction-Abduction movements. For each selected exercise, the therapist
must configure the exercise (the number of repetitions, the duration of repetition and
body side left or right), add support (Visual Augmentation, Vibrations, FES), and add
monitoring devices (BCI, glove, motion sensor, kinect, leap motion). Every option

Fig. 2 Patient, exercise and session configuration/control
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Fig. 3 Virtual environment (patient and world view): a patient facing the therapist, b patient and
therapist facing a mirror, c serious game

and potential addition is on the bottom of the session configuration page, Fig. 2b and
the flowchart is briefly presented in Fig. 2c. The therapist may choose to edit, run or
view/analyse a saved session.

The main features of the system are dedicated to the patient—the subject of the
upper limb rehabilitation process. Figure 3 shows that the patient is immersed in
a Virtual Environment that includes two avatars (both 3D humanoids). One avatar
represents the therapist, which demonstrates the movement that the patient needs to
try to reproduce in the real environment. The second avatar represents the user from
a first-person point of view that mimics the real-life movements of the patient. The
patient may face the therapist Fig. 3a, c or sit next to him/her, both facing a mirror
like in a dance room.

There are twominimum recommended configurations: the so called BCI-FES and
motion sensor configurations to which other devices can be added. The first config-
uration consists of a 16 channels biosignal amplifier g.USBamp and an 8-channel
neurostimulator Motionstim8. The 12/16 acquired EEG signals are collected from
the sensorimotor areas according to the 10–20 International System. The number
of EEG signals may vary because four channels may be used, in differential mode,
to acquire EOG signals to determine whether the patient is paying attention to the
virtual therapist. The 256 Hz sampled EEG signals are preprocessed (filtered with
50 Hz notch filter and 8–30 Hz band pass filter), fed to an algorithm to execute
Common Spatial Patterns (CSP) [13–15] spatial filtering, and classify the output as
left or right hand movement with Linear Discriminant Analysis (LDA) [16]. For
CSP and LDA, the class Common Spatial Patterns 2 from BCIMATLAB&Simulink
model provided by g.tec have been used together with g.BSanalyze software (g.tec)
for offline data analysis.

As for EOG, the 256 Hz sampled signals are filtered with a moving average
filter of 128 samples and then fed to a Simulink block that contains a custom devel-
oped algorithm for EOG signal processing. The output of the algorithm is the x-y
(HEOG—VEOG) gaze normalized coordinates (Fig. 4) and the number of trigono-
metric quadrants or centre of the image where the patient is looking on the VR
glasses. This is needed to determine whether the patient is dozing off or otherwise
ignoring the virtual therapist. If so, the system warns the patient to concentrate/focus
on the exercise and pay attention to the virtual therapist.

For the BCI-FES configuration to provide VR feedback based on the patient’s
imagined movement, the system needs to create a set of spatial filters and classifiers.
This is done by recording 4 runs of training data with 20 left and 20 right motor
imagery trials in random order [13]. Each 8-second trial consists of:
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Fig. 4 Eye tracking: a HEOG and VEOG, b gaze position

(1) A beep at second 2 informing the patient about the upcoming cue;
(2) The cue to perform left or right motor imagery, which is presented from second

3 until the end (second 8) through both audio (left or right) and video (left or
right red arrow and left or right therapist hand movement) and indicates that the
patient needs to start imagining the corresponding movement; and

(3) Visual feedback (in form of the patient avatar moving its hand) begins at second
4.25. At the same time, the neurostimulator starts to trigger the patient’s hand
movement corresponding to the virtual therapist’s cue.

The first two runs are used to build the spatial filters and classifiers. For the
following two runs, each sample classification result is compared with the presented
cue to calculate the error rate for that session as follows:

Err =
(
1−

(
Tcc

N

))
· 100

where N represents the number of trials and Tcc the number of trials correctly
classified. From the obtained array of 40 error values in the feedback phase, the
mean and minimum error are obtained.

In Fig. 5, an example of output of the LDA classifier can be seen during feedback
phase. Each trial classification output is represented with dotted lines (right-blue,
left-green) and the corresponding average classification output with the solid lines.

Table 1 shows that the mean and minimum classification errors in the feedback
phase are smaller with VR than during the session in which the patient instead
received the visual feedback from a screen. This is because the patient was more
cognitively involved during the exercise using VR, since the VR environment
shielded him from real-world distractions and, in the VR environment, he is no
longer a disabled person. Table 1 contains the mean and minimum classification
errors for seven subjects. The first four subjects (S1–S4) received the visual feed-
back on a screen in front of them and the following three subjects (S5–S7) received
the visual feedback through VR glasses.

For the second minimum recommended configuration—which use motion
sensors—a device like Kinect (V1/V2), LeapMotion, video cam andArUkomarkers,
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Fig. 5 LDA classification output

Table 1 Mean and minimum
classification errors in the
feedback phase without (left)
and with (right) VR

Subject Session Mean Err (%) Min Err (%)

S1 1 20.62 5.48

2 22.34 7.11

3 26.48 19.7

S2 1 23.96 11.97

2 24.6 14.1

3 28.83 21.1

S3 1 33.56 22.78

2 37 21.35

3 35.58 29.51

S4 1 32.58 24.77

2 31.54 24.61

3 37.21 26.22

Mean values 29.53 19.06

S5 1 18.5 7.36

2 19.72 10.72

3 20.8 9.45

S6 1 19.2 6.37

2 19.25 7.68

3 19.58 1.95

S7 1 28.19 15

2 25.53 13.56

3 21.91 5.13

Mean values 21.41 8.58
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and IMU is used to monitor the patient’s hand/armmovement. The neuromotor reha-
bilitation is divided in three session types: “mirror;” augmented and magnified feed-
back; and real feedback. All sessions relied on VR glasses to immerse the patient
in a virtual environment to receive professional guidance, encouragement, feedback
and motivation. The mirror session type was designed to be used immediately after
the stroke or brain surgery, when the patient is not able to move the impaired arm or
hand. The patient is told to imagine/try/execute the exercise with both arms/hands.
The system tracking sensors are set to track only the healthy arm or hand but update
both arms/hands of the patient avatar in VR. This way, the patient can see his both
arms/hands working just like the therapist instructed, and realizes that s/he can move
the hand/arm at will. This visual feedback is very important because it activates
the mirror neurons that intermediate learning and closes the causal chain specific to
recovery.

If the patient can perform small hand movements of the impaired arm, enough
to be detected by the motion sensors, then all executed movements are augmented
(session type two). The patient can see a much larger movement than s/he actually
executes. The amplification factor decreases from a maximum set value (when the
patient’s movements are barely detected) to the value of one (when the movement is
complete and correctly executed). The augmented feedback transforms the received
visual information into knowledge.

The exercises of the third session type should be used after the patient regains
partial/total control over the impaired arm and needs motivation to continue therapy
by proposing different scenarios and tasks. The difficulties and challenges of the
exercises can be adjusted to each patient’s condition and progress.

To remind the user about the system and its benefits, each recovery session starts
with the therapist and patient sitting in a chair facing each other. The real therapist
explains to the patient what s/he will see, hear and must do. Specifically, the virtual
therapist will move its left/right hand/arm to demonstrate the exercise to the patient.
At the same time, an arrow will appear on the left/right side of the screen, followed
by a corresponding left or right audio cue. The patient is instructed to imagine the
left or right motor act and do his/her best to execute it. If BCI is used, the patient
will receive visual feedback only while s/he is correctly imagining that movement.
After this explanation, the VR glasses are mounted and the recovery exercises may
begin (see Fig. 6).

Because the prevalence of post stroke spasticity is around 38% [17], some patients
with hand spasticity need to perform special exercises to reduce spasticity with
a therapist’s help [18] before using the TRAVEE. To meet these needs, a second
working group on stroke recovery from Technical University of Iasi led by Prof.
Poboroniuc designed, build and added a module to TRAVEE to be used especially
for despasticisation as well as for recovery exercises for the upper limbs. It consists
of a distal exoskeleton glove that can copy the finger movements of the healthy hand
by using another glove equipped with bending sensors. It can also actively assist
flexion/extension movements of all fingers or each individual finger. The module
uses an FES system for better and faster results. This hybrid approach can replace
the recovery therapist who usually assists the FES induced movements and can
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Fig. 6 Patients using the system

copy the movements of the healthy hand. This mirror-like therapy induces cortical
reorganisation and motivates the patient.

The glove (left hand) is made from leather with tendons (metal wires) clamped
on the top (dorsal side) and bottom (root) of each finger, as shown in Fig. 7. The
right hand is using a textile/leather glove with bending sensor insertion for each
finger. Figure 8 presents the hardware architecture of the despasticisation module.
The FES module consists of a MotionStim8 neurostimulator that uses two channels
for stimulating both the interosseous and extensor digitorum muscles.

Themodule is not used just to reduce spasticity. It is also integrated in theTRAVEE
system, where the therapist can select it as stimulation device and/or asmotion sensor
based on the type of exercise.

Fig. 7 The distal exoskeleton glove (left hand) and bending sensor glove (right hand)

Fig. 8 The hardware architecture of the despasticisation module



84 R. G. Lupu et al.

The whole system was first tested on three healthy people. Next, we performed
some fine tuning based on their suggestions to improve accuracy and validate system
repeatability. Each patient signed an informed consent and an authorization for
videos and photographs. The experiments with patients were approved by the insti-
tutional review board of the National Institute of Rehabilitation, Physical Medicine
and Balneoclimatology from Bucharest, Romania. Patients were women and men
with ages between 52 and 79, with post stroke central neuromotor syndrome and
stable neurological status, stable consciousness, state, sufficient cognitive functions
to allow learning, communication ability, and sufficient physical exercise tolerance.

4 Conclusions

Thiswork presents aBCI-FES system for stroke rehabilitationwith the unique combi-
nation ofBCI andEOGdevices to supervise howexercises are performed andmonitor
patient commitment. TheOculus rift headset increases the patient’s immersion inVR.
The systemmust be seen as a software kernel that allows users to define/run a series of
rehabilitation exercises using a series of “plugin” devices. By using VR, the patient
is not distracted by the real environment and is more cognitively involved during
recovery exercises. The patient is focused most of the time, but if s/he loses concen-
tration, the eye tracking system detects this problem and provides a warning. For the
BCI-FES configuration, the use of VR makes it possible to provide neurofeedback
in one or (rarely) two training sessions.

To our knowledge, the proposed neuromotor recovery system is the only one that
includes an eye-tracking device for assessing patient concentration during exercises,
enhancing engagement and effectiveness.

Technical performance was validated by testing the system on healthy persons
with good knowledge in assistive technologies. The healthy people achieved low
control error rates relative to those reported in the literature.

There are two patents pending:

• System, method and software application for automated augmented, gradual
and naturalistic representation of human movements 00814/2017, OSIM patent
pending.

• Mechatronic glove-neuroprosthesis hybrid system with knitted textile electrodes
for hand rehabilitation for patients with neuromotor disabilities 00072/2017,
OSIM patent pending.
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ABSTRACT As more and more people are left disabled by stroke each year, it is of vital importance to
progress in the research of new ways to improve their condition and to ensure that they maintain their
independence as much as possible in everyday life. A step in this direction of research was taken with
TRAVEE, a system dedicated to neuromotor rehabilitation after stroke. To reach this goal, the TRAVEE
has benefited from several innovative ideas and technologies—virtual reality, brain–computer interfaces,
functional electrical stimulation, robotics, haptics, multimodal feedback, and a novel idea in information
and communications technology systems for rehabilitation—visual augmentation as a form of feedback to
the patient. Through visual augmentation, the TRAVEE immerses the patient in a virtual environment where
his movements are rendered as being better than in the real world, and in this way diminishing his disability.
We believe that this process—that is pending for patent—will greatly impact the recovery process after
stroke, by providing more motivating sessions, while supporting the cortical reorganization process. This
paper presents an overview of the TRAVEE system, the perspectives that supported it, details regarding its
development, as well as the results of the clinical tests that were performed with the system.

INDEX TERMS Multimodal feedback, neuromotor rehabilitation, virtual reality, visual augmentation.

I. INTRODUCTION
According to the World Health Report [1], stroke affects
15 million annually. Out of them, a third die and a third are
left with permanent disability.

According to the Heart Disease and Stroke Statis-
tics 2018 [2] provided by the American Heart Association,
stroke is a leading cause of disability in the United States.
Approximately 90 million Americans are estimated to be
living with a cardiovascular disease (CVD) or an aftereffect
of stroke. Increasing the quality of life of those affected by
stroke can therefore have a significant impact worldwide.

The TRAVEE system is the result of a national research
project, undergone between 2014-2017. It is a neuromotor
rehabilitation system for the upper limb, that took the first
steps toward developing a low-cost solution that could be
used on a large scale in the rehabilitation process.

The system combined multiple technologies (VR, BCI,
FES, a robotic hand assistant device and haptic feedback),

as well as complex ideas such as virtual therapist (VT),
visual augmentation and multimodal feedback to develop a
low cost, highly customizable rehabilitation solution. The
resulting system has multiple functioning modes, a graphical
user interface (GUI) dedicated to a non-technical healthcare
practitioner and a database for storing the information regard-
ing the patients.

One of the purposes of this project was to validate two
ideas: the visual augmentation process in VR (transmit-
ting to the patient an improved visual representation of his
actual movements) and the eficacity of the virtual ther-
apist, a virtual avatar that executes the movements that
the patient must try to reproduce during his rehabilitation
session.

TRAVEE was tested in iterations. The initial prototype
was tested during two in-vivo testing sessions, in a medical
settlement, in order to validate the technical solution. After
refining the initial prototype into the final one, a clinical trial
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took place, in the same medical settlement, to qualitatively
assess the final result of the project.

This paper presents themedical prerogatives that were used
and supported the ideas of the TRAVEE project, the overview
of the system functionality and its architecture as well as
several technical implementation details. The article will also
provide the results of the preliminary in-vivo tests and the
clinical trial, along with their interpretations, conclusions and
future development perspectives.

II. MEDICAL BACKGROUND AND PERSPECTIVES
A. STROKE AND REHABILITATION
Stroke is the main cause of adult disability; approxi-
mately 60% of survivors remain with dysfunctional sequelae,
especially at the upper limb.

Rehabilitation therapy allows people with disabilities and
activity limitations to gain and maintain optimal physi-
cal, intellectual, psychological and / or social functioning.
It includes a broad and heterogeneous range of activities,
therapeutic interventions and methodologies, in addition to
standard medical care.

Over the past 15 years, significant scientific evidence has
emerged that argue that intense and repeated training can
influence the reorganization of the brain through the acquisi-
tion / revival of motor regimes. The learning of motor engram
is done through internal processes associated with practice
and experience, which leads to changes in the ability to move.

B. NEUROLOGIC PERSPECTIVES ON VISUAL
AUGMENTATION
Neuroplasticity is the ability of the brain to undergo func-
tional changes in the short term and also to undergo struc-
tural changes in the long-term to adapt to changes in the
living environment, central or peripheral injuries, aging phe-
nomena. Brain reorganization is the main mechanism for
achieving neuroplasticity. The stimulation of brain reorga-
nization is done by: enriching the environment, stimulating
attention, social interactions, tactile stimulation, motor
re-learning, direct brain stimulation.

The cortical reorganization for restoring the movement of
the hand affected by stroke is done on three ways, which are
not excluding one another:

1. Bilateral cortical activation, with significant recruitment
of nerve networks in the unaffected hemisphere.

2. Increasing recruitment in secondary cortical areas in the
affected hemisphere.

3. Recruiting nerve paths around the infarcted area.
A potential role in reorganization is the use of feedback

(augmented or not) as a way to stimulate the reward mech-
anism underlying the learning process. The use of imagina-
tion or visual representations of movement is called motor
imagery. According to an extensive study in the field of motor
imagery in rehabilitation [3] there is at least theoretical and
experimental proofs on healthy subjects for the support of this
idea.

A study regarding the possibility of ‘fooling’ the brain
into believing that the perceived improved feedback is the
result of the motor action of the body was published in [4].
This paper presented the presence of techniques for fooling
the brain in rehabilitation purposes starting from 1996 with
Virtual Reality Box and Mirror Therapy [5], [6], both using
mirrors to reflect the movements of the healthy hand in
upper limb amputees to simulate the presence of the missing
limb, in order to successfully alleviate or treat phantom pain,
to Functional Electrical Stimulation consisting in application
of electric currents on the missing limb also in the purpose of
relieving phantom pain.

Other experiments also presented in this survey [4] include
the use of Augmented Reality (AR) to amplify a small move-
ment in order to trick the brain into thinking it was a wider,
more ample one in the TheraMem system [7]. This system
was tested on five patients and observed a high degree of
motivation during the sessions with the system.

Another system that implements this idea is a Virtual Real-
ity (VR) for ‘‘corrective learning’’ where small movements
of the disabled arm generate full range movements in the
VR to help the patient re-learn the given action by correct-
ing the perceived feedback [8]. The system referred by [8]
is called VirHab [9] and it augments movements by using
image processing of video streams to replace the image of
the disabilitated arm with a recording of a movement of the
healthy one when an input device is actioned - a small ranged
movement determines the visualization of a full range one.
A similar system is presented in [10] and the presented study
showed improvements in the involved patients on several
disability scales that were maintained even after three months
after the sessions with the system.

As there are previous researches that tested the feasibility
of stimulating cortical plasticity by fooling the brain by pro-
viding virtual improved feedback, TRAVEE introduced the
augmented feedback - tracking the body of the patient and
displaying on the patient avatar in the virtual environment a
slightly improved version of the detected movements, com-
bined with multimodal feedback.

III. OVERVIEW OF PREVIOUS ICT REHABILITATION
SOLUTIONS
Starting from a survey that was presented at the 8th
International Conference on Speech Technology and
Human-Computer Dialogue [11], we evaluated the existing
literature regarding ICT systems for neuromotor rehabili-
tation. We observed two tendencies in the development of
these kind of systems. Either the experiments used a unique
technology, developed exclusively for the study, or they
involved the use of commercially available solutions, in the
aim of developing a more accessible system.

In the category of systems dedicated exclusively to reha-
bilitation, several experiments were presented, and will be
mentioned in the following. The Rutgers Arm system [12]
includes a forearm support that slides on a surface, to assist
the patient in performing the movements necessary in
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a pick-and-place game that exercises the ability of following
a given trajectory or a treasure-hunt game that tests arm
endurance. The system also tested a game designed to exer-
cise grasping gestures. The two subjects participating in the
experiments with the system showed improvements in motor
abilities and pinch and shoulder strength. The follower of the
Rutgers Arm system is the Bright Arm [13] where the training
table was completed with a rubber pear for monitoring the
grasp strength in the palm, two infrared cameras placed above
the head of the patient for movement tracking, a display and
a computer connected to a remote medical server. Five games
were available in this version of the system, and it was tested
with 5 participants that – after the experiment – improved
their shoulder strength, grasp strength, shoulder and elbow
flexion and extension capabilities.

Another system that enhances the rehabilitation sessions
using dedicated ICT is the ImAble [14], with its three config-
urations, all dedicated to rehabilitation using virtual games.
The Able-B supports the disabled hand against gravity and
moves it with the support of the healthy one. It uses a webcam
to track the movements of the disabled hand by detecting a
colored patch placed on it. The Able-M contains a sliding
device to which the hand is strapped while sliding on a
table and controlling a mouse for finger strength training.
The Able-X consists of a lightweight handlebar that can
be rotated in transversal and sagittal plane to control the
movements of a pointer on screen. These systems are inte-
grated with various games for static or dynamic target hit-
ting. The three configurations (Able-B, Able-M and Able-X)
were tested with five, three and 14 subjects respectively and
in all cases improvements on the Fugl-Meyer scale were
observed.

One of the systems that use commercially available solu-
tions for rehabilitation is the Gertner Tele-Motion Rehabilita-
tion System [15] that uses the Kinect to detect the movements
of the patient. The patient performs certain rehabilitation
movements that are translated to actions in specially designed
video games. This system was tested on 18 subjects, 9 in the
test group and 9 in the control group. Greater improvements
were detected in the test group post-sessions, but a larger
test is required for a definite result. The ioTracker is another
system that uses Kinect to track the body movements of the
patient as a form of input.

Other commercially available devices used in ICT sys-
tems for rehabilitation is the Wii. It was used for vestibular
rehabilitation [16] in which over 50% of the 17 participants
improved their balances indexes after the sessions.

Several studies [17], [18] used head mounted displays
to immerse patients in virtual environments, with positive
results on experiments with several patients, in the improve-
ment of conditions such as memory and attention deficits:
in [17] two patients were involved in ten sessions each with
the system and in [18] the patients were evaluated using
scales for attention deficit before and after using the system
that immersed them in real-life scenarios, such as finding
paths to certain destinations or memorizing information from

FIGURE 1. TRAVEE architecture overview.

the virtual world. The results showed improvements on both
the Wechesler Memory Scale and on the Toulouse-Pieron
scale.

The studied literature presents experiments in various
fields of rehabilitation using ICT systems and most of them
seem to have a positive influence on the rehabilitation proce-
dures. TRAVEE is a complex system that combines several
of the ideas that are already present in the existing literature
with novel ideas, such as the visual augmentation, virtual
therapist and multimodal feedback, using various technolo-
gies that are commercially available (Kinect, Leap Motion,
Oculus Rift) or devices that are designed especially for the
system (robotic glove, haptic device) as the system wants
to evolve towards a low-cost solution. Several of the used
technologies (for EEG, FES and EMG) are at the moment
not low cost, but the desired evolution of the system is
to replace them with accessible solutions at a satisfactory
quality.

IV. TRAVEE NEUROMOTOR REHABILITATION SYSTEM -
FUNCTIONALITY, ARCHITECTURE AND
IMPLEMENTATION DETAILS
The system implements many original ideas, some original
by themselves, others original in the context they were used.
These are: the virtual therapist, that exemplifies the correct
movement to the patient; the multimodal input, consisting
of body tracking, EEG and EMG; multimodal feedback to
the patient and visual augmentation of the patient’s actions
(an idea that is pending for patent).

The system integrates a variety of functioning modes in a
modular architecture, presented in the image below.

The main components of the TRAVEE system are: the
VR Central System, the Data Acquisition and Control com-
ponent, the Therapist GUI, the Movement Analysis compo-
nent, the Realtime Data Visualization component and the
Avatar Personalization module. The rehabilitation sessions
are recorded by the VR Central System. The resulted record-
ings are analysed using a standalone application, the Session
Analysis component.
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A. BIOPHYSICAL INPUTS
The system accepts input data from different devices, depend-
ing on the functioning mode: body tracking, body tracking
+ brain activity monitoring, detection of muscle activation
in the limb. To stimulate the patient, the system generates
many types of feedback: visual (true or augmented) through
immersion in a virtual environment (VE), FES (Functional
Electrical Stimulation), vibrations (haptic) and robotics.

B. BODY TRACKING
The tracking of the patient body is made using optical track-
ing devices: Kinect and Leap Motion. These devices are used
to obtain information regarding the positions, rotations and
scales of the main joints in the arm, forearm and palm of the
user.

C. BCI
In the traditional therapy, the patients are asked to try to
execute a certain movement with their impaired limb while
they are imaging that movement. The goal is to perform a
corresponding motor imagery (MI) task in order to produce a
correct neural activation. The visual feedback of that action is
obtained by using rope and pulley, if possible, a FES device to
stimulate the correspondingmuscles or a robotic device. In all
cases the patient or the therapist are pulling the rope, trigger
the FES or robotic device while the patients are imaging that
movement. The problem is that for the patients it is very
difficult to ‘‘see’’ that their impaired limb is moving because
they are imaging so and not just because they or someone
else is pulling the rope or pushing the button. This is the
reason for which the causal loop cannot be closed and the
recovery is blocked. On the other hand, the therapists don’t
have a real feedback from patients and they must rely on
patients that they are really imagining that movement and
carry on with the therapy. In reality, most of the patients, after
a short time, lose concentration, they are getting bored, they
start to think at something else like personal problems or even
fall asleep. TRAVEE uses the BCI technology to determine
if the patient is correctly performing the MI task. That can
be used to trigger the FES, the robotic device or to update
the patient avatar in the VE and to receive a corresponding
feedback. Also, the therapist can have a feedback regarding
the patient’s mental activity and guide him in order to sustain
and/or maximize this activity.

D. EMG
In case of the patients with residual motor potential or for
those that start to have some minor muscle activity or to
gain a small control over their limb due recovering therapy,
electromyography (EMG) can be used as an alternative to
detect the patient intention to make a movement. This is done
by acquiring the EMG signal(s) and compare their ampli-
tude(s) with a threshold. If it exceeds the threshold the patient
intention is detected and can be used as a trigger signal for
devices that guide/helps the patient to perform that movement
and/or to update the patient avatar in VR.

FIGURE 2. Capture from the VE of the TRAVEE system.

E. FEEDBACK MODALITIES
1) VISUAL FEEDBACK (AUGMENTED OR DIRECT) THROUGH
IMMERSION IN A VIRTUAL ENVIRONMENT (VE)
The visual feedback provided to the patient is obtained by
immersing him or her in a VE where the patient sees the
Virtual Therapist (VT) - an avatar that executes the current
movement that the patient must try to perform, as well as
an avatar of the patient (virtual representation of his or her
body). The patient’s avatar performs the movements of the
patient either exactly as they are detected by the body tracking
devices, either augmented - to be closer to the Virtual Thera-
pist movements - before being applied to the patient’s avatar.

2) VIBRATIONS (HAPTIC)
This feedback form consists in applying vibrations to cer-
tain key points on the hand or arm of the patient to inform
him or her that the movement was sufficiently executed. The
used haptic device was custom made for TRAVEE and it
consists of vibrating motors attached to electrodes that are
placed on the skin. The device is controlled by the sys-
tem with commands that start and stop the application of
vibrations.

3) LIGHTWEIGHT ROBOTICS
Robotics are an important feedback path and are represented
by a glove actuated by five motors that support the extension
of the fingers and hand. The device tested in the clinical
setting was developed specifically for TRAVEE and includes
five medium servo motors attached to a glove, controlled by
an Arduino Mega 2560 development board.

4) FES
The functional electrical stimulation (FES) is a tech-
nique often used for recovering neuromotor functions in
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neuromuscular disabilities due to a central nervous system
lesion. By artificially inducing a pulse train in muscle nerves,
contractions of the respective muscles can be obtained in
proportion to certain parameters of the stimulation signal.
Thus, bymodifying the stimulation signal parameters, intense
muscle contractions can be induced to produce functional
movements. The main requirement for electrical stimulation
to produce the contraction of the target muscle is that both
the muscle and the nerve that connects it with the spine must
be intact. In the TRAVEE project FES is used to help the
patient to perform the desired movement and/or to maintain
the muscular tonus, reduce the spasticity, maintain the limb
joints. A side effect of working with FES is that the elec-
trical impulse is travelling back to the brain via the nerve.
This is seen as a benefit because the brain is bombarded
with information and it is forced to reorganize in order to
process it.

F. THE VR CENTRAL SYSTEM
This is the central communication point and also the sys-
tem server. The VR Central System is responsible with the
VE (using the Oculus Rift device) in which the patient is
immersed and the main logic of the application. Based on
the session configuration and on the available input data it
decides what kind of augmentation or feedback should be
applied and controls the augmentation and feedback modal-
ities. It directly controls the haptic device and the robotic
glove. The VR Central System is also in charge with logging
relevant information regarding the current session, such as
the postures of the patient obtained from the body tracking
devices, as well as data acquired fromEEG and EMGdevices.

1) VIRTUAL ENVIRONMENT
The Virtual Reality environment was implemented using the
Unity game engine version 5.3.4. It contains an avatar for
the therapist (VT) and an avatar for the patient. In the VE,
the patient sees the representation of their own body, the vir-
tual patient avatar, from a first-person point of view, in order
to better identifywith themovements of this avatar, in a sitting
position, with the VT also in a seated position in front of the
patient’s avatar, as in the capture below.

The immersion is achieved through a Head Mounted Dis-
play, Oculus Rift.

2) VIRTUAL THERAPIST
The VT is an avatar placed in front of the patient avatar, that
exemplifies the movements that the patient needs to try to
reproduce in the real world. The VT avatar was made using
the Adobe Fuse CC software that allows creating humanoid
characters. The patient avatars were made using the open
source Make Human software.

3) SESSION RECORDING
The session recording functionality is integrated with the
VRCentral System, and it consists of a mechanism that stores
all the relevant information for each session in a .session file::

avatar poses obtained from the body tracking devices, data
synthesized from the EMG and EEG devices, exercise codes.

Having this information is enough to be able to use the
session analysis component and simulate the entire rehabili-
tation session, by performing the same analysis on the logged
data as in real time during the session. The session recorder
is started automatically when a new session is created.

4) MOVEMENT ANALYSIS
This component is coupled with the VR Central System.
It analyses the patient posture using the data from the opti-
cal tracking devices. Each movement is evaluated based on
several predefined parameters and classified by a score, rep-
resenting the degree of correct execution of the current move-
ment. Decisions regarding body tracking based augmentation
and feedback are taken by the VR Central System according
to this score.

5) BODY TRACKING
The tracking of the arm and hand were made using the Kinect
and LeapMotion devices. Both of themwere necessary, as the
Leap Motion tracks the forearm, the joints of the palm, and
the phalanges of each finger, while the Kinect device tracks -
among others - the joint of the shoulder and the elbow. Each
movement defined in the TRAVEE system is tracked by one
of these devices.

The movements implemented by TRAVEE and their clas-
sification as either being tracked by Kinect or Leap Motion is
presented below.

Movements tracked by Kinect: Forearm flexion-extension,
Arm adduction-abduction, Arm anteduction-retroduction,
Shoulder raise.

Movements tracked by Leap Motion: Palm flexion-
extension, Finger flexion-extension, Thumb opposition,
Forearm pronation-supination.

More details regarding the implementation of the hand
tracking with the two devices are presented in [19].

6) VISUAL AUGMENTATION
During the rehabilitation session execution, the data from the
input devices – tracking devices, BCI, EMG – is analysed
by the VR Central System and, depending on the functioning
mode, the movement is visually augmented.

The visual augmentation of a movement based on track-
ing data within the TRAVEE system is the process through
which, during the execution of a certain movement in a
rehabilitation session, the movement detected by the tracking
devices is improved before being applied to the virtual avatar
of the patient. This means that the patient tries to execute cor-
rectly the current movement in the session – exemplified by
the therapist avatar – and the movement the patient observed
on the patient avatar will be a slightly improved version of
the real movement, as detected by the tracking devices.

The visual augmentation of the movement based on move-
ment tracking data uses the score calculated for themovement
and a previously set threshold.
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FIGURE 3. Graphical representation for augmentation function with
threshold value 30.

The movement is augmented if the score is below the{
threshold × (1− e−
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threshold with a factor. Several formulas of augmentation
were tested, but the one we believe represents the envisioned
visual augmentation of the TRAVEE system has the follow-
ing form:

A graphical representation of this function, for a threshold
value equal to 30 is presented in Fig. 3.

The augmentation algorithm is the following:
1) Evaluate the degree to which a movement was per-

formed, based on the current body tracking data: for
each movement we identified a joint or a set of joints
that are most relevant and used them to calculate a
degree of execution, referred to as score. The score is
represented by a number, which is calculated differ-
ently for each movement, as it can represent a relevant
angle or a distance between two bones or joints of the
hand.

2) If the score is beneath the threshold for the currently
executed movement, augment the relevant angles and
distances of the movement according to the augmenta-
tion.

3) If the score is above the threshold, display on the
patient avatar the pose obtained from the body tracking
devices, without any alterations.

The process of visual augmentation based on body tracking
is pending for a patent with the title: ‘‘System, method and
computer program for augmenting human movements’’.

The joints used for the movements are presented
in Fig. 4 and Fig. 5. As the system knows what the current
exercise is, for each pose, it evaluates the current relevant
angle or distance. This value is considered to be the score
for the movement. Each type of movement has a predefined
threshold.

The joints evaluated for each movement are presented
in Figures 4 and 5.

FIGURE 4. The angles considered for evaluating the movement score for
Forearm Flexion-Extension (top-left), Thumb Opposition(top-right), Arm
Adduction-Abduction (bottom-left), Arm Anteduction-Retroduction
(bottom-right).

FIGURE 5. The angles considered for evaluating the Palm flexion-
extension (top-left), Forearm pronation-suppination (top-right),
Finger flexion-extension (bottom-left) and Shoulder raise
movements (bottom-right).

1) Forearm Flexion-Extension: the elbow joint was con-
sidered the most relevant. Therefore, the given score
was the angle between the forearm and the arm.
The maximum augmentation angle, up to which the
movement was augmented, was set to 45 degrees.

2) Thumb Opposition: the angle between the direction of
the first phalange of the thumb and the axis between
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the base of the thumb and the base of the pinky fin-
gers is considered the relevant angle. The maximum
augmentation angle, up to which the movement was
augmented, was set to 60 degrees.

3) Arm Adduction-Abduction: the angle between the
direction of the arm and the direction of the spine
is considered the relevant angle. The maximum
augmentation angle, up to which the movement was
augmented, was set to 60 degrees.

4) Arm Anteduction-Retroduction: the angle between
the direction of the arm and the direction of the
spine is considered the relevant angle. The maximum
augmentation angle, up to which the movement was
augmented, was set to 60 degrees.

5) Palm flexion-extension: the angle between the direc-
tion of the hand and the direction of the forearm is
considered the relevant. The maximum augmentation
angle, up to which the movement was augmented, was
set to 45 degrees.

6) Forearm pronation-supination: the local Euler roll rota-
tion angle of the forearm relative to the arm is consid-
ered the relevant. The maximum augmentation angle,
up to which the movement was augmented, was set to
30 degrees.

7) Finger flexion-extension: all the angles between the
phalanges of the fingers were analysed. The minimum
angle between either two phalanges was chosen as the
score for the movement. The maximum augmentation
angle, up to which the movement was augmented, was
set to 60 degrees.

8) Shoulder raise: this movement was more complicated
to analyze as it did not have a relevant angle between
two joints, so it was evaluated based on the distance
between the position of the base of the neck and the
position of the shoulder. The maximum distance up to
which the augmentation was performed was defined at
0.6 units. The augmentation for this movement con-
sisted in changing the position of the shoulder joint
on the vertical axis with the calculated augmentation
distance.

G. THE DATA ACQUISITION AND CONTROL COMPONENT
This component acquires several types of data from the
patient, EEG and EMG and controls the FES.

1) EEG DATA PROCESSING
In the recent years, a series of scientific publications demon-
strated that BCI (brain computer interface) and more pre-
cisely the ones based onmotor imagery (MI) can stimulate the
mirror neurons and induce neuroplasticity [20]–[22]. These
evidences support the inclusion of BCI as an important tool
for post-stroke recovery therapy to enhance the motor reha-
bilitation outcome. During the exercises whereMI-based BCI
is used, the patient is asked to imagine the movement of his
hands in a random order. Motor imagery is a skill that must be
learned by the patient during the so called ‘‘training phase’’.

MI can be measured (real-time processing and classification
of the EEG) and used to provide neurofeedback. The neu-
rofeedback must be similar to the real motor activity that
patient is asked to imagine [23]. The visual representation of
the neurofeedback through the popular bar feedback (bFB)
[24] or virtual reality (VR) [25] it is a very important compo-
nent of the learning process because it actively involves the
patient (meaning the patient’s brain) in the task.

TheMI based BCI assume that the exercises are performed
with both hands. The method used to discriminate between
the two imaginary tasks is Common Spatial Patterns (CSP).
The method is based on the simultaneous diagonalization of
two covariance matrices. Thus, the method allows to con-
struct a new time series that maximizes the variance of the
samples of a task, while minimizing the variance of samples
of the other task. The matrices contains a set of spatial pat-
terns, subject dependent, which provides information about
the activity of a specific cortical area corresponding to imag-
ing the movement of one of the hands. Given one projection
matrix W , the decomposition of EEG signal for one trial X
can be projected as:

Z = WX (1)

where W−1 are sets of CSP models and are time-invariant
EEG sources distributions [26]. After interpolation these
CSP can be displayed as topographic maps [27].

Fig. 6 shows a set of CSP models for EEG recordings dur-
ing MI for left and right hand which correspond to the firsts
and respectively the lasts column of W−1. The topographic
distribution of these components correspond to expected con-
tralateral activities of the sensorimotor rhythms induced by
imagination of the movement. Another advantage of this
method is that is not necessary the variances computation for
the all n series. Müller-Gerking demonstrate that the optimal
number of CSP models used to create a feature vectors is
four, only first and last two rows of W [27]. The variance
is calculated using a sliding window of T according to (2)

VARp =
∑T

t=1
(Zp(t))2 (2)

where:
p – is the number of CSP filters (p = 4)
T – is the time window for which the variance is calculated

(T = 1.5s)
To obtain the feature vectors the values are normalized and

log (3)

fp = log10(
VARp∑4
p=1 VARp

) (3)

In order to categorize a movement to be right or left hand
a LDA (linear discriminant analysis) classifier is used based
on the classification of the four feature vectors. The result
of the LDA classifier is used as visual feedback for the
patient, Fig.7.

The EEG signals where acquired using a g.USBamp
16 channels biosignal amplifier device from g.tec medical
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FIGURE 6. CSP over 16 channels for one of the patients during MI (left column – right hand, right column – left hand).

FIGURE 7. Workflow of BCI signal processing for visual feedback control.

engineering GmbH [28]. The electrodes are positioned on the
EEG cap according to 10-20 International System in order to
cover the sensorimotor areas of the brain, Fig. 8.

Before starting the recovery exercises there is a training
session during which the patient must learn to imagine the
movement. The session consists of 4 runs of 40 trials of
hands movements, 20 for one hand and 20 for the other hand,
in a randomized order without feedback. Each trial consists
of 8 seconds of EEG recordings. At second 2, the patient
hears a beep that informs him about the upcoming cue and
at second 3 the cue (left or right) is presented, this repre-
senting the moment when the patient has to start imagining
the movement. The feedback phase starts at second 4.25 and
lasts till second 8. During the feedback phase, the patient has
to imagine the movement of the hand dictated by the cue.

The training data recorded during the calibration phase is
used to calculate the classifier that will be used for providing
the feedback during the next phase.

After an online session, an error rate is calculated by
comparing the cue presented to the patient with the classified
movement at every sample time. For a number of N trials,
the error rate is calculated as:

Err =
(
1−

Tcc
N

)
· 100 (4)

where Tcc is the number of correctly classified trials. The
mean error rate and the minimal error are calculated during
the feedback phase. Figure 9a presents the LDA classifier
output for an online session. The dotted lines represent the
output for each trial (blue for right and green for left) and
the solid lines represent the averaged classification output for
each class. Figure 9b presents as example the error rate for
an online session, and the minimal error rate is marked with
a red circle.

The system configuration using BCI to detect the patient
intention to move is shown in fig. 10. The LDA output is
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FIGURE 8. Position of the EEG electrodes according to 10-20 International
System.

FIGURE 9. LDA classification output (using g.BSanalyze provided by g.tec
medical engineering GmbH) and error rate.

used by the processing and control unit (PCU) to trigger
the devices (robotic glove, robotic arm etc.) which helps the
patients to perform the desired movement. At the same time
it provides the patient with visual feedback he needs.

2) FES CONTROL
The FES is used in TRAVEE system to help the patient to
perform the desired movement and as a technique to recover
neuromotor functions by artificially inducing a pulse train
in muscle nerves. Contractions of the respective muscles

FIGURE 10. TRAVEE system configuration using BCI to detect the patient
intention to move.

FIGURE 11. TRAVEE system configuration using BCI to detect the patient
intention to move.

can be obtained in proportion to certain parameters of the
stimulation signal. Thus, by modifying the stimulation signal
parameters (timings for impulse rising, front and falling and
current intensity), intense muscle contractions can be induced
to produce functional movements. Because the muscle con-
traction is directly dependent bymuscle tonus, skin resistance
and electrode position, the FES parameters must be adjusted
for every patient every time is used. The system configuration
in which the FES device is used to help the patient to perform
the desired movement is shown in fig. 11. This time the
user intention is detected by using one of following devices:
kinect, video+ arucomarkers, mio armband, IMU sensor etc.

The most used configuration is BCI - FES with additional
robotic devices if needed (depends on the rehabilitation exer-
cise). The patient must be able to seat without discomfort
in a normal chair or wheelchair for 30 – 60 minutes, with
his hands laid on the seat armrest. The exercise, for example
flexion and extension of the hand fig. 11, is executed by
the patient with his impaired hand but also with his healthy
hand, one at a time. For this reason the FES electrodes are
mounted on both hands over the finger extensors muscles
(two channels).

The system configurations in which the BCI and FES
devices are used are shown in fig 13.

In the first configuration, (Fig. 13 a), the BCI system
component automatically triggers the FES component when
it detects the patient intention to move and notifies the PCU.
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FIGURE 12. Flexion and extension of the hand.

FIGURE 13. BCI - FES system configuration: a) BCI triggers FES & notifies
PCU; b) BCI notifies PCU, PCU triggers FES.

In the second configuration, (Fig. 13 b), the BCI compo-
nent only notifies the PCU about the patient intention and
the PCU takes the decision to trigger the FES component.
Fig. 14 shows a patient using the TRAVEE system configured
as in Fig. 13. a.

H. THE THERAPIST GUI
This is the interface dedicated to the medical practi-
tioner, which enables defining the patient profile (contain-
ing information regarding the patient, such as gender, age,
weight, height, etc.), session configuring (exercises, dura-
tions, devices used) and analyzing statistics regarding the
history of the sessions executions for the current patient.
More details regarding the Therapist GUI are presented in
past works [29]. This component is also integrated with a
database that stores the patient and sessions information.

1) PATIENT PROFILE
The doctors are provided tools - in their dedicated user inter-
face - to retain certain information regarding the patients
that use the TRAVEE system for rehabilitation. The patient

FIGURE 14. Patient using the TRAVEE system.

FIGURE 15. The patient profile configuration form.

profiles are defined by filling out a form with the following
information: surname, name, personal identification number
(PIN), gender, age, height, weight, health condition. This
information is stored in a database and can be retrieved for
further sessions.

2) SESSION DEFINITION
The doctor also has a view dedicated to the configuration of
the rehabilitation session. In this view the doctor can select
the exercises to be included in the rehabilitation session, their
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FIGURE 16. The session definition form.

FIGURE 17. The session control tools.

durations and the devices used for each one. The doctor also
has the option to filter the available exercises based on their
objective and the methods they are part of.

3) SESSION CONTROL
The session control view that is also a component in the
interface dedicated to the doctors, allows the supervisor of
the rehabilitation session to start, stop and pause the session.
After the time chosen for an exercise has passed, the supervi-
sor is asked to fill in a grade, evaluating the performances of
the patient in the real world, based on the visual observations
of the movement, as perceived by the supervisor.

4) SESSION ANALYSIS
The session analysis tool can analyze automatically many
session recording files and extract synthetic data, so that the
therapist can gather information without visually inspecting
all the sessions.

This tool is a Unity application with a scene containing
only the patient avatar, on which the recorded poses are
played successively. As it was developed to automatically
process many files without operator intervention, it allows the
user to select a folder containing as many session recording
files as necessary. It then automatically opens the session
files one by one, and analyzes the poses in the file with
the same algorithm described in the Visual augmentation of
movements subchapter to determine the score for each pose.
Using the variation of the scores and the other information in
the files, the analysis tool calculates the following data:

TABLE 1. Augmentation and feedback pathways allowed for various
input modalities.

1) The execution times for each session
2) For each execution of an exercise in a session:

- The number of repetitions, as perceived by the system
through the variations of the calculated scores for the tracked
poses sequences. Each time the score changes the variation
direction (was decreasing and is determined to be increas-
ing, or if it was increasing and it is now considered to be
decreasing), the algorithm records a change in the variation
direction. Two successive changes in the variation direction
is interpreted as a repetition.

- The average score for all the poses detected for the
execution of a given exercise

The results of an analysis process is a file containing, for
each recorded session: the total duration of the session and
for each exercise in the session, the average score and the
number of repetitions - as perceived by the Session Recording
Analysis application.

5) THE REALTIME DATA VISUALIZATION COMPONENT
This component displays graphical representations of the
EEG and EMG acquired data, to inform the doctor of their
variations in time.

I. THE AVATAR PERSONALIZATION COMPONENT
This component allows the medical practitioner to change
several characteristics of the virtual representation of the
patient (gender, age, weight, hair and skin colour, clothes and
hairstyle) in order to increase the immersion of the patient in
the VE.

J. MODULAR AND INTEGRATIVE APPROACH
Using the dedicated graphical user interface, the doctor can
define, for each rehabilitation session, a series of exercises
and their durations, as well as the input devices to be used
during the exercises and the feedback modalities.

Not all combinations of input modalities and feedback
pathways implemented by TRAVEE make sense to be used
together, therefore a set of allowed combinations was defined.
These combinations are presented in Table 1 and are dis-
cussed below.

The Table 1 presents, for each input device, the available
feedback modalities. The configurations that can be selected
by the healthcare practitioner are limited by the conditions
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presented in this table but the doctor is not obliged to select
all the available feedback devices for the session.

For the body tracking input as well as for the BCI one, any
feedback can be implemented and used. For the EMG input,
robotics would not be necessary, as the values of the electrical
activations in the muscles will not be necessarily relevant if
the muscles are actuated by the glove.

Depending on the selected inputs and feedbacks, the sys-
tem behaviour changes. Therefore, several distinct function-
ing modes were defined. Out of these, the most significant
ones are:

- Visual augmentation based on body tracking
During the session, the changes in the pose of the patient

are analysed, and for each detected pose, the movement is
slightly improved before being applied on the avatar in the
VE, so that the patient perceives a better movement than
he or she actually performed.

- Haptic feedback based on body tracking
For each pose detected by the optical tracking devices,

the movement is analysed and when it is evaluated to be
better than an established threshold, vibrations are applied on
certain points on the hand of the patient. Therefore, the haptic
feedback tells the patient when he or she has performed a
good execution of the movement.

- BCI and FES
This functioning mode has a training phase in which the

patient learns how to imagine the movement and the system
computes an LDA classifier with a corresponding classifica-
tion error. If the error rate is higher than 20% the training
phase is repeated. If the error rate is lower than 20% the
system can be switched to online mode where it can detect
whether the patient is imagining the correct movement (with
a certain degree of accuracy) or not and correspondingly
activates FES for the respective hand. Therefore, the patient
sees the feedback of what he is imaging.

- BCI and visual augmentation
This functioning mode is similar to the previous one, with

the difference that instead of actually moving the patient
hand through FES, the patient is immersed in the VE and
the imagined movement is executed by the patient avatar in
the VR.

- Robotic hand controlled mode based on body tracking
In this functioning mode, the position of the patient body

as detected by the tracking devices is continuously evaluated.
When the system detects that the patient cannot complete
the movement, it activates the robotic glove for support,
to help the patient perform the current exercise completely
and correctly. Another function of this mode is that if no
movement is detected in the patient hand, the robotic glove
will start automatically to perform the whole movement,
as the system will assume that the patient has no control of
his hand muscles.

V. IN-VIVO TESTS AND CLINICAL TRIAL
The testing of the TRAVEE system took place in two stages.
Initially, at the end of 2016, the initial prototype of TRAVEE

was validated through two in-vivo testing sessions. Based
on the observations made in these two tests the system was
refined, to obtain the final prototype that was used during a
clinical trial in May-June 2017.

For the tests to take place, permission was granted from
the ethical council of the Neurological Recovery clinic of
the National Institute of Recovery, Physical Medicine and
Balneoclimatology (INRMFB) in Bucharest.

A. PRELIMINARY IN-VIVO TESTS
1) OBJECTIVES
The preliminary in-vivo tests were designed to test the initial
prototype of the TRAVEE system, in order to determine
whether it could successfully be applied to patients with neu-
romotor disabilities, what were the aspects that could make it
easier to be used in a clinical settlement, and to test several
functioning modes.

Two in-vivo testing sessions took place, in November and
December 2016, respectively.

2) TECHNICAL DESCRIPTION
The first in-vivo tests evaluated the system for the Fore-
arm flexion-extension, Arm anteduction-retroduction, Palm
flexion-extension, Fingers flexion-extension. The second in-
vivo test evaluated the system with the Forearm flexion-
extension and Palm flexion-extension movements.

The hardware used in the first in-vivo testing session was:
a computer running the TRAVEEVRCentral System, Oculus
Rift for immersion in the VE, BCI and FES. The second set of
in-vivo tests used a computer running the VRCentral System,
Oculus Rift for immersion in the VE and the haptic feedback
device.

The TRAVEE components that were tested during the
preliminary in-vivo tests: the VR Central System, the Data
Acquisition and Control and the Movement Analysis
component.

The tested functioning modes: visual augmentation based
on body tracking, visual augmentation based on BCI, FES
controlled by BCI and haptic mode based on body tracking.

3) CLINICAL SETUP
Each in-vivo testing session took place in one day, at the Neu-
rological Recovery clinic of the National Institute of Recov-
ery, Physical Medicine and Balneoclimatology (INRMFB) in
Bucharest.

Patients, as well as their families, have been informed
about the device created in this research project. The Informa-
tion Form was handed in, the questions and the unclear things
were answered. Those who have accepted to participate in the
test have signed the Informed Consent, in the presence of the
medical team members and their families.

The patients selected by the doctors had various degrees
of disability, ranging from patients with no motor control to
patients who only had a slight tremor in their hand. All the
patients had suffered a disability of their hand as a result
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of stroke. In the first in-vivo tests one patient tested the
system with BCI and FES, and three patients tested only
the VR Central System component with visual augmentation.
In the second in-vivo testing session, three patients tested the
VR Central System.

In the first in-vivo testing session, one patient executed
a session containing the Palm flexion-extension movement
with the BCI controlled FES augmentation, and three patients
used the TRAVEE system in sessions with Palm flexion-
extension and Forearm flexion-extension movements.

In the second in-vivo testing session, three patients tested
the TRAVEE system for the Forearm flexion-extension and
Palm flexion-extension movements with visual augmentation
based on body tracking. One patient also tested the haptic
feedback device.

4) INTERPRETATION OF THE RESULTS
The results of the in-vivo testing sessions were presented
in previous works, for the first session [30] and the second
session [31].

The results of the in-vivo tests were mainly technical con-
clusions regarding the usability of the TRAVEE system as
well as possible improvements that could be brought upon
the solution to prepare it for the clinical trial.

The participants to the in-vivo tests were asked to fill
in questionnaires regarding their experience with TRAVEE,
based upon which several conclusions were drawn.

1. During the test, what was the perceived level of
tiredness?

2. During the tests did you feel dizziness?
3. During the tests did you feel nauseous?
4. During the tests did you feel any anxiety or fear?
5. The image perceived on the virtual glasses/monitor was

clear?
6. Did you feel physical discomfort due to the system

components?
7. Did you feel pain due to the FES/haptical stimulation?
8. How real did the avatar movements seem to you?
9. How well do you identify your movements to those of

the avatar?
10. Did you feel that the movements of the avatar were

different than yours (greater)?
11. Are the indications of the virtual therapist useful for the

exercise execution?
12. How useful do you find such a rehabilitation system?

B. CLINICAL TRIAL
The effort necessary for the experiments associated with an
extensive clinical trial are tremendous, therefore our goal was
not to include in the tests a large number of patients, but to
prove the validity of our system and the ideas that support it,
and its use in a clinical environment. This decision was taken
also because the system is still a prototype, not a final product,
therefore we treated each patient participating in our trial as
an individual test case, not necessarily aiming for statistical
evidence as we believe it is still very early for such results.

TABLE 2. Questionnaire responses of the patients for the two in-vivo
testing sessions [30], [31].

1) OBJECTIVES AND APPROACH
The clinical trial took place between 28th April 2017 and
19th May 2017, at the National Institute for Rehabilita-
tion, Physical Medicine and Balneoclimatology (INRMFB)
in Bucharest. The tested configurations were chosen based
on the degree of disability of each patient and included BCI,
FES, VR and robotic glove.

From a clinical point of view, this study is an experimental
acute one of a number of cases in which we followed, for
each subject, the persistent therapeutic response in patients
with stroke sequelae in the upper limb after post experiment
and the possible occurrence of side effects.

The secondary goals were:

• Establish with maximum possible accuracy the clinical
and functional profile of the patient after stroke that can
benefit from a clinical and functional treatment with the
TRAVEE system

• Determining the factors that restrict the application of
the method

• Weaknesses of the device and corrective ways
• A qualitative assessment of the final prototype of the
TRAVEE computerized system and to track the effects
of TRAVEE during the development of the program.

From a technical point of view, the results of the clinical
trial were measured in the evolutions of the scores given by
the system to each rehabilitation exercise, as processed from
the recording file. As neither of the patients has taken part
in more than six rehabilitation sessions with TRAVEE and
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many only participated to one or two sessions, the results
were mostly specific to a qualitative clinical trial and not
to a quantitative one. The system has been improved from
the testing sessions, by refining the existing functionalities,
as well as adding several new functioning modes as well as
the recording function, described previously.

During the clinical trial, the TRAVEE system contained all
the designed components: VR Central System, Data Acqui-
sition and Control, Therapist GUI, 3D animations of the VT,
tracking of the patient body movements, session recording,
session analysis.

2) CLINICAL SETUP
30 patients with stroke were included in the study, 21 of them
benefited from the complete experiment with the TRAVEE
device.10 patients were tested for the response to BCI ther-
apy, 2 patients were included in the mixed experiment,
TRAVEE plus BCI, and one patient was included in the exper-
iment with additional stimulation with FES and vibration
stimulation.

For all the patients included in study the stroke was less
than 12 months.

The general clinical profile of the patient included in
the study was: conscious, temporal-space-oriented, cardio-
respiratory balanced, no digestive or renal accusation, with
central post-stroke motor neuron syndrome.

It is essential that passive mobilization applications that are
made analytically and / or globally by the therapist to restore /
revive the neural circuits defining the correct parameters of
the movement: amplitude, direction, speed before TRAVEE
training

The lot of patients had the following demographic
characteristics:

• 15% women and 85% men
• ages between 43 and 79 years;
The followed clinical parameters were:

• motor control
• spasticity, reflexes, other signs of hypertonia
• muscle strength
• vicious postures (joint, type, degree)
• synkinesis of the upper limb (type, description)
• coordination problems
• superficial and deep sensitivity
• articular mobility degree
• CRPS I complications, glenohumeral subluxation, tha-
lamic pain

3) FUNCTIONAL EVALUATION
For functional evaluation assessed the degree of general dys-
functionality of an upper limb; to all patients this was in the
range 2-5.

On the scale of functional independence regarding
self-care and locomotion activity, the situation ranged from
modify independence to 75% dependency (the Functional
Independence Measurement scale).

Other scales used:

• Deficit scale: Manual Muscle Testing (MMT) for Mus-
cle Strength Assessment, Ashworth Scale Assessment
Scale, Mini Mental State Examination (MMSE) for cog-
nitive status assessment, reflex score, fatigue scale

• Disability:

– Action Research ARM Test (ARAT)
– Box and Blocks Test
– Motor Assessment Scale (MAS)
– Rivermead Motor Assessment

4) INCLUSION CRITERIA
• Stable neurological status
• Conscious state
• Significant persistent neurologic motor deficit
• Functional disability at the level of at least two of the
following: mobility, self-care capacity, communication,
sphincterian control, swallowing

• Cognitive functions well preserved to allow learning
• Ability to communicate well enough to allow
collaboration

• Physical exercise tolerance sufficient to perform the
active program

• Achievable therapeutic goals

5) EXCLUSION CRITERIA
• Central motor neuron syndrome older than 6 months
• Spasticity > Ashworth Grade 2
• Instability of central neurological lesions; Progressive
motor deficit

• Cardiac unstable or other co-morbidities requiring emer-
gency medical care

• Intercurrent infections, other comorbidities that con-
traindicate inclusion in a medical recovery program

• Complete lack of proximal motor control at the level of
the upper limb

• Uncontrolled psychiatric disorders
• Uncontrolled seizures
• Significant cognitive impairment with MMSE <18
• Bilateral marked deafness or hearing loss
• Amputations, ankyloses or severe limitations of joint
mobility at the level of the upper limb, caused by dis-
eases prior to neurological disease

• Multiple/ repeated central neurological lesions
• Co-existence of a peripheral neurological deficit at the
level of the upper limb

• Absence of consent (informed consent) of the
patient or family

6) RESULTS
a: TECHNICAL RESULTS. EVALUATIONS BASED ON THE
AUTOMATED ANALYSIS MADE BY THE SYSTEM
The sessions that were performed with the VR Central Sys-
tem were recorded and then were analysed using the previ-
ously described Session Analysis application.
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A total of 21 patients tested the TRAVEE system with
visual augmentation. The recordings of the sessions were
analysed and the most relevant ones are summarized below.
The number of repetitions was determined automatically,
based on the number of changes in the direction of variation
of the calculated score for each movement.

Because each movement has different parameters used in
its evaluation, the scores assigned to different movements
cannot be compared. Also, the average scores for each patient
are individual, based on his/her abilities in the exercised hand.
A greater score indicates a larger amplitude of movement,
therefore a possibly more complete execution.

Another important observation is that the performed
clinical test evaluated more patients for a small number
of sessions, to assess the usability of the system in var-
ious scenarios and various degrees of disability. For the
results to be medically relevant, a more extensive clinical
test would have been appropriate, with the same patients
exercising for several sessions each day, for at least several
weeks.

Out of the 21 patients that tested the TRAVEE system
during the clinical trial, we selected for presentation in this
paper those that had at least three rehabilitation sessions with
the system.

i) Patient RV2
This patient had the most remarkable evolution with the
TRAVEE system. Before the first session, the patient had
a very strong tremor in the arm, that did not allow him to
execute accurate and controlled movements. As soon as the
Oculus and tracking devices were installed, the patient was
immersed in the virtual environment, the session started and
he was asked to repeat the movements shown by the vir-
tual therapist; the tremor almost disappeared, being reduced
greatly. The progress – as we were reported – was maintained
outside of the virtual environment. Although we cannot deter-
mine exactly the reason for this improvement and we cannot
necessarily connect it to the system, it is a coincidence that
definitely requires further research.

Evolution of the Forearm Flexion-Extension movement

ii) Patient RV5
This patient came to the sessions regularly, was receptive to
the idea of the system, had a positive attitude and a good
evolution. For each session the patient had two repetitions of
the Forearm Flexion-Extension, each of 180 or 200 seconds,
during which, each time, performed approximately 20 repe-
titions, as evaluated by the system. The average scores did
not vary significantly during the trial period, more sessions
would have been required for statistical relevant information
regarding the progress of the patient.

iii) Patient RV13
For this patient we observed an ascending trend for the aver-
age scores given by the system for the two movements exe-
cuted for each of the three rehabilitation sessions in which the

TABLE 3. Exercises executed with TRAVEE by Patient RV2.

FIGURE 18. Average scores evolution (top) and average
seconds/repetition evolution (bottom).

patient took part. At the same time, the number of repetitions
detected by the system decreased. This observation could
mean a more qualitative execution of the movements, at a
slower pace, with better motion control.

The evolution of the Forearm Flexion-Extension move-
ment is presented below.
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TABLE 4. Exercises executed with TRAVEE by Patient RV5.

FIGURE 19. Average scores evolution (top) and average
seconds/repetition evolution (bottom).

TABLE 5. Exercises executed with TRAVEE by Patient RV13.

iv) Patient RV15
The patient also took part in several rehabilitation sessions
with the system. Slight improvements were observed between
the sessions regarding the number of repetitions detected by
the system as well as the average scores.

FIGURE 20. Forearm Flexion-Extension: Average scores evolution (top)
and average seconds/repetition evolution (bottom).

FIGURE 21. Palm Flexion-Extension: Average scores evolution (top) and
average seconds/repetition evolution (bottom).

v) Patient RV21
This patient took part in three rehabilitation sessions with
the system. For all the three types of exercises there was a
reduction in the average execution time, as perceived by the
system.
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TABLE 6. Exercises executed with TRAVEE by Patient RV15.

FIGURE 22. Fingers Flexion-Extension: Average scores evolution (top) and
average seconds/repetition evolution (bottom).

b: CLINICAL RESULTS/SCORES
We underline that this clinical trial is an initial, acute-type
experiment through its design team managed to adjust the
TRAVEE program and bring it into its current form. This
study will be followed by research to track the effectiveness
and efficacy of TRAVEE in patients with stroke sequelae and
to transpose the project into real life. The experiments aimed
the adaption of the patients, their ability to learn, the ability to
integrate TRAVEE into a complex, comprehensible medical
poststroke recovery program.

TABLE 7. Exercises executed with TRAVEE by Patient RV21.

FIGURE 23. Forearm Flexion-Extension: Average scores evolution (top)
and average seconds/repetition evolution (bottom).

From the point of view of the outcome of the acute exper-
iment in each patient, this study led to increased motor
control in the upper limb, especially proximal and interme-
diate, in 80% of patients. A statistically significant increase
cannot be defined, but the evolution trend is positive. The
lack of a positive response was seen in one of the patients
with a low MMSE score (19, 20) and in 3 of the patients with
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TABLE 8. Questionnaire answers.

MAS 2 measured on the MMT scale. The other patients with
MAS 2 had a positive response after associating additional
stimuli (BCI, Vibration, FES).

There were no serious adverse effects. As a common side
effect present in all patients, we underline the fatigue that
occurred more rapidly in those with higher cognitive impair-
ment, with grade 2 spasticity and those with low muscu-
lar strength; the presence of abnormal movement patterns
increased fatigue

Interpretation of results
Using the TRAVEE device for medical recovery of the

upper limb function:
1. Allows improvement of motor control at the upper limb

for patient after stroke, especially at the proximal and inter-
mediate levels

2. This device is ideal to be use for patients with muscle
strength 4 (MMT) patient, less than 2 Ashworth grade spas-
ticity, with no abnormal movement patterns without severe
cognitive impairment. Age and cardio-vascular associated
pathology do not appear to negatively influence the patient’s
response to acute experimentation.

3. No serious adverse effects were seen. As a side effect
we’ve identified fatigue. Patients also accused: dizziness,
pain, feeling discomfort, but of low intensity, not interfering
with the experiment. Just fatigue has the main cause of stop-
ping the experiment.

4. Adding additional stimuli: functional electrical stimu-
lation, vibrational stimulation, cerebral brain-computer brain
stimulation seem to increase the positive effect on motor
control in patients with lower muscular strength, even in
plegical ones.

5. Validation of the method requires a prospective, double-
blind, controlled clinical trial in batches of patients suffi-
ciently large to have statistical power.

c: QUESTIONNAIRES
The patients that participated in the clinical trial received a
questionnaire containing 12 questions. Each question had five
answer options, on a scale from 1 to 5. The questions and the
answers given by the patients are presented below.

Q1. During the training sessions, what was the perceived
level of tiredness?
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FIGURE 24. Fingers Flexion-Extension: Average scores evolution (top) and
average seconds/repetition evolution (bottom).

Q2. During the training sessions, did you feel dizziness?
If so, how intense?

Q3. During the training sessions, did you feel nauseous?
If so, how intense?

Q4. During the training sessions, did you feel any anxiety
or fear? If so, how intense?

Q5. During the training sessions, how clear was the image
perceived on the virtual glasses/monitor?

Q6. During the training sessions, did you feel physical
discomfort due to the system components? If so, how intense?

Q7. During the training sessions, did you feel pain? If so,
how intense?

Q8. During the training sessions, how real did the avatar
movements seem to you?

Q9. During the training sessions, howwell did you identify
your movements to those of the avatar?

Q10. During the training sessions, did you feel that the
movements of the avatar were different than yours (greater)?
If so, how much different?

Q11. During the training sessions, were the indications of
the virtual therapist useful for the exercise execution? If so,
how useful?

Q12. Do you consider that the training sessions with this
system were useful for your rehabilitation? If so, how useful?

The responses received from the 21 patients are presented
in the following table.

VI. CONCLUSIONS AND PERSPECTIVES
The current paper presents the vision implemented by the
TRAVEE system, the medical background and perspectives
upon which it was designed, as well as technical details
regarding its implementation. TRAVEE is a system dedicated

to medical neuromotor rehabilitation of the upper limbs that
combines multiple technologies: VR, BCI, FES, robotics
and haptics, with novel ideas, such as augmented feedback
through natural movement augmentation and multimodal
feedback. It was designed to support rehabilitation at several
levels of disability - providing various degrees of support,
from complete movement (through FES and robotics) to
support for completing a movement either motor (robotic)
or virtual (visual augmentation). The system was tested in a
medical setting, during development in two in-vivo sessions,
as well as after the final prototype was implemented, through
a clinical trial. The paper presents the results of all the testing
sessions, that correspond to those of a qualitative evalua-
tion.The results we observed during the clinical trial show that
the visual augmentation through VR has a great potential in
rehabilitation, that must be further developed and researched.

The perspectives of future development of the system
are vast and heterogenous. The main desired evolution for
the system is the migration towards a low-cost solution.
Providing an accessible system was one of the main targets of
TRAVEE and - partially - it has succeeded. The areas inwhich
we believe there is room for improvement are related to the
EEG device which may be substituted by a low-cost solution
(such as Emotiv Epoc [https://www.emotiv.com/epoc/]). This
direction could assist TRAVEE to evolve into a commercially
available product, with a wide applicability in the rehabilita-
tion process. This commercial version could be based mainly
on the VR component, arm and hand tracking and light
robotics, with aspects of gamification. This solution could
also be enhanced in clinical settings with the EMG and FES
components.

Other possible paths of evolution for our research aim a
better understanding of the effects that visual augmentation
and multimodal feedback have upon the rehabilitation pro-
cesses and on the cortical reorganization process. Another
direction is to study whether the visual augmentation affects
spasticity that appears in patients suffering after-effects of
stroke, to test various environments and their influence on
the sessions and study evolutions with various visual aug-
mentation degrees and a proper comparison between classical
rehabilitation sessions and the ones enhanced through visual
augmentation and multimodal feedback.
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In recent years, the assistive technologies and stroke rehabilitation methods have been empowered by the use of virtual reality
environments and the facilities offered by brain computer interface systems and functional electrical stimulators. In this paper, a
therapy system for stroke rehabilitation based on these revolutionary techniques is presented. Using a virtual reality Oculus Rift
device, the proposed system ushers the patient in a virtual scenario where a virtual therapist coordinates the exercises aimed at
restoring brain function. The electrical stimulator helps the patient to perform rehabilitation exercises and the brain computer
interface system and an electrooculography device are used to determine if the exercises are executed properly. Laboratory tests on
healthy people led to system validation from technical point of view. The clinical tests are in progress, but the preliminary results
of the clinical tests have highlighted the good satisfaction degree of patients, the quick accommodation with the proposed therapy,
and rapid progress for each user rehabilitation.

1. Introduction

The worldwide statistics reported by World Health Orga-
nization highlight that stroke is the third leading cause of
death and about 15 million people suffer stroke worldwide
each year [1]. Of these, 5 million are permanently disabled
needing long time assistance and only 5 million are consid-
ered socially integrated after recovering. Recovering from a
stroke is a difficult and long process that requires patience,
commitment, and access to various assistive technologies
and special devices. Rehabilitation is an important part of
recovering and helps the patient to keep abilities or gain back
lost abilities in order to become more independent. Taking
into account the depression installed after stroke, it is very
important for a patient to benefit from an efficient and fast
rehabilitation program followed by a quick return to com-
munity living [2]. In the last decade, many research groups
are focused on motor, cognitive, or speech recovery after
stroke like Stroke Centers from Johns Hopkins Institute [3],

ENIGMA-Stroke Recovery [4], or StrokeBack Consortium
funded byEuropeanUnion’s Seventh FrameworkProgramme
[5]. Important ICT companies bring a major contribution
to the development of technologies and equipment that
can be integrated into rehabilitation systems. For example,
Stroke Recovery with Kinect is a research project to build
an interactive and home-rehabilitation system for motor
recovery after a stroke based onMicrosoft Kinect technology
[6].

In the last years, the virtual reality (VR) applications
received a boost in development due to VR headset prices
that dropped below $1000, allowing them to become a mass-
market product [7]. The VR was and still is especially used
for military training or video games to provide some sense
of realism and interaction with the virtual environment to
its users [8]. Now it attracts more and more the interest of
physicians and therapist which are exploring the potential
of VR headset and augmented reality (AR) to improve the
neuroplasticity of the brain, to be used in neurorehabilitation
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and treatment of motor/mental disorders [9]. However,
considering the diversity of interventions and methods used,
there is no evidence that VR therapy alone can be efficacious
compared with other traditional therapies for a particular
type of impairment [10].This does notmean that the potential
of VR was overestimated and the results are not the ones
that were expected. The VR therapy must be complemented
with other forms of rehabilitation technologies like robotic
therapy, brain computer interface (BCI) and functional elec-
trical stimulation (FES) therapy, and nevertheless traditional
therapy to provide a more targeted approach [11].

SaeboVR is a virtual rehabilitation system exclusively
focusing on activities of daily living and uses a virtual
assistant that appears on the screen to educate and facili-
tate performance by providing real-time feedback [12]. The
neurotechnology companyMindMaze has introducedMind-
Motion PRO, a 3D virtual environment therapy for upper
limb neurorehabilitation incorporating virtual reality-based
physical and cognitive exercise games into stroke rehabilita-
tion programs [13]. At New York Dynamic Neuromuscular
Rehabilitation, the CAREN (Computer Assisted Rehabilita-
tion Environment) based on VR is currently used to treat
patients poststroke and postbrains injuries [14]. EVREST
Multicentre has achieved remarkable results regarding the
use of VR exercises in stroke rehabilitation [15].

Motor imagery (MI) is a technique used in poststroke
rehabilitation for a long time ago. One of its major problems
was that there was not an objective method to determine
whether the user is performing the expected movement
imagination. MI-based BCIs can quantify the motor imagery
and output signals that can be used for controlling an external
device such as a wheelchair, neuroprosthesis, or computer.
The FES therapy combined with MI-based BCI became a
promising technique for stroke rehabilitation. Instead of
providing communication, in this case, MI is used to induce
closed-loop feedback within conventional poststroke reha-
bilitation therapy. This approach is called paired stimulation
(PS) due to the fact that it pairs each user’s motor imagery
with stimulation and feedback, such as activation of a func-
tional electrical stimulator (FES), avatar movement, and/or
auditory feedback [16]. Recent research from many groups
showed that MI can be recorded in the clinical environment
from patients and used to control real-time feedback and at
the same time, they support the hypothesis that PS could
improve the rehabilitation therapy outcome [17–21].

In a recent study, Irimia et al. [22] have proved the efficacy
of combining motor imagery, bar feedback, and real hand
movements by testing a system combining a MI-based BCI
and a neurostimulator on three stroke patients. In every ses-
sion, the patients had to imagine 120 left-hand and 120 right-
hand movements. The visual feedback was provided in form
of an extending bar on the screen. During the trials where
the correct imagination was classified, the FES was activated
in order to induce the opening of the corresponding hand.
All patients achieved high control accuracies and exhibited
improvements in motor function. In a later study, Cho et
al. [23] present the results of two patients who performed
the BCI training with first-person avatar feedback. After
the study, both patients reported improvements in motor
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Figure 1: TRAVEE system architecture.

functions and both have improved their scores on Upper
Extremity Fugl-Meyer Assessment scale. Even if the number
of patients presented in these two studies is low, they support
the idea that this kind of systems may bring additional bene-
fits to the rehabilitation process outcome in stroke patients.

2. General System Architecture

The BCI-FES technique presented in this paper is part of a
muchmore complex systemdesigned for stroke rehabilitation
called TRAVEE [24], presented in Figure 1. The stimulation
devices, the monitoring devices, the VR headset, and a
computer running the software are the main modules of the
TRAVEE system. The stimulation devices help the patient to
perform the exercises and the monitoring devices are used to
determine if the exercises are executed properly, according to
the proposed scenarios. Actually, the TRAVEE system must
be seen as a software kernel that allows defining a series
of rehabilitation exercises using a series of USB connectable
devices. This approach is very useful because it offers the
patient the options to buy, borrow, or rent the abovemen-
tioned devices according to his needs and after connection,
the therapist may choose the suitable set of exercises.

The TRAVEE system is based on a new and promis-
ing rehabilitation concept which implies the augmented/
magnified feedback of the movement of the impaired limb
and can be successfully applied especially in the early stages
of the rehabilitation therapy in order to close the loop that
may trigger the mirror neurons [25]. These mirror neurons
intermediate learning, indirectly controlling the brain
plasticity and the technique is known as mirror therapy for
stroke rehabilitation [26]. Despite the advantages of mirror
therapy in comparison with other standard techniques, some
disadvantages are obvious: it is difficult to explain to a patient
how the mirror helps him: monotony, the patient’s condition
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Figure 3: The hand rehabilitation exercise.

and position, the lack of challenging task, and so on. [27]. By
replacing the physical mirror with a VR headset the patient
has the same visual feedback that is needed to close the loop
that triggers the mirror neurons but without disadvantages
of the mirror therapy mentioned above. Once the patient
is immersed in the virtual world he is no longer a disabled
person and this has a good impact on patient’s self-esteem.
Within the TRAVEE project, encouraging results were
obtained for the development of a virtual reality system
for poststroke recovery using an inertial movement unit, a
glove with sensors, a Myo Armband with electromyography
sensors, and an Oculus Rift headset [28]. An alternate imple-
mented system contains a Leap Motion device for patient’s
limbs movements monitoring, a VR headset, and a haptic
module attached to patient’s arm also offering better results
than standard therapy methods [29].

3. Materials and Methods

For the current study, the BCI-FES TRAVEE subsystem
is composed of FES as stimulation device, BCI and an
electrooculography (EOG) system as monitoring devices,
Oculus Rift as VR headset, and a laptop, Figure 2.

The rehabilitation exercise was focused on flexion and
extension of hand and fingers (Figure 3).The patient is seated
in a wheelchair or normal chair. The FES electrodes are

Figure 4: Patient executing a rehabilitation exercise.

mounted on extensors muscles of both hands as shown in
Figure 3 and the FES software module is started in order to
determine the FES parameters (intensity and timings of the
current impulse: rising, front, and falling). Then, the EOG
electrodes and EEG helmet are mounted and the correct
acquisition of the signals is verified. Before attaching the VR
headset, the therapist sits in front of the patient explaining
what he will see by showing him the following: the virtual
therapist will raise the hand like in Figure 3 (the left hand
of the therapist is the right hand of the patient); a big arrow
will appear on the upper left or right of the screen depending
on virtual therapist indications and the patient will also hear
sounds from the left or the right. After explanations, the VR
headset is mounted on (Figure 4), EOG system is calibrated,
and the recovery exercise may begin, but not before the
real therapist tells the patient that he has the possibility of
choosing between two views: front view (the virtual therapist
is located in front of the patient) or mirror view (the virtual
therapist is located on the left side and a mirror is in front of
them, like in a dance room) presented in Figure 5.

For the EOG calibration, a red spot appears for 2.5
seconds on a white background displayed on the VR system
in different places, in the following order: center, upper right,
center, upper left, center, lower left, center, lower right, and
center. The user has to gaze at the spot in each location. The
calibration is very important for an accurate calculation of the
gaze points (eye tracking) during the tests.

In order to provide VR and FES feedback according to
the patient’s imagined movement, a set of spatial filters and
classifier have to be created [22]. First, we are recording 4
runs of training data. Each run consists of 20 right- and 20
left-MI trials, in a random order. We use the trial time course
and signal processing algorithms presented in [22]. Each trial
lasts 8 seconds. At second 2 a beep informs the user about
the upcoming cue. At second 3, the cue is presented and
marks the moment when the user has to start imagining the
movement shown by the virtual therapist until the end of
the trial. While recording the test data, starting with second
4.25, the user sees the virtual hand indicated by the cue
moving, and at the same time, the neurostimulator induces
the patient’s corresponding hand opening. After the spatial
filters and classifier are created, we are recording 2 more
runs, where the VR and FES feedback are provided to the
patient between seconds 4.25 and 8 of each trial only if the
classification result is correct. By comparing every sample
of the classification result with the presented cue for each
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(a) (b)

(c) (d)

Figure 5: The VR environment in which the patient is immersed: (a) and (c) patient views; (b) and (d) world views; (a) the therapist in front
of the patient; (c) the therapist on the left side of the patient with mirror in the front.

trial during the last 2 runs, we are calculating a control error
rate course for that session. Except the first session, while
recording the 4 train data runs, we are using the set of spatial
filters and classifier calculated in the previous session of that
patient only if the control error rate for that session was
smaller than 20%.

4. EEG and EOG Recording

The BCI-FES subsystem consists of a 16-channel biosignal
amplifier (g.USBamp, g.tec medical engineering GmbH) and
an 8-channel neurostimulator (MOTIONSTIM8,KRAUTH+
TIMMERMANN GmbH). The EEG signals are collected
from 12 positions over the sensorimotor areas according to
the 10–20 International System, as seen in Figure 6(a). The
last four channels are used in differential mode to record the
vertical and horizontal EOG. Figure 6(b) presents the EOG
electrodes position of the subject’s head. The EEG and EOG
data are sampled at 256Hz and notch-filtered for excluding
the 50Hz noise. The EEG data are bandpass filtered between
8 and 30Hz and then fed to the processing algorithm that
performs spatial filtering with the Common Spatial Patterns
(CSP) method [30, 31] and Linear Discriminant Analysis
(LDA) classification [22, 32]. The EOG data are filtered with
a moving average filter in order to calculate the average of the
last 128 samples.

To acquire EOG signals the same EEG device was used
but from all the EEG electrodes of the gTec–g.USBamp, 4 of
themwere used for EOGsignals.The eye tracking is necessary
because patient needs constant motivation and attention
during training/recovering session from a therapist. In fact,
after a while, the patient does not pay attention any more, is
falling asleep, or is looking at/thinking of something else. By
using the electrooculography (EOG) based eye tracking, the
system is able to determine if the patient is concentrated and
warns the patient if he is not. Figure 7 presents the output
of the implemented algorithm for detecting the gaze point of
the subject on the image in front of him. Figure 7(a) shows
the processed HEOG and VEOG while Figure 7(b) displays
the movement of the gaze point based on HEOG and VEOG.

5. Technical and Clinical Testing

Theonline signal processing and classification of the EEG sig-
nals were done by using the Common Spatial Patterns 2 class
BCI Simulink model provided by g.tec medical engineering
GmbH and the offline analysis of the data was done using
g.BSanalyze software provided by the same company. For the
EOG processing we developed a Simulink block containing
an algorithm that processes the EOG signals and outputs the
𝑥-𝑦 gaze normalized coordinates with respect to the center
point of the image displayed on the VR system. The whole
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Figure 6: (a) EEG electrodes positions according to the 10–20 International System; (b) EOG electrodes displacement.
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Figure 7: (a) HEOG and VEOG recorded for 100 seconds; (b) the gaze position on the image during 100 seconds of recording.

systemwas first tested on 3 healthy people and then some fine
tunings were done based on their suggestions in order to get
high accuracy and a good repeatability coefficient. All three-
healthy people achieved low control error rates, comparable
to the ones presented by Ortner and colleagues in [33].

Before starting the tests on patients within clinical envi-
ronment, this study was approved by the institutional review
board of the National Institute of Rehabilitation, Physical
Medicine and Balneoclimatology from Bucharest, Romania,
and each patient signed informed consent and an authoriza-
tion for videos and photographs release before starting the
study. The general clinical profile of the patients included in
the study was afebrile, aware, temporospatial oriented, and

cardiorespiratory balanced,without digestive or reno-urinary
complains, with poststroke central neuromotor syndrome.
From the whole patients, one-third was women and two-
thirds were men, with ages between 52 and 79 years old.
The inclusion criteria was stable neurological status; stable
consciousness state; significant and persistent neuromotor
deficit; disability for at least two of the following: mobil-
ity, self-help capacity, communication, sphincter control,
deglutition; sufficient cognitive functions to allow learning;
communication ability; sufficient physical exercise tolerance.

The clinical tests are in progress and until this moment
the proposed system was tested on 7 patients. Each of them
performed three training sessions, and all of them were able
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Table 1: Mean and minimal control error rate values for seven patients.

Subject Session Mean error [%] Minimal error [%]

S1
1 20.62 5.48
2 20.62 7.11
3 26.48 19.70

S2
1 23.96 11.97
2 24.60 14.10
3 28.83 21.00

S3
1 33.56 22.78
2 37.00 21.35
3 35.58 29.51

S4
1 32.58 24.77
2 31.54 24.61
3 37.21 26.22

S5
1 18.50 7.36
2 19.72 10.72
3 20.80 9.45

S6
1 19.20 6.37
2 19.25 7.68
3 19.58 1.95

S7
1 28.19 15.00
2 25.53 13.56
3 21.91 5.13

Mean values 25.96 14.56
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Figure 8: The error rate in time for subject S6, session 3.

to achieve a low control error rate over the whole system.
Table 1 presents the mean and minimal control error rate
achieved by each patient. The mean error rate is calculated as
the mean of the errors for each time point between seconds
4.25 and 8 of the last 2 runs. Figure 8 presents the error rate
in time for subject S6, session 8, when he achieved the lowest
control error rate, indicated by the red circle at second 6.8.

Except for subjects S3 and S4, all patients exhibited
control error rates lower than 20% in at least one session. At

this time of the study, it is premature to make evaluations
of the rehabilitation outcome of the patients, but, based on
their feedback after each session, the VR system makes them
remain focused on the task that they have to perform, and
they see everything like an interactive game. The fact that
they are cognitively involved in this task, unlike having a
passive or bored attitude, obviously brings additional benefits
to rehabilitation process outcome.

At the beginning, it was difficult for the patients to under-
stand how to concentrate on imagining the movement of
their impaired limb as part of the rehabilitation exercise. For
those with a low-level education, it was unclear how such a
concentration effort regarding their limbmovement will help
them.This was observed especially when the systemwas used
only with BCI module without VR. The indications on what
they had to do were very poor in information (just a simple
sound and an arrow to indicate left or right). Also, the activity
around the patient disturbed him very easily from imagining
the movement. The patients needed around 5 training ses-
sions in order to learn how to imagine the movements and
to obtain a good neurofeedback. By adding VR, the number
of training sessions was decreased to one or (very rarely) two.

Analyzing the questionnaires, it was concluded that the
average user satisfaction was around 3, the answers being
highly influenced by the patients’ understanding of the
rehabilitation therapy because most of them expected to
recover themselves based on the therapist’s activity and not
to be consciously involved in the rehabilitation process. That
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depends also on the education degree. However, the overall
patients’ impressionwas that they felt and saw an encouraging
improvement in recovering after using the proposed system.

For the next months, we plan to organize two groups of
patients: a test group and a control group. The test group
will perform up to 25 sessions of training with the system,
while the control group will perform only classical rehabili-
tation therapy. When finishing the study, the results will be
compared between groups and a statistical analysis will be
performed on the results to see if the test group function
improvements are statistically and significantly higher than
the ones of the control group.

6. Conclusions

In this paper, a BCI-FES system for stroke rehabilitation
is presented. Besides stimulation device, the BCI and EOG
systems supervise how exercises are performed and the
patient’s commitment and Oculus Rift headset facilitates the
patient’s immersion in VR. By using this system, the patient
is not distracted by the real environment or by events around
him. He is just immersed in VR where the virtual therapist
tells and shows him how to perform every exercise and a red
big arrow is shown every time. The patient is focused most
of the time, but if he loses his concentration the eye tracking
system detects this and gives a warning.

The technical performances were validated by testing the
system on healthy persons with good knowledge in assistive
technologies. The healthy people achieved low control error
rates, comparable to the ones reported in the literature.

The clinical tests are in progress, but the preliminary
ones are very encouraging regarding fast accommodation
and satisfaction of each patient. This approach of combining
VR and BCI and FES facilities can effectively speed up the
rehabilitation period and increase the users’ optimism and
the desire to exercise and recover lost skills. By involving the
brain via BCI and VR the system proved to be more effective
than the standard techniques.

The clinical tests last for several months for a significant
number of subjects but once these will be completed the
Likert questionnaires and technical files of all subjects will be
analyzed.
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Abstract— In this paper a virtual reality based stroke 
recovery system for upper limbs is described. The patient is 
immersed in the virtual environment through the use of an 
Oculus Rift device and interacts with the system by using Leap 
Motion as input device. The patient experience is enriched by 
providing haptic feedback when interacting with objects in the 
virtual environment. The recovery therapy relies on TRAVEE 
system’s state-of-the-art paradigm of using augmented feedback 
during early recovery stages to create new recovery possibilities.  

Keywords—stroke; recovery; leapmotion; virtual reality, 
augmented feedback 

I.  INTRODUCTION 

According to the American Stroke Association, only in 
2010 the prevalence of stroke was around 33 million people 
worldwide with nearly half of them heaving the first stroke. In 
2013 it become the second leading cause of death [1]. From 
85% of stroke survivors, only 10% recover completely and 
25% with minor impairments. The rest remains with severe 
impairments (40%) and they require special care or worse, 
special care in nursing homes (10%) [2]. Recovery involves 
relearning motor skills and is possible due to brain 
neuroplasticity (brain ability to reorganize itself) [3]. A 
successful stroke recovery depends firstly on the amount of 
damage on the brain and secondly by the skills and experience 
of an interdisciplinary rehabilitation team [4]. In order to 
obtain the maximum results, the recovery exercises rely on 
visual feedback. The patient needs to see the movement of the 
impaired limb and because in the early stages of recovery, this 
is not possible, a mirror is used [5]. The patient thinks and 
moves his healthy limb and what he sees in the mirror trick his 
brain in believing that his impaired limb moves as well. In 
time, however, the patient loses motivation; gets tired because 
of bad position and no challenging tasks are available [6]. 
These problems can be overcome by the use of virtual reality 
(VR) and motion trackers technologies [7]. Despite the 
differences between VR and non VR scenarios in terms of 
moving [8], it has big potential for stroke recovery by 
improving efficacy and patient motivation.  

This paper presents one of many approach of a 
bioinformatic integrated system (TRAVEE) that helps the 
patients to recover after stroke. 

Fig. 1. TRAVEE system 

 The system relies on a hardware and software architecture 
and rehabilitation concept with contributions beyond the state 
of the art [9]. The ideas that underline this new rehab concept 
are: the use of augmented and magnified feedback; the use of 
virtual therapist as guidance for exercises [9]. This approach 
brings the recovery therapy for upper limbs to a new level, 
with promising results as healthcare professionals considered. 
Another idea promoted by the TRAVEE rehab concept is the 
customization of the system according to patient recovery 
needs. In this way, the patient can borrow, rent or buy the 
devices (i.e. off-the-shelf commercial devices) that he needs 
for his recovery exercises and when the session ends, he can 
return them back or even sell them if the recovery is complete 
for that motor function according to specialist. He can 
continue with other devices in the same manner if the recovery 
therapy requires.  

There are two categories of devices used by the TRAVEE 
system: devices for patient monitoring and stimulation and 
devices for data processing. The devices from the first 
category are plug-and-play and optional, the system can use 
any combination of them. The devices from the second 
category are mandatory because it guides the recovery 
exercises.   
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Fig. 2. Processing and control unit architecture 

Fig. 3. Custom TRAVEE system 

 From hardware design perspective the system must ensure 
in the same time continuous monitoring of the patient 
movements and patient stimulation. This must be done in 
accordance with the patient needs of recovery at that moment 
in order to keep the system cost as low as possible.  

 From a software design perspective, the system is a 
computer program that communicates with the corresponding 
software modules of the connected devices. In this way the 
therapist can load and define the recovery exercises adding or 
removing components as needed. 

II. CUSTOM SYSTEM ARCHITECTURE

 Starting from already demonstrated effects of the mirror 
therapy [10], a custom system was configured in order to 
replace the mirror with a VR headset. The system contains a 
Leap Motion device for patient’s upper limbs movements 
monitoring, a VR headset (Oculus Rift) to immerse the patient 
in a virtual reality environment and a haptic modules attached 
to patient’s arm (Fig. 3). The virtual environment is built using 
Unity and is designed to resemble a familiar environment for 
the patient (e.g. the actual therapy room used by the patient).  

Once a recovery exercise is configured and started, the 
Processing and control unit acquires real-time data, processes 
and stores it and updates the output stimulation equipment (i.e. 
VR headset and haptic subsystem). The therapist can monitor 
the exercise (i.e. view the Virtual Environment as the patient 
sees it through the VR headset) on the display of the 
Processing and control unit. 

 The VR scene contains both patient and therapist avatars 
seated at a table with their hands resting on it. In the real 
world the patient also sits at the table with his hands on the 
table, with the VR headset and leap motion mounted on his 
head (Fig. 4). The presence of the therapist avatar is needed in 
order to guide the recovery exercises and to motivate the 
patient. 

 The feedback for the patient is further augmented by using 
a haptic device (i.e. vibration motors) that stimulates the 
tactile sense on the arm when certain conditions occur. 

A. Processing and control unit architecture
Figure 2 presents the structure of the Processing and

control unit. It is based on a three tier paradigm which helps 
decouple the input, processing and output stages of the system. 
The input layer is represented by the services provided by the 
Leap Motion SDK. The acquired data are sent to the middle 
layer which takes care of the processing. It includes the Data 
analysis block which analyzes the input data (i.e. arm and 
finger parameters - position, rotation, length, thickness) and 
computes the amplitude of the movements. This layer also 
features a configuration block that dictates the behavior of the 
output based on scripted exercises. This is the main part that 
adapts the system and triggers the actions of the avatars based 
on the exercises described in section three. The output layer 
contains the animation modules for the therapist and for the 
patient: the Therapist avatar animation module contains 
predefined animations that match the exercises for the 
intended setup; the Patient avatar control module generates 
animation based on a wireframe arm model. The sound 
generation module is based on the Microsoft Speech Platform 
SDK. The scene is rendered using the Unity3D engine. 
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B. I/O components 
 Leap Motion is a commercial device built to track forearm, 
hand and finger movement. It contains two cameras and three 
IR LEDs. Based on these elements, the embedded processing 
unit generates and transmits a grayscale image to the PC using 
an USB connection. These images are further processed by 
through the use of the associated SDK. 
 In order to animate the patient’s avatar, the data provided 
by the Leap Motion device is read and processed through the 
use of the HandController and Frame classes. The 
HandController class instantiates the communication with the 
device and the Frame class is used to access the information 
related to forearm, hand and finger position. Each frame 
contains a still image of the scene recorded by the device; the 
base class provides a series of functions for data access. 
 Currently, most games have limited visual output 
capabilities on a computer, tablet or phone display. Projects 
similar to the Oculus Rift one have the capability to change 
the way we interact with technology leading to a revolution in 
this field. The Oculus Rift device is composed of a headset 
equipped with a 7 inch display with a resolution of 1280x800 
pixels (i.e. 640x800 pixels for each eye). The person equipped 
with the device can move in the 3D environment generated by 
the game application through the use of an orientation sensor. 
The control loop of the device reads the sensor, tracks the 
head movement and updates the VR perspective rendered on 
the display. This approach makes use of natural body 
movements and discards the use of auxiliary input devices 
(e.g. joystick, mouse). 
 The haptic module is a custom one based on our previous 
work [11] and consists of an aceMote v1.0 embedded platform 
that controls five ERM vibration motors. The motors are 
interfaced by the DRV2605L haptic drivers that integrate a 
licensed version of the TouchSense 2200 software from 
Immersion. This library contains haptic effects carefully 
designed and implemented that are ready to use. For this 
haptic driver, there are available 100 licensed haptic effects 
grouped into 7 software selectable libraries. 

III. PATIENT SETUP FOR UPPER LIMBS RECOVERY 

 On the first use, the patient is always assisted by the 
therapist, who describes the contents of the recovery session 
and configures the system accordingly. The patient sits on a 
chair with the arms resting on a table. The therapist sits at the 
same table, facing the patient and describes the exercises that 
the patient must follow (Fig.5 and Fig.6). Next, the therapist 
puts on the VR headset and starts the system which runs the 
same exercises as for the patient. In this stage the patient is 
requested the view the demo exercises, as the therapist sees 
them through the VR headset, on the system’s monitor. In the 
next stage the headset is mounted on the patient and he is 
requested to move the head and look around in order to get 
used to the virtual environment. Once the patient feels 
comfortable enough the therapist starts the exercise. From this 
point on, the patient is requested to follow only the 
instructions of the VR avatar that resembles the therapist (Fig. 
7 and Fig.8).   

 

Fig. 4. Patient setup for right hand recovery exercise 

 

Fig. 5. Upper limbs recovery exercise without gravity 

 

Fig. 6. Two hand recovery exercises 

There are three exercises implemented, one for the arm 
(Fig. 5) and two for the hand (Fig. 6). The arm exercise starts 
with the forearm resting on the table, perpendicular to the 
body. The patient is required to slide the forearm on the table, 
back and forth, bringing it close to the body and moving it 
back to the start position (i.e. actively using the elbow joint).  

 In order to recover the hand mobility, two exercises were 
implemented: flexion and extension of the palm, and flexion 
and extension of the thumb (Fig. 6). 

IV. RECOVERY SESSIONS 

 The neuromotor rehabilitation is divided in three session 
types, with mirror, augmented and real feedback. Each session 
type is repeated until the devised session objective is achieved.  
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Fig. 7. Patient and therapist avatars during exercises – general perspective 

Fig. 8. Therapist avatar during exercises – patient perspective 

 The first type of session is employed immediately after the 
stroke, when the patient cannot move the paralysed arm. It 
uses mirror therapy by immersing the patient in the virtual 
environment: the patient can see both his hands moving, thus 
making him believe he has full control of the affected arm. 
During the exercise, the system is configured to track the 
movement of the healthy arm and to update the position of 
both arms of the avatar in the virtual environment. In this way 
the patient is under the impression that he moves both his 
arms. The visual feedback activates the mirror neurons in the 
premotor cortex. This is particularly important because all 
mirror neurons present a congruency between visual actions 
and motor responses. 

 After the patient has at least a weak control over his arm 
(i.e. one can visually observe the intention to move the arm), 
the second type of session is started. The sensitivity of the 
Leap Motion device is gradually set in order to detect the 
slightest intention of arm or finger movement. During the 
exercise, all movements executed by the patient are 
augmented by a factor that is directly related to the amplitude 
of the movement – for low amplitude movements the 
amplification factor will be at the maximum value and it will 
linearly decrease to an amplification of 1 for maximum arm or 

finger movement (i.e. the maximum amplitude movement that 
can be achieved by a healthy individual). The effect on the 
motor cortex is important because the patient realizes that he 
moves the hand at his will. The augmented feedback is 
extremely necessary because it transforms the visual 
information in knowledge. For all three types of exercises the 
maximum amplitude interval is divided in four, each 
subinterval having an amplification factor of 2.5, 2, 1.5 and 1 
respectively. For example, for the arm movement exercise 
(Fig. 5) the maximum amplitude is 90 degrees. The 
subintervals of 22.5 degrees each, labeled α1 to α4, are 
associated to the above mentioned amplification factors. 

 The third session type is employed when the patient has 
regained partial control over his arm. The movements are no 
longer augmented and the patient is further motivated by 
assigning different tasks to him. The purpose of the VR is to 
motivate the patient through the proposed tasks and scenarios. 
In this stage the feedback is supplemented by the use of the 
haptic module. 

 In the setup for arm exercises, the patient pushes or hits a 
ball as hard as he can in order to move it and send it as far as 
possible. Of the five vibration motors, one is mounted on the 
side of the hand (i.e. between the thumb and the back of the 
hand) and the other four are mounted on the forearm at equal 
distance between the wrist and the elbow. The motors are 
selectively activated when the patient hand in the VR touches 
the ball. The intensity of the vibration is proportional to the 
velocity of the movement. 

 For the hand exercises a single vibration motor is placed in 
the palm. Based on the exercise type, it is activated when the 
fist is closed or when the thumb is in flexion. 

 During the last two recovery sessions, the therapist can set 
different values for the feedback movement amplitude. In this 
way the difficulty of the exercise is altered based on the 
patient’s status. More, due to the fact that the movement can 
be tracked during the exercises, the therapist can observe the 
evolution and can determine the recovery degree of the 
patient. 

V. CONCLUSIONS

 This paper presented the design of an easily adaptable 
system for post-stroke rehabilitation. Based on the TRAVEE 
paradigm, it used virtual reality and haptics for augmented 
feedback during exercise sessions. Besides the actual system, 
three exercise types were defined (forearm, hand and thumb), 
each divided in three successive session types (mirror, 
augmented and real feedback).  

 The technical performances of the proposed system were 
extensively tested in terms of hardware and software 
performance. The test techniques and updated versions of the 
application have contributed to ensure the stability, accuracy, 
repeatability of the acquired data and data loss have not been 
reported. The software fulfilled the load, volume and stress 
testing. The analyses of the data generated by the application 
revealed a very good concordance between the real position of 
the limb/hand/palm and the calculated position.  
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 Presently, pilot case studies are conducting to evaluate 
ease of use and efficacy from the patient’s side and 
rehabilitation process. Preliminary tests suggest user 
acceptance of the technology. The project is in progress and in 
the next work package the assessment of its efficiency and 
usability in medical clinics or at home will be conducted by 
the Romanian National Institute of Rehabilitation, Physical 
Medicine and Balneoclimatology. The individuals after stroke 
with intact cognition and sitting balance are selected for the 
study and they do not receive any other intensive 
rehabilitation. The subjects will follow a recovery scheme 
used in similar studies [12]. Each patient should perform 
gradually the sets of exercises for a maximum of 30 minutes, 3 
or 4 times a day, for at least 10 weeks. After 5 weeks and at 
the end of the period, well-known outcome measures will be 
performed: Motor Activity Log, Wolf Motor Function Test, 
Nine-Hole Peg Test and Chedoke Arm and Hand Activity 
Inventory [13]. A software module collects for each user the 
frequency and duration of use and indexes regarding patient’s 
performance in comparison with avatar. Finally, the individual 
files will be merged and statistically analyzed by the use of R 
language. 

 Further work includes defining new exercise types and a 
long term usability study performed with stroke impaired 
subjects.  
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Abstract— In this paper we describe the usability assessment 

of a system designed to help blind and visually impaired people to 

navigate and perceive the environment. The proposed system is 

based on sensory substitution, remapping the vision stimuli into 

audio and haptic ones. The goal of this study is to aid the 

development of the sensory substitution device (SSD) by 

understanding how the different choices in encoding and 

rendering the environmental information affects the user’s 

perception and experience while using the system. The 

preliminary results are presented to show the usability and 

usefulness of the proposed system. 

Keywords— usability; visual impaired; assistive technology; 

virtual environment; sensory substitution. 

I. INTRODUCTION

In 2010, the World Health Organization [1] reported 285 
million of visually impaired, 246 million with low vision and 
39 million of blinds worldwide. 

For a person, the possibility to orient and move by himself 
relies on information gathered from the indoor/outdoor 
surroundings about position, direction and stationary/moving 
objects: walls, stairs, bumps and holes respectively, moving 
vehicles, people [2] etc. To gather this information, a healthy 
person relies mostly on the visual sense and barely on the 
hearing or haptic ones. But for a blind or visually impaired, 
independent orientation is a real challenge due to poor 
environmental information received through audio and haptic 
channels.  

Due to so called “human auditory system”, any healthy 
person can recognize and find the source of a sound. This is 
possible because the auditory system uses two classes of cues: 
monaural and binaural. The first-class cues let the system 
find/detect the sound source in median plane and whether the 
sound is coming from back or front. The second-class cues 
give information about sound source in horizontal plane [3]. 

The blind people and visually impaired (VIP) build their 
own spatial map based on surrounding or their own sounds. By 
tracking these sound sources, they are able to orient 
themselves. The second information channel, the haptic 
channel, might be used as alternative information channel for 

those with hearing impairment, or just as an empowering 
channel to gather more information, helping the user to build 
an improved surrounding map for better orientation [4]. 

SSDs can be used for building spatial surrounding maps in 
a much faster way, and with more information about static and 
moving objects. This kind of device is using special video 
cameras and converts/encodes the detected information in such 
a way that can be transmitted on the user available channel, 
audio and/or haptic. That implies the remapping of the visual 
information into audio/haptic information based on predefined 
algorithms. 

II. STATE OF THE ART ON SENSORY SUBSTITUTION DEVICES

Sensory substitution stands for remapping of stimuli of one
sensory into stimuli for another sensory. Usually this is done to 
bypass a defective sense (vision, hearing). A blind or deaf 
person doesn’t lose the ability to see or hear, but only the 
possibility to convey stimuli to the brain [5]. There are invasive 
and non-invasive methods for sensory substitution, the last one 
being mostly used by the SSD due to advance on human 
computer interaction technology. For blinds, we can speak 
about Auditory Visual substitution and Tactile Visual 
substitution [5]. 

Kai Wun et al. presented in [6] a SSD that assists the visual 
impaired to avoid obstacles. It is a head-mounted device with 
stereo camera mounted on eyeglasses to compute depth. In 
addition, the system is capable of live video streaming through 
3G network based on witch a normal person gives indications. 

The EyeMusic [7] tool developed by University of 
Jerusalem provides visual information through bone 
conductance headphones and based on 25x40 images supplied 
by a camera mounted on eyeglasses. It uses various timbres, 
pitches and notes to create a mental image of the visual scene 
in front of the user.  

Michael Bujacz developed and algorithm for sonification of 
3D scenes by mixing image processing methods with audio 
representation. It uses depth algorithms for object segmentation 
and builds stereoscopic images. For every detected object the 
sonification algorithm generates the corresponding sound [8]. 
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The VIBE project developed at Gipsa-Lab and LPNC from 
Grenoble proposed an audio guided system by generating 
sounds as summation of sinusoidal sounds produced by virtual 
sources (a set of pixels grouped in receptive fields). The 
receptive field state is the mean of gray levels in its area [9]. 

Stiles and Shimojo presented the vOICe device which is an 
auditory SSD that translates vertical position to frequency, left-
right position to scan time (encoded in stereo), and brightness to 

sound loudness [10]. In fact, this device assists the blind by 

encoding a video stream into a sound pattern.  

In the same research area, our project, the Sound of Vision 
(SOV) project, is aiming to design, implement and validate a 
wearable system to assist VIP by creating and conveying an 
auditory representation of the surroundings, continuously 
updated and delivered in real time to the user. In addition, 
haptics is used to enhance some relevant information. The SOV 
project, approaches and devices are widely presented on the 
project site [11] and in [12]. 

III. USABITLITY ASESSEMENT OF THE SOV DEVICE

The usability tests of the first prototype of the SOV device 
were performed with two purposes: (1) to test the prototype 
functionality and (2) to accommodate test-takers with the 
prototype. In order to do that without any physical risks and 
fear of doing mistakes, the system was tested in a virtual 
environment (VE). The VE simulates highly abstracted scenes 
from real world, e.g. using boxes of different dimensions. The 
first tests in VE were the ego-static tests (VE1) where the test-
taker had analyzed a scene presented to him/her and to identify 
the objects properties based on the received audio and haptic 
information. The second category of VE tests were the ego-
dynamic tests (VE2) where the user had the possibility to move 
in the virtual scene with the help of the computer keyboard. 
The goal for the test-taker was to apply the knowledge from 
VE1 to navigate and avoid stationary objects. Both test 
categories (VE1 and VE2) were carried out by test-takers using 
firstly the audio headset and then repeat most of the tests with 
the haptic vest as stated below: 

• for audio, 8 testing tasks were available (7 in VE1 and 1 in
VE2): in VE1, the user’s abilities to identify the direction,
the elevation, the width, the distance and the quantity of a
generic object, the type of an object and also one’s ability
to manage in a complex scene (in which several objects of
different dimensions were present) were tested; in VE2,
the user’s ability to hit/find one box was evaluated;

• for haptics, 8 tasks were available (7 in VT1 and 1 in
VT2): in VE1, the user’s ability to identify the direction,
the width, the height, the distance and the quantity of a
generic object, the type of an object and also one’s ability
to manage in a complex scene were evaluated; in VE2, the
user’s ability to hit/find one box was tested.

During test sessions, the tester and test-taker stood next to
each other as it is presented in Fig. 1. For each task, the users 
had: (1) a baseline testing session, in which they tried to solve 
the tasks, without any training; (2) a training period, in which 
feedback was offered to them and (3) three sessions of self-
testing. The complex task from VE1 and the task related to 
finding a box in VE2 did not contain the training part.   

The tests took place in three different locations: University 
Politehnica of Bucharest (UPB), Technical University of Iasi 
(TUI), and the High School for Visually Impaired Persons from 
Targu Frumos, Romania. 

Fifteen sighted (but blindfolded) and blind test-takers 
participated in both audio and haptics usability tests, having 
ages between 19 and 67, with an average of 33 years old. All 
the subjects were informed about the SOV project and the 
testing methodology and signed a consent form before the 
tests: in total, there were 8 blind and 7 sighted, 11 men and 4 
women. Before starting the tests, audiometric check was 
performed, to evaluate if any hearing impairment exists; all the 
test-takers passed the check. 

Figure 1. Environment settings tests  

IV. ASSESSMENT RESULTS AND ANALYSIS

The results (minutes spent on a task and score) were 
registered for both audio and haptic tasks, as follows: baseline 
testing (B) - minutes and score [0%-100%], training (Tr) - 
minutes, first session of self-testing (ST1) - minutes and score 
[0%-100%], second session of self-testing (ST2), if necessary - 
minutes and score [0%-100%], third session of self-testing 
(ST3), if necessary - minutes and score [0%-100%], final 
testing (T) - minutes and score [0%-100%]. A task is 
considered passed if the user obtains over 75% in the final 
score in two out of three self-testing sessions.  

The average results obtained by the 15 test-takers were 
calculated, for both blind and sighted persons. If one analyzes 
the final score obtained in the testing part and the minutes spent 
on a specific task, there is no straight-forward correlation: e.g. 
for audio-elevation task, the test-takers spent in average 30 
minutes and obtained a 53 % score, while for audio-type task 
they spent only 7 minutes and obtained much better results, 
96%. Based on the average final scores, the test-takers failed 
the following 8 tasks: audio elevation, audio distance, audio 
complex scene, audio box, haptics distance, haptics quantity, 
haptics complex scene and haptics box. 

As a general observation, the average time spent on audio 
was 17 minutes, while the average time spent on haptics was 
12 minutes. The average score obtained at final testing in audio 
was 70%, while the one obtained at haptics was 71%. 
Consequently, both models have similar precision. The blind 
persons did slightly better in testing, but they failed the same 
tests, except for the audio distance one. 
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To identify the learning progress of the users, a set of 
learnograms, for both audio and haptics, blinded and sighted 
persons were built.  We were particularly interested in finding 
out the learning curves of the users. A learning curve shows the 

increase of learning (score) on vertical axis with experience 
(minutes) on horizontal axis. The learning curves were 
analyzed especially for those users who failed the final tests. 

TABLE 1. SUMMATIVE RESULTS FOR LEARNING PROGRESS FOR AUDIO TASKS (P-PASSED; L- ASCENDING LEARNING CURVE) 

Direction Elevation Type Width Distance Quantity Complex Scene 1 Box

P L P L P L P L P L P L P L P L

Number of test-takers (out of 15) 12 14 2 7 15 15 13 14 7 7 15 15 6 9 5 6 

TABLE 2. SUMMATIVE RESULTS FOR LEARNING PROGRESS FOR HAPTIC TASKS (P-PASSED; L- ASCENDING LEARNING CURVE) 

Direction Type Width Height Distance Quantity Complex Scene 1 Box

P L P L P L P L P L P L P L P L

Number of test-takers (out of 15) 15 15 14 14 11 13 9 11 5 6 8 8 1 3 4 7

Figure 2. Final scores of all users for audio tasks; the yellow and blue lines show the average scores for blind, respectively sighted people 

Figure 3. Final scores of all users for haptic tasks; the yellow and blue lines show the average scores for blind, respectively sighted people 
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The summative Table 1 shows whether the test-takers 
passed the audio tasks or failed the tasks and also whether they 
have ascending learning curve or not (based on the available 
learnograms). If the learning curve is ascending, even for the 
users who failed the final test, we consider that their results can 
be improved, but they need a longer period of training or the 
model is not intuitive enough (thus hard to be learnt). 

The summative Table 2 shows whether the test-takers 
passed the haptic tasks (over 75% in the final score) or failed 
the tasks and also whether they have ascending learning curve 
or not (based on the available learnograms). If the learning 
curve is ascending, even for the users who failed the final test, 
we consider that their results can be improved, but they need a 
longer period of training or the model is not intuitive enough 
(thus hard to be learnt). 

We noticed that there are tasks in the audio model which 
are very hard to be solved, e.g.: elevation, distance, complex 
scene, box task. Although at distance task, the users almost 
passed, we noticed that the learning curve is constant. For the 
other 3 tasks, the learning curve for most users is slightly 
ascending, thus, with a lot more training, those users might 
pass them. At the complex scene and box scene, the results 
were fluctuating. There were no significant differences 
registered between blind and sighted persons. Also, the older 
test-takers obtained similar results with the other users. 
Looking at the dispersion of results per each audio task (see 
Figure 2), the most intuitive models are type, width and 
quantity (most users obtained high scores). Still, at the tasks 
which were found difficult by some users, others were able to 
obtain good scores, so, with more practice, the tasks are doable.  

With haptics, the distance, quantity, complex scene and box 
task were hard to be solved. For all those tasks, for most of the 
users who failed the test, the learning curve was fluctuant. So, 
more training does not guarantee better results. We considered 
that all the users who passed the tests have learning curves, but 
this is not always the case. There were no significant 
differences between the results of the older users and the 
others. Looking at the dispersion of results per each audio task 
(see Figure 3), the most intuitive models are direction, type and 
width (most users obtained high scores). At the complex scene, 
the haptic model was very hard to learn, while the results 
obtained at the box and quantity tasks were highly disparate 
and no useful conclusion can be drawn. 

V. CONCLUSIONS

This study was performed to support the development of an 
SSD, as an alternative method for the blind people to acquire 
information about the surrounding space. As shown in other 
studies [13], by encoding the visual information into tactile or 
auditory stimuli, such devices have a great potential of helping 
the blind and visually impaired. However, SSDs require a 
careful design process, based on user feedback, as well as 
extensive training and testing to obtain accepted functionality.  

The training and testing in virtual environment have a key 
role for VIPs’ accommodation with audio and haptic encoding. 
For a blind person, it is very important to be confident with the 
SSD, to have courage to use it in real world as well, and to 
perceive the training and testing sessions like serious games. 

Based on the feedback of the conducted tests, the hardware 
modules were redesigned, and audio and haptic encoding 
models were improved. An important decision which derived 
from the tests was the simultaneous use of audio and haptic 
devices for empowering the SOV system. Thus, one of the 
stimuli can overcome the lower performance of the other. For 
example, in case of elevation, the audio encoding leads to 
better results but for the height, haptics offered a better 
perception. An important future work is the cognitive load 
assessment of VIPs using the SOV system, based on analysis 
of electroencephalography and electrodermal activity records. 
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Abstract— This work presents the design aspects of TRAVEE, a 
neuromotor rehabilitation system. The TRAVEE system relies on 
innovative concepts for improving the rehabilitation process and 
increasing the patient recovery rate. One such concept is to present 
the patient an augmented feedback as part of a learning process 
based on neuroplasticity. Most of the rehabilitation exercises are 
based on visual feedback aimed at restoring the brain function for 
upper limbs control. This feedback is provided in a virtual reality 
setting by presenting the patient with a virtual model of his/her 
body. The movements executed by the patient are augmented in the 
virtual reality. Assisting the patient by a virtual therapist when 
executing the recovery exercises is another original feature of the 
proposed system. TRAVEE is a complex system, that integrates 
virtual reality, robotics, electrical stimulation, electromyography 
and brain-computer interfaces to boost the rehabilitation process. 
The challenges posed to the architectural design of TRAVEE reside 
in the complexity of its functioning in a setup that integrates a 
variety of devices, with real-time operation constraints and 
requirements of keeping the system at accessible costs, easy to 
install and use. In this paper, we present the proposed hardware 
and software architecture for TRAVEE. We analyze and discuss 
the advantages of our approach and the mechanisms that address 
the various constraints in TRAVEE. 

Keywords— stroke; visual feedback; rehabilitation; 
virtual/augmented feedback;realtime software 

I. INTRODUCTION

According to World Heart Federation [1], 15 million people 
suffer a stroke each year. Only four million successfully 
recovers, six million die and five million are left permanently 
disabled. That makes stroke the major cause of long term 
disability, with huge economical and social impact. For stroke 
survivors, rehabilitation is very important in order to relearn 
skills that were lost with part of the brain. That is possible due to 
brain neuroplasticity [2], which represents the brain ability to 
reorganize itself by creating new connections between neurons. 
This is possible with repetitive training [3], exercises functional 
relevance and the intensity of practice [4].   Most of the 
rehabilitation exercises are based on visual feedback in restoring 

brain function for limbs control. The visual feedback can be 
achieved simple by using a mirror during exercises, in which the 
patient can see the movements of his healthy arm and have the 
impression that is his impaired arm. Studies have shown that 
mirror therapy has significant recovery results on grip strength, 
accuracy of arm movements [5], speed and dexterity [6]. 
However there are some disadvantages like limited choice of 
activities, repeated motivation and good mental function, patient 
position and condition, limited perspective, lack of increasingly 
challenging tasks [7].  

The disadvantages mentioned above can be overcome by the 
use of virtual reality (VR) and interactive video gaming. Taking 
into consideration the computer graphics development, VR 
approach in stroke rehabilitation is relatively recent [8]. The 
patient interacts with virtually simulated environment 
customized for his/her condition. The system provides therapist 
with valuable data about patient’s progress based on which the 
therapist can adjust the game’s difficult level. The possibility to 
change the game (environment, scenario), to increase the 
challenges along with the patient progress, to view the 
improvements in physical ability, engages and motivates the 
patient, increases the self-esteem [8]. Liang et al. observe that 
traditional therapy combined with virtual kitchen for hand 
training is more effective for motor function and ability for 
patients in convalescent phase [9].  This study demonstrates that 
VR is not used only for repetitive task to recover the motor 
function, but also to retrain the patient’s activities of daily living 
(ADL). Programs like driving a car or a scooter, shopping in a 
supermarket have been tested and evaluation studies reported 
good effects of VR [10]. However there are some constrains 
regarding visual perception of spatial relationships between VR 
objects when guiding movements [11]. System interaction body 
parts driven by patients and system virtual objects have 
independent coordinates references [12] and that may affect the 
effectiveness of rehabilitation systems. Other studies reported 
that older people are reticent [13] on using VR therapy despite 
the demonstrated user friendly environments [14]. 
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Augmented reality (AR) is a composite view of a computer 
generated image and real environment [8]. For stroke patients, 
an augmented reality based rehabilitation systems allows to 
control the information from the environment and how the 
patient interacts with it [15]. That can be used as stimuli for the 
therapy. The problem of patient movement consistency from VR 
where the patient have to map his movement with object 
movement from VR scene, no longer exists in AR. Luo et al. 
developed a system with AR and mechanical devices for 
repetitive practice like grasp-release tasks or moving virtual 
objects[16]. The patient is able to see his hand in the augmented 
reality scene and the information provided can be controlled in 
this environment. An example is the following: if, in his 
environment, a patient is unable to walk, is unable to move by 
himself his lower or upper limbs, a combination of AR and a 
robotic device, provides feedback to the patient and that is the 
visual sensation of walking, a very important component in 
motor learning [17]. However, the recovery results are around 
80% for lower limb (the patient can learn to walk again) [17], 
[18] and a maximum of 20% for upper limb [17], [19]. Some 
causes for such low recovery percentage for the upper limb are: 
discontinuity of rehabilitation exercises once the patient is 
released from hospital [20], [21]; complexity of rehabilitation 
exercises [22], [23]; overusing of healthy arm leads to learned 
non-use for disabled one [20], [24]. Solutions to overcome these 
causes are: trained personnel for 30 hours / week [17] with high 
costs; tools for repetitive exercises that can be used even at 
home; the possibility to adjust these tools accordingly with 
patient needs. 

Another approach in assisted stroke rehabilitation is the use 
of robotic devices, in scenarios that continues the traditional 
therapy or for evaluation [25], [26]. These devices can be used 
alone or with VR [27] to increase patient motivation and 
involvement [28]. The robotic assisted approach results do not 
exceed to much the traditional approach, but the costs involved 
(6-axis robots cost around US$60,000 without taking into 
consideration the development and tools) are too higher to 
justify the use of it. However the potential of such a system is 
not to be ignored but rather improved by using devices like 
Brain Computer Interface (BCI), Electromyography (EMG), 
Functional Electric Stimulation (FES), haptics. In this way new 
concepts and rehabilitation scenario can be developed in order to 
significantly improve the stroke recovery results. Designing the 
robotic devices for specific rehabilitation exercises can lower the 
cost, making it available for large scale home use. Yet, the 
design must take into consideration the possibility to integrate 
that particular robotic device into another system. In this way, 
the therapist can have the possibility to imagine and build a 
modular rehabilitation system that best fits the patient needs. 
Recent experiments of combining robotics and/or VR with BCI 
[29], [30] reveals the fact that motor imagery development has 
the same importance in recovery as development of motor action 
itself [31], [32]. The patient is trained to think a movement of his 
impaired limb, the BCI detects an EEG pattern of that specific 
thought that can be used as a trigger for robotics and/or FES. In 

the same way patterns in EMG signals can be used as triggers 
for FES devices, to detect muscle fatigue and to adjust speed and 
force during exercises. 

II. TRAVEE SYSTEM 
The TRAVEE system is an integrated bio-informatic system 

useful in recovery process of patients with neurolocomotor 
disabilities caused by stroke, accidents and brain surgery. It 
includes a rich hardware-software architecture and rehab 
concept with many contributions beyond state of the art. Out of 
these, should be noted some very important aspects: the brand 
new idea of using augmented and magnified feedback; the fact 
that tasks and guidance are provided by a virtual therapist - 
concept new in the field of rehab and considered extremely 
promising by the healthcare professionals; prospects of large-
scale usable, with immense socio-economic impact; the modular 
design that allows the therapist to add/remove monitoring and 
stimulation/assisting devices in correspondence with 
rehabilitation exercises; the user interface of every module gives 
the possibility to modify working parameters for every patient or 
to follow the patient progress. This modularity can lower the 
costs for the patient by using only the needed modules. These 
hardware modules can be rented or purchased or even sold if no 
longer needed.  

From design perspective, the TRAVEE system is intended to 
be a software kernel that interacts with different pluginable 
components, allowing the therapist to build/configure, to log, to 
visualize, to analyze rehabilitation exercises.     

 

Fig. 1. TRAVEE system context diagram 

The TRAVEE system will contain two main equipment 
categories: equipment for patient monitoring and training and 
equipment for data analysis and processing as presented in  Fig. 
1. Devices from the first category are optional pluginable 
components for the system: the system can use them all, but they 
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are not mandatory. Results of processed raw data from 
monitoring devices will be used to trigger the stimulation 
devices with respect to rehabilitation exercise. The patient can 
view his body postures and movements in an augmented reality 
scene rendered on screen or head-mounted display (HMD).  

Taking into account the necessary processes of augmented 
recovery, the TRAVEE system  architecture reflects the 
components categories involved (hardware, robotics equipment, 
software) and how information is exchanged between them. All 
these interconnected components form a complete information 
loop closed by the patient. The basic idea is a more natural 
interaction of the patient with the system, the goal being the 
artificial closing of the causal loop that controls neuroplasticity / 
learning / recovery. In this way the system architecture is 
scalable both in terms of variable volume of information to 
process and terms of variable number of sensors controlled by 
the system and from which it receives information. This 
variability is given by the complexity of recovery exercise.  

A key element taken into account in the "TRAVEE" system 
is interoperable synchronization of the main subsystems that 
perform both patient activities monitoring and physical, 
biological and psychological stimulation. From this perspective, 
the main challenge consists in relevant and real-time 
management of information provided by different components 
of the system. The solution of multilayer configuration and 
management of data stream can relieve the main processing 
module from the computation pressure and decision with the 
cost of losing, by filtering, the information considered irrelevant 
at a lower level. Because some data provided by hardware 
modules may be affected by errors (ex. motion inertial sensors 
are not so precise) multiple data synchronization between 
accelerometer, gyroscope, magnetic sensor and optic sensors 
(leap motion, kinect, video camera) is required.    

Analyzing the system working scenarios, a series of 
constrains has been taken into consideration during system 
design. All constrains were classified in nine main categories: 
environment (mobility, easy to use, the therapist position), 
patient status (the system addresses only to patients with 
cognitive capabilities, the system components must not prevent 
patient from exercises, the system must draw patient attention 
whenever he loses concentration, button for discomfort 
signaling), resource availability (dynamic configuration, easy to 
add/remove components), interoperability (modular architecture, 
scalability), data storage (patient profile, patient history, local 
and remote data access), security (security access, patient 
confidentiality), real time system reaction, module testing, 
network communication.   

III. HARDWARE ACHITECTURE

The used hardware devices must ensure the system 
functionalities of permanent patient monitoring during the 
exercises and the movement and stimulation of the upper limb 
that needs to be recovered. The monitoring function  determines 
the correctness of the exercise performed by the patient. The 

monitoring is also used to provide real-time information to 
update the virtual environment. The system will aggregate and 
synchronize information gathered from multiple monitoring 
equipments to interpret the status and actions of the patient. 

The stimulation function aims on one hand to restore and to 
maintain the muscular tone and / or to assist the patient when 
performing the recovery exercises. On the other hand, it aims to 
attract and maintain the focus and attention of the patient. In this 
respect, the stimuli generation for the patient will be realized on 
two levels: physic at the level of the affected upper limb and 
visual through augmenting the initial movement during the 
recovery exercise. 

The processing and control functions aim to synchronize all 
events and decisions to allow the system to act as a whole. Both 
hardware equipments and software components will be selected 
to fulfill the system constraints regarding the performance and 
operational safety. 

The hardware required to implement the system is shown in 
the Fig. 2. These equipments presented in the figure are chosen 
to meet the monitoring, stimulus generation and data 
presentation requirements. 

Fig. 2. TRAVEE hardware system architecture 

Multiple equipments are used to meet the user requirements. 
In this way, the proposed architecture is maximal and allows 
flexibility in choosing concrete system configurations in order to 
fulfill the system objectives. Throughout the development of the 
project optimal configurations will be determined as tangible 
results will be produced by implementing different architectural 
versions.  

A. Monitoring components
The monitoring equipments are designed to retrieve data on

the position and movements of the patient’s affected limb. Data 
about muscle and brain activity are also monitored. This 
information is send to the processing unit to be subject to 
specific processes that output appropriate commands for the 
stimulus generation equipment. Also, information obtained from 
the monitoring equipment are stored and presented to other users 
(e.g. physician, therapist, researcher) to further develop custom 
recovery scenarios. The monitoring equipments use different 
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technologies (inertial sensors, optical sensors, etc.) and are 
described in the followings: 

• Inertial sensors [33] are specific devices that allow 
movement tracking mainly by measuring the acceleration 
(accelerometers). In practice IMU (inertial measurement unit) 
units are used to reduce the acceleration conversion errors. 
These units contain an accelerometer, a gyroscope and a 
magnetic sensor. 

• Optical sensors are devices used to track and monitor 
movements by analyzing image flows. Among such devices we 
can mention Leap Motion [34] [35] [36], [37], Kinect [38], 
video cameras and markers. Leap Motion can be used to track 
minor movements by using stereo vision IR sensors that 
determine the position of the limb.  

Kinect sensor can be used to easily identify human 
silhouettes and track their movement. The standard Kinect 
system detects 25 joints, finger movements (thumb and at least 
another finger). It also estimates what muscles are involved in 
certain movements, can detect facial expressions and can 
estimate the heart rate by analyzing color changes of the human 
face. As disadvantages, the Kinect sensor requires the upper 
body detection to estimate the human skeleton. Also, it does not 
accurately compute the depths of the edges of an object and 
present cumulative errors that make slight movements hard to 
track. 

Video camera [39] and markers represent a classical solution 
to detect object’s movement. It requires the use of cameras and 
markers attached to the region of interest. The images acquired 
by the cameras are processed to obtain data about the marker 
movements. 

• EMG [40] devices record the electrical activity. This is 
done by analyzing the electrical impulses of the peripheral 
nervous system in the relevant areas. 

• BCI [41], [42] device allows investigating the 
possibilities of determining the intention of making a movement. 

• ET device (Eye Tracking) [43] allows estimating / 
determining the gaze direction by using a video camera and 
specific image processing tools.  

B. Stimuli generating components 
• HMD Device [44], [45] represents a video system which 

has one or two screens through which images of the patient’s 
virtual model can be projected. This virtual model will mimic 
the real life position of the patient and will reproduce its 
movements.  

• FES devices [40], [46], [47] allow the application of 
electric currents to activate nerves in the extremities affected by 
paralysis as a way of augmenting the feedback and to stimulate 
the affected limb muscles accordingly.  

• Vibrating devices [48] allow generation of vibrations 
with configurable / adjustable properties (e.g. intensity). 
Applying these devices on the patient allows the generation of a 
haptic feedback that might be associated with the properties of 
the performed movements.  

C. Processing and control component  
The system control and the data processing are performed by 

a computing component that allows the efficient implementation 
of all functionalities. The computing component must have the 
needed computing power and the amount of memory to process 
real-time data of different types (e.g. images, data acquired from 
the position sensors). The computing system must also allow 
efficient and secure data storage in a local database. 

The computing system must be portable to allow easy use in 
different locations by different users (physician, therapist). 
Multi-users access to the system resources must be secure. The 
installed operating system has to provide support for all the 
devices that are referred to in the hardware system architecture.  

IV. SOFTWARE ARCHITECTURE  
 The main constrains for the TRAVEE system with 
implications over the software architecture are: operation 
environment, patient condition, interoperability, data storage and 
access, security, network communication, real time data 
processing, integration of various devices for monitoring and 
stimulation. Thus, to deal with these constrains the software 
component has an event driven architecture (EDA) which is an 
architectural model based on event generation, detection, 
consumption and feedback. Another motivation for EDA is that 
all monitoring sensors work in an event-driven mode: event 
detection or threshold exceeding. Moreover, event hierarchies 
allow the conversion of sensor output from higher to lower 
granularity. This facilitates processing of complex events. The 
input/output model is straightforward: every system component 
signals its status and reacts to signals from the other 
components. The advantage of EDA is that it simplifies the 
design, development and testing by minimizing the connections 
between the system software components, making them simple 
to use and highly independent. 

 

Fig. 3. System modules  
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  The system processes are administrated in a sense-analyze-
respond manner. First (sense) implies real time processing of 
data acquired from the patient monitoring devices. That 
generates a stream of events associated with the patient status 
and actions. By analyzing these events the patient status/actions 
can be estimated. The analysis component continuously 
evaluates the when clause of the when-then rules to determine if 
the then clause is to be executed. When-then rules are defined 
within predefined scenarios associated to the recovery session. 
The system response consists in execution of the then clauses, 
generating commands for the stimulation equipments.  For every 
generated event, minimal information will be added: type, 
unique id, time stamp and component id (sensor, device, user 
interface). Depending on the sources, the events are classified in 
user, monitoring and error events. The events can be simple and 
are associated to monitoring functions like “button pressed”, 
“discomfort”, “movement detection”; or can be complex and are 
generated based on other simple events like muscular activity, 
neurologic activity, limb movements. 

 The modules included in the TRAVEE software architecture 
are presented in Fig. 3. Patient status and monitoring function 
are provided by Data Capture Module (DCM) and Event Control 
Module (ECM). The Application Logic Module (ALM) analyzes 
the received events in order to call the Command Module (CM) 
that generates individual commands for the stimulation 
equipments. There is a separate module (3DM) for the visual 
stimulation. It is designed to generate the 3D augmented reality 
scene and to update the patient avatar according to his/her 
actions. The patient avatar is the patient’s virtual body model in 
the 3D reality scene. The motion sensors detect the movements 
of the impaired limb and generate events to update the virtual 
body model. Raw data, events and actions are stored by 
Persistence Module (PM) for further analysis. The therapist 
interacts with the system through User Interface Module (UIM).  

Fig. 4. Sense - analyze – respond mapping functions 

 The three functions of an EDA system, i.e. sense, analyze 
and respond, are mapped on the TRAVEE software components 
as described in Fig. 4. The proposed functional decomposition 
allows handling simple events generated by individual 
monitoring devices and also the aggregation of such data thus 
forming complex events. Thus, the system is able to detect a 
patient’s action more efficiently by correlating data coming from 

several sources. This correlation is provided by the ALM given 
its event analysis role.  

V. CONCLUSIONS

 In this paper we have presented the design aspects of 
TRAVEE, a neuromotor rehabilitation system. The key aspect of 
TRAVEE is to provide the user with an augmented feedback in a 
virtual environment, in order to speed up and improve the 
rehabilitation of an impaired upper limb. TRAVEE also aims to 
improve the user rehabilitation process by introducing a virtual 
therapist that will be a part of the virtual environment. The 
proposed hardware and software design ensures the system 
scalability and enables the connection of different devices for 
monitoring and stimulation. That gives the therapist the 
possibility to create various rehabilitations scenarios. The 
software architecture of the TRAVEE system takes into account 
the requirements for real-time processing of data and integration 
of various devices for monitoring and stimulation. To this end, 
the architecture is designed using an event-driven approach. 

 Last but not least the TRAVEE system has to be seen more 
as a new concept, the concept of digital therapist in stroke 
rehabilitation by promoting modularity, flexibility, 
customization, providing patients with professional specialized 
care, increasing self esteem and having the feeling of 
independence.   
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Abstract- In many cases, persons with neuro-Iocomotor 
disabilities have a good level of understanding and should use 
their eyes for communication. In this paper a reliable, mobile 
and low-cost system based on eye tracking mouse is presented. 
The eye movement is detected by a head mounted device and 
consequently the mouse cursor is moved on the screen. A click 
event denoting a pictogram selection is performed if the patient 
gazes a certain time the corresponding image on the screen. 

Keywords- assistive technology, image processing, pupil 
detection, video glasses. 

I. INTRODUCTION 

Assistive technology (AT) promotes greater independence 

for people with disabilities by enabling them to perform tasks 

that they were formerly unable to accomplish. However, the 
communication with patients having neuro-Iocomotor 

disabilities is a great challenge even today [1 ]. Usually, the 

communication with these patients requires continuous 

presence of a caregiver who should guess patient's basic 

needs. There is a category of people with severe speech and 

motor impairment or with neuro-Iocomotor disabilities who 
cannot speak and cannot use sign language. If these patients 

have a good level of understanding and perception, they 

should use their eyes for Human-Computer Interaction (HCI). 

Eye tracking (ET) techniques measure the person's eye 

movements so that the gaze point at any time and the eyes 
shifting are established accurately. Different invasive or 

noninvasive methods for eye movement measurement were 

investigated. Today, some vendors (e.g. Tobii or MyGaze) 

provide commercial remote camera-based eye-tracker 
systems for which the light source and camera are 

permanently affixed to a monitor. These systems require the 

patient's presence in front of the monitor and calibration 
procedure for any new dialog session and do not fit with the 

aims of AT initiative. Furthermore, these commercial systems 

are expensive, exceeding 10 000 USD. 

As an alternative, some mobile and low cost devices for 

HCI were developed by different research groups [2 ], [3]. 

ETRA Conferences join together companies and researchers 

involved in eye tracking technologies and highlight new 

hardware and software solutions. 
In one of our previous research project, a communication 

system for people with disabilities, named ASISTSYS, was 
designed and implemented in concordance with the 

international guidelines and rules regarding assistive 

technology (AT). ASISTSYS, presented in detail in [3], is 
based on a mobile device for patient's gaze measurement and 

also an optimized algorithm for video eye tracking 

implemented on embedded system. The eye tracking system 

was composed from a webcam mounted on a glasses frame, a 

mobile device with BeagleBoard xM for image acquisition 
and processing, a monitor for displaying words correlated 

with patient's needs and software application written in C++ 

and Qt. The prototype of the proposed system has been tested 

in a neurologic recovery clinic and was rated by patients with 
210 points from 225 maximum possible. The medical staff 

evaluation revealed an overall score was of 18 from a 

maximum of25. Despite favorable general assessment, a few 
drawbacks were revealed: the quality of the acquired images, 

the use of a monitor for displaying the user graphic interface, 

the sensitivity of ET algorithm to light intensity and the 
selection of an image or word by looking at it and blinking. 

Our recent research was focused on new hardware and 

software solutions to improve the reliability, mobility and 

usability of the communication system. The proposed eye 

tracking method was oriented towards the possibility to be 
used by patients for email, messenger and social sites. In this 

paper we propose an eye tracking mouse (ETM) system using 

video glasses and a new robust eye tracking algorithm based 

on the adaptive binary segmentation threshold of the acquired 

images. The proposed system allows the patient to 
communicate his needs, to browse a graphical user interface 
and to select an image or a word, using only his eyes. 

978-1-4799-2373-1/13/$31.00 ©2013 IEEE

Authorized licensed use limited to: Gheorghe Asachi Technical University of Ia¿i. Downloaded on May 04,2023 at 06:25:05 UTC from IEEE Xplore.  Restrictions apply. 



II. EYE TRACKING MOUSE ARCHITECTURE 

The proposed ETM system consists of two hardware 
devices, webcam and video glasses and the software 

application running the eye tracking algorithm. The webcam, 
mounted on a video glasses frame with the help of an 

aluminum bar, has a modified system lens in order to be used 
at a short suitable distance (less than ten centimeters) from 
user's eyes. It captures images only in infrared light by using 

an infrared filter on top of the lens. Six infrared LEOs provide 

constant illumination of the eye so that the natural light has 

an insignificant influence on pupil detection. 
The video glasses display copies of the computer screen for 

both eyes so that the patient sees a 16:9 widescreen 1 .9 m 

display, as seen from 3 m [4]. The software application 

detects the pupil and maps its webcam position on computer 

screen in concordance with patient's gaze direction. 

Therefore, the mouse cursor is moved in the point of screen 

coordinates. By gazing at that point for one to two seconds, 
the software generates left click event. In this way the patient 

can point and click. 
Unlike the previous approach, video glasses were used 

instead of computer monitor so that the head position of the 
patient does not affect the eye tracking algorithm after 
calibration. The software application was written in c++ and 
C# using Visual Studio 2010 and OpenCV library for image 
processing. The software application is organized on two 
layers, as it is presented in Fig. 2 .  

The input layer is written in C++ and consists in three 
modules: Feeder, plnitializer and pTracker. The Feeder 

module provides for plnitializer continually acquired and pre
processed images until ROI (Region Of Interest), binary 
segmentation threshold and mapping coefficients are 
obtained. After these values are validated, the pTracker 

module detects eye pupil and mTracker determines the mouse 
coordinates. 

The output layer written in C# defines how information 
provided by the input layer are processed. So, the Point 

mapper calculates the new cursor coordinates based on 
webcam pupil coordinates. The mapping coefficients can be 
loaded from a local file or can be also updated when the 
mTracker is not running. 

The output layer written in C# defines how information 
provided by the input layer are processed. So, the Point 

mapper calculates the new cursor coordinates based on 
webcam pupil coordinates. The mapping coefficients can be 
loaded from a local file or can be also updated when the 
mTracker is not running. The Calibration component of 
mlnitializer module displays nine points on screen, one at a 
time. The patient has to look straight to each of them for one 
or two seconds and the corresponding positions of the pupil 
are recorded. Then, using the Sheena and Borah [5] 
equations, the mapping coefficients are determined. 

The User Interface (UI) module moves the cursor in the 
position provided by Point mapper. The click event is 
generated if the cursor stays in a certain position for one 
second. 

Fig. l. Head mounted Eye Tracking System. 
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Fig. 2. Eye tracking mouse software application. 

III. EYE TRACKING MOUSE METHOD 

The key point of eye tracking mouse application is the 

pupil detection algorithm. Firstly, Starburst algorithm [5] was 

implemented. This is a hybrid algorithm because it uses two 

main approaches: model-based and feature-based. The 

algorithm starts by detection and removal of corneal 

reflection. Next step is to find candidate feature points 
(located on pupil contour) and then RANSAC (RANdom 

SAmple Consensus) algorithm is applied to find feature point 

consensus set. Those points are used to find best fitting 

ellipse for pupil contour. The weak point of Starburst 

algorithm is the parameters of ellipse instability during the 

ellipse fitting for every frame. Therefore, the center of the 
detected pupil varies as it is shown in Fig. 3 ,  and 
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consequently the cursor position on screen is changing even if 

the patient stares at a fixed point. Due to the instability of the 

cursor position on screen, the Starburst algorithm could not 

be used for pupil detection in order to point on screen and to 

generate a left click event. 
Another feature-based approach presumes that pupil 

correspondent pixels are the blackest ones from the image. In 
order to obtain a binary image of the eye, an inverse binary 
segmentation with a given threshold was used. 

The new image contains white pixels in the same area 

where pupil correspondent pixels from originally image were 
located. The center of mass for this image is the center of the 

pupil. The main advantage of this approach is that the 

position of the pupil center has insignificant variation and 

therefor the cursor position on screen is stable on both axes as 
it is presented in Fig. 4 .  The challenge of this approach is to 
determine automatically the binary segmentation threshold. 

The proposed algorithm for eye tracking mouse, hereinafter 

referred as ETAST (Eye Tracking with Adapted 
Segmentation Threshold) is based on binary segmentation of 

the image and its diagram is presented in Fig. 5. 

The proposed algorithm is performed in three stages. In 

Preprocessing stage images with 640 x 480 resolution are 

acquired. Then, each image is converted in grey scale and 

flipped horizontally. If the tracking algorithm was initialized 

previously the Tracking task is launched, otherwise 

Initializing task starts. 
The ROI coordinates, segmentation threshold and mapping 

coefficients are established in the Initializing stage. The ROI 

coordinates specifying where the eye ball is located on the 

image are determined using the HaarCascadeFilter from 
OpenCV library for several frames. The function returns the 

coordinates of the upper corner of a rectangle that square the 
eye and the length and high of the rectangle. The obtained 

values are averaged in order to obtain the final rectangle 

coordinates. After ROI determination, a mask image with the 

same dimensions is generated. The mask presented in Fig. 6 

is applied in order to eliminate noise pixels. 
Binary segmentation threshold is computed using one 

frame. It starts by calling the Starburst algorithm in order to 
find the ellipse that fits the pupil contour. Then, the binary 
segmentation threshold is incremented from default value 
until white pixels outside the ellipse are obtained in 
segmented image. The Initializing stage ends by calling 
calibration process to determine new mapping coefficients or 
by loading the old ones. According to Parkhurst [5], the 
calibration method which has the lowest error degree is based 
on biquadratic function. This nonlinear mapping function 
needs nine calibration points for determining coefficients 
values. The points with known coordinates are displayed on 
the monitor in a 3 x3 grid and divide the screen in four 
quadrants. The mapping functions are widely described in [6]. 
Tracking task detects the pupil coordinates by calculating the 
center of mass for segmented image. Then, the mapping 
equations are applied and the new cursor coordinates are 
obtained corresponding to patient gaze point on video glasses 
screen. 
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Fig. 3. Variation of pupil center position using Starburst algorithm. 
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In order to assess the performance of ET AST method the 
rows gaze data provided by the ETM were recorded. Some 
widely accepted metrics are briefly presented in [7] and refer 
to fixation, saccadic eye movement, smooth pursuit, scanpath, 
etc. The analysis of experimental data reveals that ETAST 
algorithm is not sensitive to the noise generated by 
involuntary blinking or inherent pupil movement and 
provides good results for scanpath metric. 
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Fig. 5. ETAR algorithm. 

Fig. 6. Mask image. 

IV. RESULTS AND CONCLUSIONS 

We performed an experimental procedure in order to 
evaluate the usability, accuracy and reliability of the ETM 
system. Twenty participants, ranging from 1 9  to 27 were 
involved in the experiment. All of them had normal or 
corrected to normal vision, they had no prior experience with 
eye tracking and needed a minimal training for system using. 
The volunteers were asked to fill a Linkert questionnaire with 

8 questions concerning ergonomics, learning and adaptation 
time for system using, ease of use, level of fatigue, usefulness 

for healthy people or ETM shortcomings. The system was 
rated with 603 points from 800 maximum possible. The poor 
rating came from two makeup ladies and this is easily 
justified. Because the pupil detection is based on the darkness 
points from the acquired image, the mascara from the 
eyelashes affects the algorithm performance. This is not a 
drawback for the people with severe neouro-Iocomotor 
disabilities but must be solved for others future ETM 
applications. All participants agreed that the ETM was easy to 
use without any discomfort. 

The obtained positive results proved that ETM method is a 
reliable and low-cost solution for HCI and fits with the 
assistive technology goals to provide efficient solutions for 
patient's communication and independent activities. 

The social impact of the proposed ETM system may be 
significant allowing the social reinsertion of the disabled 
persons and increasing their self-respect. For many disabled 
people, such a communication system could help them to 
continue their intellectual and social life or to pass easier the 
difficult period of medical recuperation. In addition, taking 
into account that many people with disabilities do not afford a 
suitable communication system, this low-cost system could 
successfully replace the more expensive ones [8]. 

The proposed mobile device should be also useful for 
people with limited hand functions or should be integrated in 
different virtual and augmented reality systems for recovering 
and rehabilitation process targeting persons suffering from 
neuromotor paralysis in the spirit of the new paradigm of 
Cyber-Physical Systems [ 9]. 
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